1
|
Huang H, Zhang C, Wang H, Wu F, Fang Q. A rice SOUL family heme-binding protein REAC1 enhances the antioxidative capacity of C. elegans through modulation of ROS-related gene expression. Sci Rep 2025; 15:10379. [PMID: 40140533 PMCID: PMC11947160 DOI: 10.1038/s41598-025-95254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
The development and identification of beneficial components from crop resources are vital for individuals, especially the elderly, as they are capable of facilitating health. Red rice is widely consumed and possesses potential therapeutic effects to some extent, but it is important to discover the specific roles of each component when consumed purposefully. In this context, the REAC1/rHBP2, a red rice heme-binding protein (HBP) from the SOUL family, was revealed that possesses a role in boosting the antioxidative capacity of C. elegans that consume this protein. The Arabidopsis plants overexpressing REAC1 presented more tolerance to oxidative stress related to the wild-type plants. Furthermore, REAC1 derived from engineered bacteria exhibited clear activities of heme-binding and hydroxy radical inhibition in vitro. While no adverse effects were observed in the nematodes that were treated with REAC1, they exhibited enhanced motility and improved survival under oxidative conditions simulated by treatment with 5 mM H2O2 compared to the control group. Additionally, the levels of endogenous reactive oxygen species (ROS) were significantly reduced, and the expression of redox-related genes, such as SOD-3 and CAT-1, was evidently upregulated in the treated nematodes. Taken together, these results suggest that the red rice heme-binding protein REAC1 plays a critical role in the enhancement of the antioxidative capacity of C. elegans through ROS-related regulation, thereby offering a promising approach for individuals to combat oxidative stress.
Collapse
Affiliation(s)
- Hui Huang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Caiyun Zhang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China
| | - Haiyang Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Feiyan Wu
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Qing Fang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, China.
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
2
|
Rieseberg TP, Dadras A, Darienko T, Post S, Herrfurth C, Fürst-Jansen JMR, Hohnhorst N, Petroll R, Rensing SA, Pröschold T, de Vries S, Irisarri I, Feussner I, de Vries J. Time-resolved oxidative signal convergence across the algae-embryophyte divide. Nat Commun 2025; 16:1780. [PMID: 39971942 PMCID: PMC11840003 DOI: 10.1038/s41467-025-56939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
The earliest land plants faced a significant challenge in adapting to environmental stressors. Stress on land is unique in its dynamics, entailing swift and drastic changes in light and temperature. While we know that land plants share with their closest streptophyte algal relatives key components of the genetic makeup for dynamic stress responses, their concerted action is little understood. Here, we combine time-course stress profiling using photophysiology, transcriptomics on 2.7 Tbp of data, and metabolite profiling analyses on 270 distinct samples, to study stress kinetics across three 600-million-year-divergent streptophytes. Through co-expression analysis and Granger causal inference we predict a gene regulatory network that retraces a web of ancient signal convergences at ethylene signaling components, osmosensors, and chains of major kinases. These kinase hubs already integrated diverse environmental inputs since before the dawn of plants on land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
| | - Armin Dadras
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Tatyana Darienko
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Albrecht Haller Institute of Plant Science, Experimental Phycology and Culture Collection of Algae at Göttingen University (EPSAG), Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Sina Post
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
- University of Göttingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Goettingen Metabolomics and Lipidomics, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Janine M R Fürst-Jansen
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Nils Hohnhorst
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Stefan A Rensing
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Thomas Pröschold
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Innsbruck, Research Department for Limnology, 5310, Mondsee, Austria
| | - Sophie de Vries
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Iker Irisarri
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Göttingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Department of Biodiversity and Evolutionary Biology, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ivo Feussner
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
- University of Göttingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Goettingen Metabolomics and Lipidomics, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Justus- von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Jan de Vries
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
- University of Göttingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Göttingen, Germany.
