1
|
Zhang G, Fortunel C, Niu S, Zuo J, Maeght JL, Yang X, Xia S, Mao Z. Root topological order drives variation of fine root vessel traits and hydraulic strategies in tropical trees. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2951-2964. [PMID: 38426564 DOI: 10.1093/jxb/erae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Vessel traits contribute to plant water transport from roots to leaves and thereby influence how plants respond to soil water availability, but the sources of variation in fine root anatomical traits remain poorly understood. Here, we explore the variations of fine root vessel traits along topological orders within and across tropical tree species. Anatomical traits were measured along five root topological orders in 80 individual trees of 20 species from a tropical forest in southwestern China. We found large variations for most root anatomical traits across topological orders, and strong co-variations between vessel traits. Within species, theoretical specific xylem hydraulic conductivity (Kth) increased with topological order due to increased mean vessel diameter, size heterogeneity, and decreased vessel density. Across species, Kth was associated with vessel fraction in low-order roots and correlated with mean vessel diameter and vessel density in high-order roots, suggesting a shift in relative anatomical contributors to Kth from the second- to fifth-order roots. We found no clear relationship between Kth and stele: root diameter ratios. Our study shows strong variations in root vessel traits across topological orders and species, and highlights shifts in the anatomical underpinnings by varying vessel-related anatomical structures for an optimized water supply.
Collapse
Affiliation(s)
- Guangqi Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Shan Niu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Juan Zuo
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jean-Luc Maeght
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Zhun Mao
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| |
Collapse
|
2
|
Hou J, Wan H, Liang K, Cui B, Ma Y, Chen Y, Liu J, Wang Y, Liu X, Zhang J, Wei Z, Liu F. Biochar amendment combined with partial root-zone drying irrigation alleviates salinity stress and improves root morphology and water use efficiency in cotton plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166978. [PMID: 37704141 DOI: 10.1016/j.scitotenv.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An adsorption experiment and a pot experiment were executed in order to explore the mechanisms by which biochar amendment in combination with reduced irrigation affects sodium and potassium uptake, root morphology, water use efficiency, and salinity tolerance of cotton plants. In the adsorption experiment, ten NaCl concentration gradients (0, 50, 100, 150, 200, 250, 300, 350, 400, and 500 mM) were set for testing isotherm adsorption of Na+ by biochar. It was found that the isotherms of Na+ adsorption by wheat straw biochar (WSP) and softwood biochar (SWP) were in accordance with the Langmuir isotherm model, and the Na+ adsorption ability of WSP (55.20 mg g-1) was superior to that of SWP (47.38 mg g-1). The pot experiment consisted three factors, viz., three biochar amendments (no biochar, WSP, and SWP), three irrigation strategies (deficit irrigation, partial root-zone drying irrigation - PRD, full irrigation), and two NaCl concentrations gradients (0 mM and 200 mM). The findings indicated that salinity stress lowered K+ concentration, root length, root surface area, and root volume (RV), but increased Na+ concentration, root average diameter, and root tissue density. However, biochar amendment decreased Na+ concentration, increased K+ concentration, and improved root morphology. In particular, the combination of WSP and PRD increased K+/Na+ ratio, RV, root weight density, root surface area density, water use efficiency, and partial factor productivity under salt stress, which can be a promising strategy to cope with drought and salinity stress in cotton production.
Collapse
Affiliation(s)
- Jingxiang Hou
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Wan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China; Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, Wageningen, 6700 AA, Netherlands
| | - Kehao Liang
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Bingjing Cui
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yiting Chen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Jie Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Wang
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiarui Zhang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenhua Wei
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark.
| |
Collapse
|
3
|
Loudari A, Latique S, Mayane A, Colinet G, Oukarroum A. Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity. Sci Rep 2023; 13:11212. [PMID: 37433920 DOI: 10.1038/s41598-023-38403-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.
Collapse
Affiliation(s)
- Aicha Loudari
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco.
- Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty, 5030, Gembloux, Belgium.
| | - Salma Latique
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco
| | - Asmae Mayane
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco
| | - Gilles Colinet
- Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty, 5030, Gembloux, Belgium
| | - Abdallah Oukarroum
- Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Lot-660 Hay Moulay, Rachid, 43150, Ben Guerir, Morocco.
- High Throughput Multidisciplinary Research Laboratory, Mohammed VI Polytechnic University (UM6P), 43150, Ben Guerir, Morocco.
| |
Collapse
|
4
|
Müllers Y, Postma JA, Poorter H, van Dusschoten D. Deep-water uptake under drought improved due to locally increased root conductivity in maize, but not in faba bean. PLANT, CELL & ENVIRONMENT 2023; 46:2046-2060. [PMID: 36942406 DOI: 10.1111/pce.14587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 06/08/2023]
Abstract
Moderate soil drying can cause a strong decrease in the soil-root system conductance. The resulting impact on root water uptake depends on the spatial distribution of the altered conductance relatively to remaining soil water resources, which is largely unknown. Here, we analyzed the vertical distribution of conductance across root systems using a novel, noninvasive sensor technology on pot-grown faba bean and maize plants. Withholding water for 4 days strongly enhanced the vertical gradient in soil water potential. Therefore, roots in upper and deeper soil layers were affected differently: In drier, upper layers, root conductance decreased by 66%-72%, causing an amplification of the drop in leaf water potential. In wetter, deeper layers, root conductance increased in maize but not in faba bean. The consequently facilitated deep-water uptake in maize contributed up to 21% of total water uptake at the end of the measurement. Analysis of root length distributions with MRI indicated that the locally increased conductance was mainly caused by an increased intrinsic conductivity and not by additional root growth. Our findings show that plants can partly compensate for a reduced root conductance in upper, drier soil layers by locally increasing root conductivity in wetter layers, thereby improving deep-water uptake.
Collapse
Affiliation(s)
- Yannik Müllers
- IBG-2, Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | | | - Hendrik Poorter
- IBG-2, Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
- Department of Natural Sciences, Macquarie University, Sydney, Australia
| | | |
Collapse
|
5
|
Holdo RM, Nippert JB. Linking resource- and disturbance-based models to explain tree-grass coexistence in savannas. THE NEW PHYTOLOGIST 2023; 237:1966-1979. [PMID: 36451534 DOI: 10.1111/nph.18648] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Savannas cover a significant fraction of the Earth's land surface. In these ecosystems, C3 trees and C4 grasses coexist persistently, but the mechanisms explaining coexistence remain subject to debate. Different quantitative models have been proposed to explain coexistence, but these models make widely contrasting assumptions about which mechanisms are responsible for savanna persistence. Here, we show that no single existing model fully captures all key elements required to explain tree-grass coexistence across savanna rainfall gradients, but many models make important contributions. We show that recent empirical work allows us to combine many existing elements with new ideas to arrive at a synthesis that combines elements of two dominant frameworks: Walter's two-layer model and demographic bottlenecks. We propose that functional rooting separation is necessary for coexistence and is the crux of the coexistence problem. It is both well-supported empirically and necessary for tree persistence, given the comprehensive grass superiority for soil moisture acquisition. We argue that eventual tree dominance through shading is precluded by ecohydrological constraints in dry savannas and by fire and herbivores in wet savannas. Strong asymmetric grass-tree competition for soil moisture limits tree growth, exposing trees to persistent demographic bottlenecks.
Collapse
Affiliation(s)
- Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
6
|
Lupo Y, Schlisser A, Dong S, Rachmilevitch S, Fait A, Lazarovitch N. Root system response to salt stress in grapevines (Vitis spp.): A link between root structure and salt exclusion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111460. [PMID: 36122813 DOI: 10.1016/j.plantsci.2022.111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Accessing freshwater resources for agriculture becomes more complex due to increasing demands and declining water quality. Alternative water sources, such as saline water, require ad hoc solutions. Therefore, understanding roots' response to saline water is crucial for future agriculture. We examined the response of three grapevine rootstocks (Paulsen 1103, Richter 110 and SO4) to salt stress. The rootstocks were subjected to two salinity treatments: 10 mM and 30 mM NaCl (EC = 2 and 4 ds/m, respectively). Root and shoot samples were taken at the end of the experiment for morphologic and ionomic analyses. The specific root area (SRA) increased in response to salinity for all three rootstocks due to root tissue density and average root diameter reductions. Salinity also led to increased root Na+ and Cl- contents and reduced root K+/Na+ ratio, parallel to increased leaf Cl- but not Na+ contents. SO4 showed improved chloride and sodium exclusion, concomitant with its highest SRA, resulting from the increase in its thin roots' contribution to the total root system surface area. We suggest that enhanced SRA combined with decreased root tissue density and diameter may improve grapevines' salt exclusion by less salt uptake from the soil.
Collapse
Affiliation(s)
- Yaniv Lupo
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer, Israel.
| | - Alon Schlisser
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer, Israel
| | - Shuo Dong
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer, Israel
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer, Israel
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer, Israel
| | - Naftali Lazarovitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer, Israel
| |
Collapse
|
7
|
Loudari A, Mayane A, Zeroual Y, Colinet G, Oukarroum A. Photosynthetic performance and nutrient uptake under salt stress: Differential responses of wheat plants to contrasting phosphorus forms and rates. FRONTIERS IN PLANT SCIENCE 2022; 13:1038672. [PMID: 36438086 PMCID: PMC9684725 DOI: 10.3389/fpls.2022.1038672] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Salt stress impacts phosphorus (P) bioavailability, mobility, and its uptake by plants. Since P is involved in many key processes in plants, salinity and P deficiency could significantly cause serious damage to photosynthesis, the most essential physiological process for the growth and development of all green plants. Different approaches have been proposed and adopted to minimize the harmful effects of their combined effect. Optimising phosphorus nutrition seems to bring positive results to improve photosynthetic efficiency and nutrient uptake. The present work posed the question if soluble fertilizers allow wheat plants to counter the adverse effect of salt stress. A pot experiment was performed using a Moroccan cultivar of durum wheat: Karim. This study focused on different growth and physiological responses of wheat plants grown under the combined effect of salinity and P-availability. Two Orthophosphates (Ortho-A & Ortho-B) and one polyphosphate (Poly-B) were applied at different P levels (0, 30 and 45 ppm). Plant growth was analysed on some physiological parameters (stomatal conductance (SC), chlorophyll content index (CCI), chlorophyll a fluorescence, shoot and root biomass, and mineral uptake). Fertilized wheat plants showed a significant increase in photosynthetic performance and nutrient uptake. Compared to salt-stressed and unfertilized plants (C+), CCI increased by 93%, 81% and 71% at 30 ppm of P in plants fertilized by Poly-B, Ortho-B and Ortho-A, respectively. The highest significant SC was obtained at 45 ppm using Ortho-B fertilizer with an increase of 232% followed by 217% and 157% for both Poly-B and Ortho-A, respectively. The Photosynthetic performance index (PItot) was also increased by 128.5%, 90.2% and 38.8% for Ortho-B, Ortho-A and Poly B, respectively. In addition, Poly-B showed a significant enhancement in roots and shoots biomass (49.4% and 156.8%, respectively) compared to C+. Fertilized and salt-stressed plants absorbed more phosphorus. The P content significantly increased mainly at 45 ppm of P. Positive correlations were found between phosphorus uptake, biomass, and photosynthetic yield. The increased photochemical activity could be due to a significant enhancement in light energy absorbed by the enhanced Chl antenna. The positive effect of adequate P fertilization under salt stress was therefore evident in durum wheat plants.