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Farvardin A, Llorens E, Liu-Xu L, Sánchez-Giménez L, Wong A, Biosca EG, Pedra JM, Falomir E, Camañes G, Scalschi L, Vicedo B. Solanum lycopersicum heme-binding protein 2 as a potent antimicrobial weapon against plant pathogens. Sci Rep 2023; 13:20336. [PMID: 37990046 PMCID: PMC10663603 DOI: 10.1038/s41598-023-47236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
The rise in antibiotic-resistant bacteria caused by the excessive use of antibiotics has led to the urgent exploration of alternative antimicrobial solutions. Among these alternatives, antimicrobial proteins, and peptides (Apps) have garnered attention due to their wide-ranging antimicrobial effects. This study focuses on evaluating the antimicrobial properties of Solanum lycopersicum heme-binding protein 2 (SlHBP2), an apoplastic protein extracted from tomato plants treated with 1-Methyl tryptophan (1-MT), against Pseudomonas syringae pv. tomato DC3000 (Pst). Computational studies indicate that SlHBP2 is annotated as a SOUL heme-binding family protein. Remarkably, recombinant SlHBP2 demonstrated significant efficacy in inhibiting the growth of Pst within a concentration range of 3-25 μg/mL. Moreover, SlHBP2 exhibited potent antimicrobial effects against other microorganisms, including Xanthomonas vesicatoria (Xv), Clavibacter michiganensis subsp. michiganensis (Cmm), and Botrytis cinerea. To understand the mechanism of action employed by SlHBP2 against Pst, various techniques such as microscopy and fluorescence assays were employed. The results revealed that SlHBP2 disrupts the bacterial cell wall and causes leakage of intracellular contents. To summarize, the findings suggest that SlHBP2 has significant antimicrobial properties, making it a potential antimicrobial agent against a wide range of pathogens. Although further studies are warranted to explore the full potential of SlHBP2 and its suitability in various applications.
Collapse
Affiliation(s)
- Atefeh Farvardin
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Eugenio Llorens
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Luisa Liu-Xu
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Lorena Sánchez-Giménez
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Aloysius Wong
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang, China
| | - Elena G Biosca
- Department of Microbiology and Ecology, Universitat de Valencia, E-46100, Valencia, Spain
| | - José M Pedra
- Central Service of Scientific Instrumentation, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Eva Falomir
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Gemma Camañes
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Loredana Scalschi
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain.
| | - Begonya Vicedo
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| |
Collapse
|
4
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
5
|
Interactome of Arabidopsis Thaliana. PLANTS 2022; 11:plants11030350. [PMID: 35161331 PMCID: PMC8838453 DOI: 10.3390/plants11030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023]
Abstract
More than 95,000 protein–protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002–2021. These protein–protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein–protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.
Collapse
|
6
|
Wang B, He T, Zheng X, Song B, Chen H. Proteomic Analysis of Potato Responding to the Invasion of Ralstonia solanacearum UW551 and Its Type III Secretion System Mutant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:337-350. [PMID: 33332146 DOI: 10.1094/mpmi-06-20-0144-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The infection of potato with Ralstonia solanacearum UW551 gives rise to bacterial wilt disease via colonization of roots. The type III secretion system (T3SS) is a determinant factor for the pathogenicity of R. solanacearum. To fully understand perturbations in potato by R. solanacearum type III effectors(T3Es), we used proteomics to measure differences in potato root protein abundance after inoculation with R. solanacearum UW551 and the T3SS mutant (UW551△HrcV). We identified 21 differentially accumulated proteins. Compared with inoculation with UW551△HrcV, 10 proteins showed significantly lower abundance in potato roots after inoculation with UW551, indicating that those proteins were significantly downregulated by T3Es during the invasion. To identify their functions in immunity, we silenced those genes in Nicotiana benthamiana and tested the resistance of the silenced plants to the pathogen. Results showed that miraculin, HBP2, and TOM20 contribute to immunity to R. solanacearum. In contrast, PP1 contributes to susceptibility. Notably, none of four downregulated proteins (HBP2, PP1, HSP22, and TOM20) were downregulated at the transcriptional level, suggesting that they were significantly downregulated at the posttranscriptional level. We further coexpressed those four proteins with 33 core T3Es. To our surprise, multiple effectors were able to significantly decrease the studied protein abundances. In conclusion, our data showed that T3Es of R. solanacearum could subvert potato root immune-related proteins in a redundant manner.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Bingsen Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianjiu He