Collapse
Affiliation(s)
- Aicha Loudari
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
- Terra Research Center, Gembloux Agro Bio Tech Faculty, Liege University (ULIEGE), Gembloux, Belgium
| | - Asmae Mayane
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Youssef Zeroual
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Gilles Colinet
- Terra Research Center, Gembloux Agro Bio Tech Faculty, Liege University (ULIEGE), Gembloux, Belgium
| | - Abdallah Oukarroum
- Plant Stress Physiology Laboratory–AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
- High Throughput Multidisciplinary Research Laboratory, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| |
Collapse
|
8
|
Corcoz L, Păcurar F, Pop-Moldovan V, Vaida I, Stoian V, Vidican R. Mycorrhizal Patterns in the Roots of Dominant Festuca rubra in a High-Natural-Value Grassland. PLANTS (BASEL, SWITZERLAND) 2021; 11:112. [PMID: 35009115 PMCID: PMC8747109 DOI: 10.3390/plants11010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Grassland ecosystems occupy significant areas worldwide and represent a reservoir for biodiversity. These areas are characterized by oligotrophic conditions that stimulate mycorrhizal symbiotic partnerships to meet nutritional requirements. In this study, we selected Festuca rubra for its dominance in the studied mountain grassland, based on the fact that grasses more easily accept a symbiotic partner. Quantification of the entire symbiosis process, both the degree of colonization and the presence of a fungal structure, was performed using the root mycorrhizal pattern method. Analysis of data normality indicated colonization frequency as the best parameter for assessing the entire mycorrhizal mechanism, with five equal levels, each of 20%. Most of the root samples showed an intensity of colonization between 0 and 20% and a maximum of arbuscules of about 5%. The colonization degree had an average value of 35%, which indicated a medium permissiveness of roots for mycorrhizal partners. Based on frequency regression models, the intensity of colonization presented high fluctuations at 50% frequency, while the arbuscule development potential was set to a maximum of 5% in mycorrhized areas. Arbuscules were limited due to the unbalanced and unequal root development and their colonizing hyphal networks. The general regression model indicated that only 20% of intra-radicular hyphae have the potential to form arbuscules. The colonization patterns of dominant species in mountain grasslands represent a necessary step for improved understanding of the symbiont strategies that sustain the stability and persistence of these species.
Collapse
Affiliation(s)
- Larisa Corcoz
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.C.); (V.P.-M.); (R.V.)
| | - Florin Păcurar
- Department of Grasslands and Forage Crops, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Victoria Pop-Moldovan
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.C.); (V.P.-M.); (R.V.)
| | - Ioana Vaida
- Department of Grasslands and Forage Crops, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Vlad Stoian
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.C.); (V.P.-M.); (R.V.)
| | - Roxana Vidican
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.C.); (V.P.-M.); (R.V.)
| |
Collapse
|
9
|
Abstract
Drought and flooding conditions are increasingly common abiotic factors that affect citrus crops in both the Mediterranean Basin and Florida. Furthermore, emerging diseases, such as Huanglongbing (HLB), are a potential risk for these crops in those producing areas. This study aimed to evaluate the behavior under water-stress treatments of three new citrus rootstocks (UFR-6, B11R5T60, and 2247 x 6070-02-2) with reported tolerance of HLB, comparing them with a common commercial citrus rootstock (Carrizo citrange). Four water conditions were established: Control, Medium Water Stress (MWS), Drought, and Flooding. Chlorophyll index (SPAD), growth in height, relative growth rate, biomass (fresh and dry weight) and plant water status were evaluated. Citru rootstock response were different for each genotype; Carrizo citrange was negatively affected by all water treatments in the chlorophyll index (SPAD) and biomass production. By contrast, UFR-6 showed a positive response in SPAD and growth under MWS and Drought, B11R5T60 displayed similar behavior to Control under all water stresses, and the response of 2247 x 6070-02-2 under MWS treatment was adequate but was not under Drought or Flooding conditions. Our study describes the behavior of these promising new citrus rootstocks against water stress; B11R5T60 exhibiting the best performance. These results can be useful for the citrus industry to address water-stress problems in these crops.
Collapse
|
10
|
Endo I, Kobatake M, Tanikawa N, Nakaji T, Ohashi M, Makita N. Anatomical patterns of condensed tannin in fine roots of tree species from a cool-temperate forest. ANNALS OF BOTANY 2021; 128:59-71. [PMID: 33608716 PMCID: PMC8318258 DOI: 10.1093/aob/mcab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/13/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Condensed tannin (CT) is an important compound in plant biological structural defence and for tolerance of herbivory and environmental stress. However, little is known of the role and location of CT within the fine roots of woody plants. To understand the role of CT in fine roots across diverse species of woody dicot, we evaluated the localization of CT that accumulated in root tissue, and examined its relationships with the stele and cortex tissue in cross-sections of roots in 20 tree species forming different microbial symbiotic groups (ectomycorrhiza and arbuscular mycorrhiza). METHODS In a cool-temperate forest in Japan, cross-sections of sampled roots in different branching order classes, namely, first order, second to third order, fourth order, and higher than fourth order (higher order), were measured in terms of the length-based ratios of stele diameter and cortex thickness to root diameter. All root samples were then stained with ρ-dimethylaminocinnamaldehyde solution and we determined the ratio of localized CT accumulation area to the root cross-section area (CT ratio). KEY RESULTS Stele ratio tended to increase with increasing root order, whereas cortex ratio either remained unchanged or decreased with increasing order in all species. The CT ratio was significantly positively correlated to the stele ratio and negatively correlated to the cortex ratio in second- to fourth-order roots across species during the shift from primary to secondary root growth. Ectomycorrhiza-associated species mostly had a higher stele ratio and lower cortex ratio than arbuscular mycorrhiza-associated species across root orders. Compared with arbuscular mycorrhiza species, there was greater accumulation of CT in response to changes in the root order of ectomycorrhiza species. CONCLUSIONS Different development patterns of the stele, cortex and CT accumulation along the transition from root tip to secondary roots could be distinguished between different mycorrhizal associations. The CT in tissues in different mycorrhizal associations could help with root protection in specific branching orders during shifts in stele and cortex development before and during cork layer formation.