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Province, Guiyang 550006, China
| | - Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huilan Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Pan X, Chen J, Yang A, Yuan Q, Zhao W, Xu T, Chen B, Ren M, Geng R, Zong Z, Ma Z, Huang Z, Zhang Z. Comparative Transcriptome Profiling Reveals Defense-Related Genes Against Ralstonia solanacearum Infection in Tobacco. FRONTIERS IN PLANT SCIENCE 2021; 12:767882. [PMID: 34970284 PMCID: PMC8712766 DOI: 10.3389/fpls.2021.767882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 05/14/2023]
Abstract
Bacterial wilt (BW) caused by Ralstonia solanacearum (R. solanacearum), is a vascular disease affecting diverse solanaceous crops and causing tremendous damage to crop production. However, our knowledge of the mechanism underlying its resistance or susceptibility is very limited. In this study, we characterized the physiological differences and compared the defense-related transcriptomes of two tobacco varieties, 4411-3 (highly resistant, HR) and K326 (moderately resistant, MR), after R. solanacearum infection at 0, 10, and 17 days after inoculation (dpi). A total of 3967 differentially expressed genes (DEGs) were identified between the HR and MR genotypes under mock condition at three time points, including1395 up-regulated genes in the HR genotype and 2640 up-regulated genes in the MR genotype. Also, 6,233 and 21,541 DEGs were induced in the HR and MR genotypes after R. solanacearum infection, respectively. Furthermore, GO and KEGG analyses revealed that DEGs in the HR genotype were related to the cell wall, starch and sucrose metabolism, glutathione metabolism, ABC transporters, endocytosis, glycerolipid metabolism, and glycerophospholipid metabolism. The defense-related genes generally showed genotype-specific regulation and expression differences after R. solanacearum infection. In addition, genes related to auxin and ABA were dramatically up-regulated in the HR genotype. The contents of auxin and ABA in the MR genotype were significantly higher than those in the HR genotype after R. solanacearum infection, providing insight into the defense mechanisms of tobacco. Altogether, these results clarify the physiological and transcriptional regulation of R. solanacearum resistance infection in tobacco, and improve our understanding of the molecular mechanism underlying the plant-pathogen interaction.
Collapse
Affiliation(s)
- Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Junbiao Chen
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Aiguo Yang
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Weicai Zhao
- Nanxiong Tobacco Science Institute of Guangdong, Nanxiong, China
| | - Tingyu Xu
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Bowen Chen
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Min Ren
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ruimei Geng
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhaohui Zong
- Nanxiong Tobacco Science Institute of Guangdong, Nanxiong, China
| | - Zhuwen Ma
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Zhenchen Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| |
Collapse
|
8
|
Greer MS, Cai Y, Gidda SK, Esnay N, Kretzschmar FK, Seay D, McClinchie E, Ischebeck T, Mullen RT, Dyer JM, Chapman KD. SEIPIN Isoforms Interact with the Membrane-Tethering Protein VAP27-1 for Lipid Droplet Formation. THE PLANT CELL 2020; 32:2932-2950. [PMID: 32690719 PMCID: PMC7474298 DOI: 10.1105/tpc.19.00771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/08/2020] [Accepted: 07/11/2020] [Indexed: 05/05/2023]
Abstract
SEIPIN proteins are localized to endoplasmic reticulum (ER)-lipid droplet (LD) junctions where they mediate the directional formation of LDs into the cytoplasm in eukaryotic cells. Unlike in animal and yeast cells, which have single SEIPIN genes, plants have three distinct SEIPIN isoforms encoded by separate genes. The mechanism of SEIPIN action remains poorly understood, and here we demonstrate that part of the function of two SEIPIN isoforms in Arabidopsis (Arabidopsis thaliana), AtSEIPIN2 and AtSEIPIN3, may depend on their interaction with the vesicle-associated membrane protein (VAMP)-associated protein (VAP) family member AtVAP27-1. VAPs have well-established roles in the formation of membrane contact sites and lipid transfer between the ER and other organelles, and here, we used a combination of biochemical, cell biology, and genetics approaches to show that AtVAP27-1 interacts with the N termini of AtSEIPIN2 and AtSEIPIN3 and likely supports the normal formation of LDs. This insight indicates that the ER membrane tethering machinery in plant cells could play a role with select SEIPIN isoforms in LD biogenesis at the ER, and additional experimental evidence in Saccharomyces cerevisiae supports the possibility that this interaction may be important in other eukaryotic systems.
Collapse
Affiliation(s)
- Michael Scott Greer
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Yingqi Cai
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Satinder K Gidda
- Department of Molecular Cell Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nicolas Esnay
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Franziska K Kretzschmar
- Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | - Damien Seay
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138
| | - Elizabeth McClinchie
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | - Robert T Mullen
- Department of Molecular Cell Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John M Dyer
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138
| | - Kent D Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| |
Collapse
|
9
|
Sylvestre-Gonon E, Schwartz M, Girardet JM, Hecker A, Rouhier N. Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190404. [PMID: 32362257 DOI: 10.1098/rstb.2019.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
| | | | | | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, 54000 Nancy, France
| | | |
Collapse
|
10
|
Shanmugabalaji V, Grimm B, Kessler F. Characterization of a Plastoglobule-Localized SOUL4 Heme-Binding Protein in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:2. [PMID: 32076429 PMCID: PMC7006542 DOI: 10.3389/fpls.2020.00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/01/2020] [Indexed: 05/03/2023]
Abstract
Heme plays an active role in primary plant metabolic pathways as well as in stress signaling. In this study, we characterized the predicted heme-binding protein SOUL4. Proteomics evidence suggests that SOUL4 is a component of Arabidopsis plastoglobules (PGs, chloroplast lipid droplets). SOUL4 contains heme-binding motifs and the recombinant protein is shown here to bind heme in vitro. Fluorescence-tagged SOUL4 colocalized with the specific PG marker Fibrillin1A (FBN1A) in transiently transformed Nicotiana benthamiana leaves. In addition, SOUL4 cofractionated with another PG marker Fibrillin2 (FBN2) in sucrose gradient ultracentrifugation experiments. In vitro kinase experiments revealed that SOUL4 is phosphorylated by a yet unknown chloroplast protein kinase. Our data demonstrate that SOUL4 is a bona fide PG protein and may function in heme-buffering in the chloroplast.
Collapse
Affiliation(s)
- Venkatasalam Shanmugabalaji
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Venkatasalam Shanmugabalaji,
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
11
|
Rontani JF. Biotic and abiotic degradation of Δ 5-sterols in senescent Mediterranean marine and terrestrial angiosperms. PHYTOCHEMISTRY 2019; 167:112097. [PMID: 31445450 DOI: 10.1016/j.phytochem.2019.112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/21/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
This work used Δ5-sterols and their degradation products to compare the efficiency of biotic and abiotic degradation processes in senescent Mediterranean marine (Posidonia oceanica) and terrestrial (Quercus ilex and Smilax aspera) angiosperms. Type II photosensitized oxidation processes appeared to be more efficient in P. oceanica than in Q. ilex and S. aspera. The low efficiency of these processes in senescent terrestrial angiosperms was attributed to: (i) the fast degradation of the sensitizer (chlorophyll) in these organisms and (ii) the relatively high on-ground temperatures observed in Mediterranean regions favoring the diffusion of singlet oxygen outside the membranes. Senescent leaves of P. oceanica contained the highest proportions of photochemically-produced 6-hydroperoxysterols, likely due to the presence of trace amounts of metal ions in seawater catalyzing selective homolytic cleavage of 5- and 7-hydroperoxysterols. Bacterial metabolites of sitosterol and its photooxidation products could be detected in senescent leaves of P. oceanica but not Q. ilex or S. aspera. These results confirmed that biotic and abiotic degradation processes may be intimately linked in the environment.