Collapse
Affiliation(s)
- Izuki Endo
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Miwa Kobatake
- Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan
| | - Natsuko Tanikawa
- Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan
| | - Tatsuro Nakaji
- Uryu Experimental Forest, Hokkaido University, Moshiri, Hokkaido, Japan
| | - Mizue Ohashi
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Naoki Makita
- Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan
| |
Collapse
|
11
|
Yu R, Wang G, Yu X, Li L, Li C, Song Y, Xu Z, Zhang J, Guan C. Assessing alfalfa (Medicago sativa L.) tolerance to salinity at seedling stage and screening of the salinity tolerance traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:664-674. [PMID: 33884732 DOI: 10.1111/plb.13271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Salt is among the most harmful agents that negatively influences crop yield. Alfalfa is an important perennial forage crop that exhibits wide cultivar variations in salt tolerance. Developing salt-tolerant alfalfa plants is a promising way to utilize salinized land. A comprehensive method was developed to achieve reliable and effective evaluation of alfalfa salt resistance. This included principal components, membership functions and cluster and stepwise regression analyses. These were used to analyse the salt tolerance coefficients of 14 traits and to evaluate 20 diverse alfalfa cultivars at the seedling stage. The various morphological root parameters of six alfalfa cultivars with contrasting salt tolerance were also tested by a scanning apparatus. According to the comprehensive evaluation value (D value), one highly salt-tolerant, two salt-tolerant, four moderately salt-tolerant and 13 salt-sensitive alfalfa cultivars were screened. A mathematical equation for the evaluation of alfalfa salt tolerance was established: D' = -0.126 + 0.667SFW + 0.377SDW + 1.089K+ /Na+ + 0.172SFW/RFW (R2 = 0.988; average forecast accuracy of 96.95%), where four indices were closely related to the salt tolerance: shoot fresh weight, ratio of shoot fresh weight to root fresh weight, shoot dry weight and ratio of K+ to Na+ in the shoot. We also found that SSA correlated strongly with SFW, SDW, K+ /Na+ , D values, while SRV correlated obviously with SFW, SFW/RFW and D values after 150 mm NaCl treatment. In conclusion, the SFW, K+ /Na+ , SDW, SFW/RFW, SSA and SRV could be used as indicators of salt tolerance in alfalfa seedlings grown under 150 mm NaCl treatment.
Collapse
Affiliation(s)
- R Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - G Wang
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| | - X Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - L Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - C Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Y Song
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Z Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
- Purple pasture Co., Ltd, Wuhe, Bengbu, Anhui, China
| | - J Zhang
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| | - C Guan
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| |
Collapse
|
12
|
Zhang S, Quartararo A, Betz OK, Madahhosseini S, Heringer AS, Le T, Shao Y, Caruso T, Ferguson L, Jernstedt J, Wilkop T, Drakakaki G. Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. PLANT DIRECT 2021; 5:e00315. [PMID: 34027297 PMCID: PMC8133763 DOI: 10.1002/pld3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 05/11/2023]
Abstract
Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.
Collapse
Affiliation(s)
- Shuxiao Zhang
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Alessandra Quartararo
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Oliver Karl Betz
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Shahab Madahhosseini
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Genetic and Plant Production DepartmentVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Angelo Schuabb Heringer
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Unidade de Biologia IntegrativaSetor de Genômica e ProteômicaUENFRio de JaneiroRJBrazil
| | - Thu Le
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Yuhang Shao
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of AgricultureNanjing Agricultural UniversityNanjingJiangsu ProvinceP. R. China
| | - Tiziano Caruso
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Judy Jernstedt
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Thomas Wilkop
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Light Microscopy CoreDepartment of PhysiologyUniversity of KentuckyLexingtonKYUSA
| | - Georgia Drakakaki
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| |
Collapse
|
13
|
Sadder MT, Alshomali I, Ateyyeh A, Musallam A. Physiological and molecular responses for long term salinity stress in common fig ( Ficus carica L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:107-117. [PMID: 33627966 PMCID: PMC7873141 DOI: 10.1007/s12298-020-00921-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/15/2020] [Accepted: 12/28/2020] [Indexed: 05/09/2023]
Abstract
UNLABELLED Salinity stress in increasingly becoming a major challenge in current and expanding agricultural ecosystems. Unlike temporal abiotic stresses, plants are usually exposed to salinity stress for an entire lifespan. Therefore, a long term effect (10 weeks) of continuous salinity exposure was investigated for three common fig landraces (Zraki, Mwazi, and Khdari). Both relative water content and chlorophyll content decreased with elevated salinity stress, while stem length barely changed. The most prominent decline was observed in root biomass. The data would align common fig to moderately tolerant threshold slop with a C50 range of 100 to 150 mM NaCl. A high and significant correlation was evident between root biomass and chlorophyll content (85%). Concurrently, differential expression of putative salinity responsive genes in common fig were determined; signal peptide peptidase-like 2B (FcSPPL2B), dehydration responsive element binding protein (FcDREB), calcineurin B-like protein (CBL)-CBL-interacting serine/threonine-protein kinase 11 (FcCIPK11), sorbitol dehydrogenase (FcSORD) and dehydrin (FcDHN). The data were discussed for each gene in respect of its potential role in salinity stress mitigation. The combined physiological and molecular data would conclude Zraki as the most salinity tolerant genotype. The major implication of the data emphasizes the tremendous genotype by environment (salinity stress) interaction in common fig. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s12298-020-00921-z).