Collapse
Affiliation(s)
- Jean-François Rontani
- Aix Marseille University, Université de Toulon, CNRS/INSU/IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France.
| |
Collapse
|
12
|
Sharma N, Arrigoni G, Ebinezer LB, Trentin AR, Franchin C, Giaretta S, Carletti P, Thiele-Bruhn S, Ghisi R, Masi A. A proteomic and biochemical investigation on the effects of sulfadiazine in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:146-158. [PMID: 31002969 DOI: 10.1016/j.ecoenv.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Animal manure or bio-solids used as fertilizers are the main routes of antibiotic exposure in the agricultural land, which can have immense detrimental effects on plants. Sulfadiazine (SDZ), belonging to the class of sulfonamides, is one of the most detected antibiotics in the agricultural soil. In this study, the effect of SDZ on the growth, changes in antioxidant metabolite content and enzyme activities related to oxidative stress were analysed. Moreover, the proteome alterations in Arabidopsis thaliana roots in response to SDZ was examined by means of a combined iTRAQ-LC-MS/MS quantitative proteomics approach. A dose-dependent decrease in leaf biomass and root length was evidenced in response to SDZ. Increased malondialdehyde content at higher concentration (2 μM) of SDZ indicated increased lipid peroxidation and suggest the induction of oxidative stress. Glutathione levels were significantly higher compared to control, whereas there was no increase in ascorbate content or the enzyme activities of glutathione metabolism, even at higher concentrations. In total, 48 differentially abundant proteins related to stress/stimuli response followed by transcription and translation, metabolism, transport and other functions were identified. Several proteins related to oxidative, dehydration, salinity and heavy metal stresses were represented. Upregulation of peroxidases was validated with total peroxidase activity. Pathway analysis provided an indication of increased phenylpropanoid biosynthesis. Probable molecular mechanisms altered in response to SDZ are highlighted.
Collapse
Affiliation(s)
- Nisha Sharma
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Italy
| | | | - Anna Rita Trentin
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Italy
| | - Sabrina Giaretta
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Paolo Carletti
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Sören Thiele-Bruhn
- Soil Science, Trier University, Behringstraße 21, D-54286, Trier, Germany
| | - Rossella Ghisi
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Antonio Masi
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| |
Collapse
|
13
|
Grossman A, Sanz-Luque E, Yi H, Yang W. Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Microbiology (Reading) 2019; 165:697-718. [DOI: 10.1099/mic.0.000788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Arthur Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Emanuel Sanz-Luque
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Heng Yi
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
14
|
Wu X, Yan J, Wu Y, Zhang H, Mo S, Xu X, Zhou F, Ding H. Proteomic analysis by iTRAQ-PRM provides integrated insight into mechanisms of resistance in pepper to Bemisia tabaci (Gennadius). BMC PLANT BIOLOGY 2019; 19:270. [PMID: 31226939 PMCID: PMC6588876 DOI: 10.1186/s12870-019-1849-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/24/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND The Bemisia tabaci is a major leaf feeding insect pest to pepper (Capsicum annuum), causing serious damage to pepper growth and yield. It is particularly important to study the mechanism of pepper resistance to B. tabaci, and to breed and promote the varieties of pepper resistant to B. tabaci. However, very limited molecular mechanism is available about how plants perceive and defend themselves from the destructive pest. Proteome technologies have provided an idea method for studying plant physiological processes in response to B. tabaci. RESULTS Here, a highly resistant genotype and a highly susceptible genotype were exposed to B. tabaci feeding for 48 h to explore the defense mechanisms of pepper resistance to B. tabaci. The proteomic differences between both genotypes were compared using isobaric tag for relative and absolute quantification (iTRAQ). The quantitative data were validated by parallel reaction monitoring (PRM). The results showed that 37 differential abundance proteins (DAPs) were identified in the RG (resistant genotype), while 17 DAPs were identified in the SG (susceptible genotype) at 48 h after B. tabaci feeding. 77 DAPs were identified when comparing RG with SG without feeding. The DAP functions were determined for the classification of the pathways, mainly involved in redox regulation, stress response, protein metabolism, lipid metabolism and carbon metabolism. Some candidate DAPs are closely related to B. tabaci resistance such as annexin D4-like (ANN4), calreticulin-3 (CRT3), heme-binding protein 2-like (HBP1), acidic endochitinase pcht28-like (PR3) and lipoxygenase 2 (LOX2). CONCLUSIONS Taken together, this study indicates complex resistance-related events in B. tabaci interaction, provides novel insights into the molecular mechanism underlying the response of plant to B. tabaci, and identifies some candidate proteins against B. tabaci attack.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Jiaxing Yan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Yahong Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Haibo Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Shuangrong Mo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Fucai Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