Collapse
Affiliation(s)
- Monther T. Sadder
- Department of Horticulture and Crop Science, Faculty of Agriculture, University of Jordan, Amman, 11942 Jordan
| | - Ibrahim Alshomali
- Department of Horticulture and Crop Science, Faculty of Agriculture, University of Jordan, Amman, 11942 Jordan
| | - Ahmad Ateyyeh
- Department of Horticulture and Crop Science, Faculty of Agriculture, University of Jordan, Amman, 11942 Jordan
| | - Anas Musallam
- National Agricultural Research Center, P.O Box: 639, Baq’a, 19381 Jordan
| |
Collapse
|
14
|
Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, Pang J, Ryan MH, Lambers H, Shen J. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. THE NEW PHYTOLOGIST 2019; 223:882-895. [PMID: 30932187 DOI: 10.1111/nph.15833] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/27/2019] [Indexed: 05/22/2023]
Abstract
Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting.
Collapse
Affiliation(s)
- Zhihui Wen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Hongbo Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qi Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Tang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Chuanyong Xiong
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Haigang Li
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Megan H Ryan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Hans Lambers
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Wang H, Wang Z, Dong X. Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China. PLoS One 2019; 14:e0215126. [PMID: 31042717 PMCID: PMC6494041 DOI: 10.1371/journal.pone.0215126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/28/2019] [Indexed: 11/19/2022] Open
Abstract
Fine roots of plants play an important role in terrestrial ecosystems. There is a close association between the anatomical characteristics and physiological and ecological functions of plants, but we still have a very limited knowledge of anatomical traits. For example, (1) we do not know if herbs and grasses have anatomical patterns similar to those of woody plants, and (2) the variation among different woody plants in the same ecosystem is unclear. In the present study, we analysed the anatomical structures of the fine root systems of various groups of vascular plants (ferns, eudicot herbs, monocots and woody plants) from the same ecosystem (a natural secondary forest on Mao'er Mountain, Heilongjiang, China) to answer the following questions: (1) How does the anatomy of the fine roots change with root order in various plant groups in the same ecosystem? (2) What is the pattern of variation within group? The results show that anatomical traits can be divided into 3 categories: traits that indicate the root capacity to transport resource along the root (stele diameter, xylem cell diameter and xylem cell area); traits that indicate absorptive capacity cortical thickness, (the number of cortical cell layers and the diameter of cortical cells); and traits that are integrated indicators (diameter and the stele to root diameter ratio). The traits indicate the root capacity to transport resource along the root order is generally similar among groups, but absorptive capacity is very different. The shift in function is the main factor influencing the fine root anatomy. Some traits show large variation within groups, but the variations in other traits are small. The traits indicate that the lower-order roots (absorbing roots) in distinct groups are of the first one or two root order in ferns, the first two or three orders in eudicot herbs, the first (only two root orders) or first two orders (more than three root orders) in monocots and the first four or five root orders in woody plants and the other roots are higher-order roots (transport roots). The result will helpful to understand the similarities and differences among groups and the physiological and ecological functions of plant roots.
Collapse
Affiliation(s)
- Hongfeng Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhengquan Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Xueyun Dong
- School of Science, Harbin University, Harbin, China
| |
Collapse
|
16
|
McMurtrie RE, Näsholm T. Quantifying the contribution of mass flow to nitrogen acquisition by an individual plant root. THE NEW PHYTOLOGIST 2018; 218:119-130. [PMID: 29226964 DOI: 10.1111/nph.14927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The classic model of nitrogen (N) flux into roots is as a Michaelis-Menten (MM) function of soil-N concentration at root surfaces. Furthermore, soil-N transport processes that determine soil-N concentration at root surfaces are seen as a bottleneck for plant nutrition. Yet, neither the MM relationship nor soil-N transport mechanisms are represented in current terrestrial biosphere models. Processes governing N supply to roots - diffusion, mass flow, N immobilization by soil microbes - are incorporated in a model of root-N uptake. We highlight a seldom considered interaction between these processes: nutrient traverses the rhizosphere more quickly in the presence of mass flow, reducing the probability of its immobilization before reaching the root surface. Root-N uptake is sensitive to the rate of mass flow for widely spaced roots with high N uptake capacity, but not for closely spaced roots or roots with low uptake capacity. The results point to a benefit of root switching from high- to low-affinity N transport systems in the presence of mass flow. Simulations indicate a strong impact of soil water uptake on N delivery to widely spaced roots through transpirationally driven mass flow. Furthermore, a given rate of N uptake per unit soil volume may be achieved by lower root biomass in the presence of mass flow.
Collapse
Affiliation(s)
- Ross E McMurtrie
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
17
|
Xie R, Zhang J, Ma Y, Pan X, Dong C, Pang S, He S, Deng L, Yi S, Zheng Y, Lv Q. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots. Sci Rep 2017; 7:42094. [PMID: 28165059 PMCID: PMC5292693 DOI: 10.1038/srep42094] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/29/2016] [Indexed: 01/21/2023] Open
Abstract
Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. ‘MAPK cascade’), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway’), reactive oxygen species (ROS) metabolic process (e.g. ‘hydrogen peroxide catabolic process’) and transcription factors (e.g., ‘MYB, ZFP and bZIP’) were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment.