15
|
Schneider T, Bolger A, Zeier J, Preiskowski S, Benes V, Trenkamp S, Usadel B, Farré EM, Matsubara S. Fluctuating Light Interacts with Time of Day and Leaf Development Stage to Reprogram Gene Expression. PLANT PHYSIOLOGY 2019; 179:1632-1657. [PMID: 30718349 PMCID: PMC6446761 DOI: 10.1104/pp.18.01443] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/23/2019] [Indexed: 05/20/2023]
Abstract
Natural light environments are highly variable. Flexible adjustment between light energy utilization and photoprotection is therefore of vital importance for plant performance and fitness in the field. Short-term reactions to changing light intensity are triggered inside chloroplasts and leaves within seconds to minutes, whereas long-term adjustments proceed over hours and days, integrating multiple signals. While the mechanisms of long-term acclimation to light intensity have been studied by changing constant growth light intensity during the day, responses to fluctuating growth light intensity have rarely been inspected in detail. We performed transcriptome profiling in Arabidopsis (Arabidopsis thaliana) leaves to investigate long-term gene expression responses to fluctuating light (FL). In particular, we examined whether responses differ between young and mature leaves or between morning and the end of the day. Our results highlight global reprogramming of gene expression under FL, including that of genes related to photoprotection, photosynthesis, and photorespiration and to pigment, prenylquinone, and vitamin metabolism. The FL-induced changes in gene expression varied between young and mature leaves at the same time point and between the same leaves in the morning and at the end of the day, indicating interactions of FL acclimation with leaf development stage and time of day. Only 46 genes were up- or down-regulated in both young and mature leaves at both time points. Combined analyses of gene coexpression and cis-elements pointed to a role of the circadian clock and light in coordinating the acclimatory responses of functionally related genes. Our results also suggest a possible cross talk between FL acclimation and systemic acquired resistance-like gene expression in young leaves.
Collapse
Affiliation(s)
- Trang Schneider
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
- Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Anthony Bolger
- Institute for Biology I: Institute for Botany and Molecular Genetics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Jürgen Zeier
- Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Sabine Preiskowski
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, D-69117 Heidelberg, Germany
| | | | - Björn Usadel
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
- Institute for Biology I: Institute for Botany and Molecular Genetics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Shizue Matsubara
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
| |
Collapse
|
16
|
Thermodynamic Characterization of the Ca 2+-Dependent Interaction Between SOUL and ALG-2. Int J Mol Sci 2018; 19:ijms19123802. [PMID: 30501057 PMCID: PMC6321638 DOI: 10.3390/ijms19123802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022] Open
Abstract
SOUL, a heme-binding protein-2 (HEBP-2), interacts with apoptosis-linked gene 2 protein (ALG-2) in a Ca2+-dependent manner. To investigate the properties of the interaction of SOUL with ALG-2, we generated several mutants of SOUL and ALG-2 and analyzed the recombinant proteins using pulldown assay and isothermal titration calorimetry. The interaction between SOUL and ALG-2 (delta3-23ALG-2) was an exothermic reaction, with 1:1 stoichiometry and high affinity (Kd = 32.4 nM) in the presence of Ca2+. The heat capacity change (ΔCp) of the reaction showed a large negative value (−390 cal/K·mol), which suggested the burial of a significant nonpolar surface area or disruption of a hydrogen bond network that was induced by the interaction (or both). One-point mutation of SOUL Phe100 or ALG-2 Trp57 resulted in complete loss of heat change, supporting the essential roles of these residues for the interaction. Nevertheless, a truncated mutant of SOUL1-143 that deleted the domain required for the interaction with ALG-2 Trp57 still showed 1:1 binding to ALG-2 with an endothermic reaction. These results provide a better understanding of the target recognition mechanism and conformational change of SOUL in the interaction with ALG-2.