Collapse
Affiliation(s)
- Rangjin Xie
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Jin Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Yanyan Ma
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Xiaoting Pan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Cuicui Dong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Shaoping Pang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Shaolan He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Lie Deng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Shilai Yi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Yongqiang Zheng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Qiang Lv
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| |
Collapse
|
18
|
Cochavi A, Rapaport T, Gendler T, Karnieli A, Eizenberg H, Rachmilevitch S, Ephrath JE. Recognition of Orobanche cumana Below-Ground Parasitism Through Physiological and Hyper Spectral Measurements in Sunflower ( Helianthus annuus L.). FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28638389 PMCID: PMC5461261 DOI: 10.3389/fpls.2017.00909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Broomrape (Orobanche and Phelipanche spp.) parasitism is a severe problem in many crops worldwide, including in the Mediterranean basin. Most of the damage occurs during the sub-soil developmental stage of the parasite, by the time the parasite emerges from the ground, damage to the crop has already been done. One feasible method for sensing early, below-ground parasitism is through physiological measurements, which provide preliminary indications of slight changes in plant vitality and productivity. However, a complete physiological field survey is slow, costly and requires skilled manpower. In recent decades, visible to-shortwave infrared (VIS-SWIR) hyperspectral tools have exhibited great potential for faster, cheaper, simpler and non-destructive tracking of physiological changes. The advantage of VIS-SWIR is even greater when narrow-band signatures are analyzed with an advanced statistical technique, like a partial least squares regression (PLS-R). The technique can pinpoint the most physiologically sensitive wavebands across an entire spectrum, even in the presence of high levels of noise and collinearity. The current study evaluated a method for early detection of Orobanche cumana parasitism in sunflower that combines plant physiology, hyperspectral readings and PLS-R. Seeds of susceptible and resistant O. cumana sunflower varieties were planted in infested (15 mg kg-1 seeds) and non-infested soil. The plants were examined weekly to detect any physiological or structural changes; the examinations were accompanied by hyperspectral readings. During the early stage of the parasitism, significant differences between infected and non-infected sunflower plants were found in the reflectance of near and shortwave infrared areas. Physiological measurements revealed no differences between treatments until O. cumana inflorescences emerged. However, levels of several macro- and microelements tended to decrease during the early stage of O. cumana parasitism. Analysis of leaf cross-sections revealed differences in range and in mesophyll structure as a result of different levels of nutrients in sunflower plants, manifesting the presence of O. cumana infections. The findings of an advanced PLS-R analysis emphasized the correlation between specific reflectance changes in the SWIR range and levels of various nutrients in sunflower plants. This work demonstrates potential for the early detection of O. cumana parasitism on sunflower roots using hyperspectral tools.
Collapse
Affiliation(s)
- Amnon Cochavi
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Tal Rapaport
- The Remote Sensing Laboratory, The Swiss Institute for Dryland Environmental & Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the NegevBeer-Sheva, Israel
| | - Tania Gendler
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Arnon Karnieli
- The Remote Sensing Laboratory, The Swiss Institute for Dryland Environmental & Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the NegevBeer-Sheva, Israel
| | - Hanan Eizenberg
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization, Volcani CenterRamat Yishay, Israel
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Jhonathan E. Ephrath
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevBeer-Sheva, Israel
- *Correspondence: Jhonathan E. Ephrath,
| |
Collapse
|
19
|
Paudel I, Cohen S, Shaviv A, Bar-Tal A, Bernstein N, Heuer B, Ephrath J. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils. TREE PHYSIOLOGY 2016; 36:770-85. [PMID: 27022106 DOI: 10.1093/treephys/tpw013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/27/2016] [Indexed: 05/17/2023]
Abstract
Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.
Collapse
Affiliation(s)
- Indira Paudel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel The Robert H. Smith Faculty of Food Agriculture and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Avi Shaviv
- Department of Environmental, Water and Agricultural Engineering, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Asher Bar-Tal
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Bruria Heuer
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Jhonathan Ephrath
- Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sde Boqer 849900, Israel
| |
Collapse
|
20
|
Parida AK, Veerabathini SK, Kumari A, Agarwal PK. Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition. FRONTIERS IN PLANT SCIENCE 2016; 7:351. [PMID: 27047523 PMCID: PMC4801874 DOI: 10.3389/fpls.2016.00351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/07/2016] [Indexed: 05/06/2023]
Abstract
Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analyzing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500, and 750 mM NaCl) under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area, and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na(+) contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K(+) content. There was significant alterations in leaf, stem, and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl). There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, diameter of hypodermal cell, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by twofold at high salinity (750 mM NaCl). The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM), whereas it increased significantly at higher salinity (500 and 750 mM NaCl). The proline content increased in NaCl treated seedlings as compared to control. There was no significant changes in polyphenols level of leaf at all levels of salinity. The results from the present study reveal that seedlings imposed with various levels of salinity experience physiological, biochemical and anatomical modifications in order to circumvent under extreme saline environment. The vital mechanisms of salt tolerance in S. persica are higher accumulation of organic metabolites, increase in leaf succulency, efficient Na(+) sequestration in the vacuole, K(+) retention in the photosynthetic tissue and increase in WUE by reducing stomatal density. Therefore, S. persica is a potential halophytic species to be cultivated in saline lands to eliminate excess salt and make it favorable for agriculture.
Collapse
Affiliation(s)
- Asish K. Parida
- Division of Plant Omics, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Sairam K. Veerabathini
- Division of Plant Omics, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Asha Kumari
- Division of Plant Omics, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Pradeep K. Agarwal
- Division of Plant Omics, Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| |
Collapse
|
21
|
Liu G, Gao Y, Huang FF, Yuan MY, Peng SL. The Invasion of Coastal Areas in South China by Ipomoea cairica May Be Accelerated by the Ecotype Being More Locally Adapted to Salt Stress. PLoS One 2016; 11:e0149262. [PMID: 26867222 PMCID: PMC4750935 DOI: 10.1371/journal.pone.0149262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/30/2016] [Indexed: 12/02/2022] Open
Abstract
Local adaptation and phenotypic plasticity are two alternative mechanisms used by invasive plants for range expansion. We conducted a series of experiments to investigate the role of these mechanisms in the recent expansion of the invasive Ipomoea cairica from non-saline to salt-stressed coastal habitats. A comparison of the plant’s photosynthetic traits and construction costs across habitats was conducted through a field survey. Meanwhile, a full factorial greenhouse experiment was conducted with two ecotypes (non-saline and coastal) of I. cairica and two salinity gradients (water and 4 g L-1 NaCl solution) to evaluate the roles of the two strategies by comparing their main traits. The results revealed that the construction cost and Amax of I. cairica did not change with the habitat type. The ecotype and saline treatments, however, significantly influenced the plant growth. The non-saline ecotype (NE) generally showed higher or equal plasticity of biomass-allocation and functional traits compared to the coastal ecotype (CE). However, the fitness and biomass of the NE significantly decreased with salinity, whereas those aspects of the CE did not change. Our results indicate that the recent expansion of I. cairica into coastal areas may be accelerated by the local adaptation of the CE to salt stress. Additionally, in South China, the CE will most likely evolve adaptations to both saline and non-saline environments, which will further broaden the invasion range of I. cairica in the future.
Collapse
Affiliation(s)
- Gang Liu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, China
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yang Gao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Fang-Fang Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Ming-Yue Yuan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Shao-Lin Peng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
- * E-mail: (SLP)
| |
Collapse
|
22
|
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. THE NEW PHYTOLOGIST 2015; 207:505-18. [PMID: 25756288 DOI: 10.1111/nph.13363] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/07/2015] [Indexed: 05/17/2023]
Abstract
Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.
Collapse
Affiliation(s)
- M Luke McCormack
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ian A Dickie
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - David M Eissenstat
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Timothy J Fahey
- Department of Natural Resources, Cornell University, Ithaca, NY, 14853, USA
| | | | - Dali Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, NH, 03824, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Robert B Jackson
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | | | - Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Kurt S Pregitzer
- Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Seth G Pritchard
- Department of Biology, College of Charleston, Charleston, SC, 29401, USA
| | - Boris Rewald
- Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, 62-035, Poland
| |
Collapse
|
23
|
Alvarez-Gerding X, Cortés-Bullemore R, Medina C, Romero-Romero JL, Inostroza-Blancheteau C, Aquea F, Arce-Johnson P. Improved Salinity Tolerance in Carrizo Citrange Rootstock through Overexpression of Glyoxalase System Genes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:827951. [PMID: 26236739 PMCID: PMC4510252 DOI: 10.1155/2015/827951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/30/2015] [Accepted: 06/21/2015] [Indexed: 11/28/2022]
Abstract
Citrus plants are widely cultivated around the world and, however, are one of the most salt stress sensitive crops. To improve salinity tolerance, transgenic Carrizo citrange rootstocks that overexpress glyoxalase I and glyoxalase II genes were obtained and their salt stress tolerance was evaluated. Molecular analysis showed high expression for both glyoxalase genes (BjGlyI and PgGlyII) in 5H03 and 5H04 lines. Under control conditions, transgenic and wild type plants presented normal morphology. In salinity treatments, the transgenic plants showed less yellowing, marginal burn in lower leaves and showed less than 40% of leaf damage compared with wild type plants. The transgenic plants showed a significant increase in the dry weight of shoot but there are no differences in the root and complete plant dry weight. In addition, a higher accumulation of chlorine is observed in the roots in transgenic line 5H03 but in shoot it was lower. Also, the wild type plant accumulated around 20% more chlorine in the shoot compared to roots. These results suggest that heterologous expression of glyoxalase system genes could enhance salt stress tolerance in Carrizo citrange rootstock and could be a good biotechnological approach to improve the abiotic stress tolerance in woody plant species.
Collapse
Affiliation(s)
- Ximena Alvarez-Gerding
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Alameda 340, P.O. Box 114-D, 8331150 Santiago, Chile
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4560, 7820436 Santiago, Chile
| | - Rowena Cortés-Bullemore
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Alameda 340, P.O. Box 114-D, 8331150 Santiago, Chile
| | - Consuelo Medina
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Alameda 340, P.O. Box 114-D, 8331150 Santiago, Chile
| | - Jesús L. Romero-Romero
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Alameda 340, P.O. Box 114-D, 8331150 Santiago, Chile
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4560, 7820436 Santiago, Chile
- Instituto Politécnico Nacional, CIIDIR, Unidad Sinaloa, Departamento de Biotecnología Agrícola, Boulevard Juan de Dios Bátiz Paredes No. 250, San Joachín, CP 81101, Guasave, SIN, Mexico
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Felipe Aquea
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Alameda 340, P.O. Box 114-D, 8331150 Santiago, Chile
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Diagonal Las Torres 2640, Peñalolen, 7941169 Santiago, Chile
- Center for Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Alameda 340, P.O. Box 114-D, 8331150 Santiago, Chile
| |
Collapse
|
24
|
Hochberg U, Degu A, Gendler T, Fait A, Rachmilevitch S. The variability in the xylem architecture of grapevine petiole and its contribution to hydraulic differences. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:357-365. [PMID: 32480680 DOI: 10.1071/fp14167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/09/2014] [Indexed: 05/27/2023]
Abstract
Grapevine cultivars possess large variability in their response to water availability, and are therefore considered as a good model to study plant hydraulic adjustments. The current research compared the petiole anatomy of two grapevine (Vitis vinifera L.) cultivars, Shiraz and Cabernet Sauvignon, in respect to hydraulic properties. Hydraulic differences between the cultivar petioles were tested over 3 years (2011-2013). Anatomical differences, hydraulic conductivity and embolism were tested under terminal drought conditions. Additionally, xylem differentiation under well watered (WW) and water deficit (WD) conditions was compared. Shiraz was shown to possess larger xylem vessels that resulted in a significantly higher theoretical specific hydraulic conductivity (Kts), leaf hydraulic conductivity (Kleaf) and maximal petiole hydraulic conductivity (Kpetiole). Under WD, smaller vessels were developed, more noticeably in Shiraz. Results confirmed a link between petiole hydraulic architecture and hydraulic behaviour, providing a simple mechanistic explanation for the higher transpiration rates commonly measured in Shiraz. Smaller xylem vessels in Cabernet Sauvignon could imply on its adaptation to WD, and explains its better performances under such conditions.
Collapse
Affiliation(s)
- Uri Hochberg
- Albert Katz International School, Beer-Sheva, Israel
| | - Asfaw Degu
- Albert Katz International School, Beer-Sheva, Israel
| | - Tanya Gendler
- The French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| | - Aaron Fait
- The French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands (FAAB), the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| |
Collapse
|
25
|
Rewald B, Rechenmacher A, Godbold DL. It's complicated: intraroot system variability of respiration and morphological traits in four deciduous tree species. PLANT PHYSIOLOGY 2014; 166:736-45. [PMID: 24948830 PMCID: PMC4213102 DOI: 10.1104/pp.114.240267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/17/2014] [Indexed: 05/04/2023]
Abstract
Within branched root systems, a distinct heterogeneity of traits exists. Knowledge about the ecophysiology of different root types is critical to understand root system functioning. Classification schemes have to match functional root types as closely as possible to be used for sampling and modeling. Among ecophysiological root traits, respiration is of particular importance, consuming a great amount of carbon allocated. Root architecture differs between the four deciduous tree seedlings. However, two types of terminal root segments (i.e. first and second orders), white colored and brown colored, can be distinguished in all four species but vary in frequency, their morphology differing widely from each other and higher coarse root orders. Root respiration is related to diameter and tissue density. The use of extended root ordering (i.e. order and color) explains the variance of respiration two times as well as root diameter or root order classes alone. White terminal roots respire significantly more than brown ones; both possess respiration rates that are greater than those of higher orders in regard to dry weight and lower in regard to surface area. The correlation of root tissue density to respiration will allow us to use this continuous parameter (or easier to determine dry matter content) to model the respiration within woody root systems without having to determine nitrogen contents. In addition, this study evidenced that extended root orders are better suited than root diameter classes to picture the differences between root functional types. Together with information on root order class frequencies, these data allow us to calculate realistic, species-specific respiration rates of root branches.
Collapse
Affiliation(s)
- Boris Rewald
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Andreas Rechenmacher
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Douglas L Godbold
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| |
Collapse
|
26
|
Gu J, Xu Y, Dong X, Wang H, Wang Z. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. TREE PHYSIOLOGY 2014; 34:415-25. [PMID: 24695727 DOI: 10.1093/treephys/tpu019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Root diameter, a critical indicator of root physiological function, varies greatly among tree species, but the underlying mechanism of this high variability is unclear. Here, we sampled 50 tree species across tropical and temperate zones in China, and measured root morphological and anatomical traits along the first five branch orders in each species. Our objectives were (i) to reveal the relationships between root diameter, cortical thickness and stele diameter among tree species in tropical and temperate forests, and (ii) to investigate the relationship of both root morphological and anatomical traits with divergence time during species radiation. The results showed that root diameter was strongly affected by cortical thickness but less by stele diameter in both tropical and temperate species. Changes in cortical thickness explained over 90% of variation in root diameter for the first order, and ∼74-87% for the second and third orders. Thicker roots displayed greater cortical thickness and more cortical cell layers than thinner roots. Phylogenetic analysis demonstrated that root diameter, cortical thickness and number of cortical cell layers significantly correlated with divergence time at the family level, showing similar variation trends in geological time. The results also suggested that trees tend to decrease their root cortical thickness rather than stele diameter during species radiation. The close linkage of variations in root morphology and anatomy to phylogeny as demonstrated by the data from the 50 tree species should provide some insights into the mechanism of root diameter variability among tree species.
Collapse
Affiliation(s)
- Jiacun Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
27
|
Rapaport T, Hochberg U, Rachmilevitch S, Karnieli A. The effect of differential growth rates across plants on spectral predictions of physiological parameters. PLoS One 2014; 9:e88930. [PMID: 24523946 PMCID: PMC3921250 DOI: 10.1371/journal.pone.0088930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/13/2014] [Indexed: 11/18/2022] Open
Abstract
Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants--often based on leaves' position but not age--becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R(2) = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and abiotic factors may form distinctions in growth, future precision agriculture studies should consider its spectral effect on physiological predictions.
Collapse
Affiliation(s)
- Tal Rapaport
- The Remote Sensing Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Uri Hochberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Arnon Karnieli
- The Remote Sensing Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
28
|
Schuldt B, Leuschner C, Brock N, Horna V. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. TREE PHYSIOLOGY 2013; 33:161-74. [PMID: 23292668 DOI: 10.1093/treephys/tps122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth strategies, and (ii) the paradigm assuming continuous acropetal vessel tapering and decrease in specific conductance from fine roots towards distal twigs needs reconsideration.
Collapse
Affiliation(s)
- Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|