Collapse
|
17
|
Zhu L, Yang Z, Zeng X, Gao J, Liu J, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. PLANT MOLECULAR BIOLOGY 2017; 93:579-592. [PMID: 28108964 DOI: 10.1007/s11103-017-0583-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/09/2017] [Indexed: 05/08/2023]
Abstract
We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.
Collapse
Affiliation(s)
- Lixia Zhu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghui Yang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xinhua Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Oil Crops Research the Chinese Institute of Academy of Agricultural Sciences,, Ministry of Agriculture, Wuhan, 430062, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Fristedt R. Chloroplast function revealed through analysis of GreenCut2 genes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2111-2120. [PMID: 28369575 DOI: 10.1093/jxb/erx082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chloroplasts are the green plastids responsible for light-powered photosynthetic reactions and carbon assimilation in the plant cell. Our knowledge of chloroplast functions is constantly increasing and we now know this plastid is predicted to house around 3000 proteins. However, even with generous estimates, we do not know the function of more than 10-15% of these proteins. The next frontier in chloroplast research is to identify and characterize the function of the whole chloroplast proteome, a challenging task due to the inherent complexity a proteome possesses. A logical starting point is to identify and study proteins that have been determined experimentally to be localized in the chloroplast, conserved only among the photosynthetic lineage. These are the proteins with the most probable and important roles in chloroplast function. This review gives an introduction to the GreenCut2, a collection of proteins present only in photosynthetic organisms. By using recent large scale proteomics data, this cut was narrowed to include only those proteins experimentally verified to be localized in the chloroplast, and more specifically to the photosynthetic thylakoid membrane. By using highly informative bioinformatic approaches, the theoretical functional prediction for several of these uncharacterized GreenCut2 proteins is discussed.
Collapse
Affiliation(s)
- Rikard Fristedt
- Biophysics of Photosynthesis, Faculty of Sciences, VU University Amsterdam,Amsterdam,the Netherlands
| |
Collapse
|
19
|
Ahrazem O, Argandoña J, Castillo R, Rubio-Moraga Á, Gómez-Gómez L. Identification and Cloning of Differentially Expressed SOUL and ELIP Genes in Saffron Stigmas Using a Subtractive Hybridization Approach. PLoS One 2016; 11:e0168736. [PMID: 28030614 PMCID: PMC5193429 DOI: 10.1371/journal.pone.0168736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
Abstract
Using a subtractive hybridization approach, differentially expressed genes involved in the light response in saffron stigmas were identified. Twenty-two differentially expressed transcript-derived fragments were cloned and sequenced. Two of them were highly induced by light and had sequence similarity to early inducible proteins (ELIP) and SOUL heme-binding proteins. Using these sequences, we searched for other family members expressed in saffron stigma. ELIP and SOUL are represented by small gene families in saffron, with four and five members, respectively. The expression of these genes was analyzed during the development of the stigma and in light and dark conditions. ELIP transcripts were detected in all the developmental stages showing much higher expression levels in the developed stigmas of saffron and all were up-regulated by light but at different levels. By contrast, only one SOUL gene was up-regulated by light and was highly expressed in the stigma at anthesis. Both the ELIP and SOUL genes induced by light in saffron stigmas might be associated with the structural changes affecting the chromoplast of the stigma, as a result of light exposure, which promotes the development and increases the number of plastoglobules, specialized in the recruitment of specific proteins, which enables them to act in metabolite synthesis and disposal under changing environmental conditions and developmental stages.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Javier Argandoña
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
- * E-mail:
| |
Collapse
|
20
|
Eggert E, Obata T, Gerstenberger A, Gier K, Brandt T, Fernie AR, Schulze W, Kühn C. A sucrose transporter-interacting protein disulphide isomerase affects redox homeostasis and links sucrose partitioning with abiotic stress tolerance. PLANT, CELL & ENVIRONMENT 2016; 39:1366-1380. [PMID: 26670204 DOI: 10.1111/pce.12694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
Sucrose accumulation in leaves in response to various abiotic stresses suggests a specific role of this disaccharide for stress tolerance and adaptation. The high-affinity transporter StSUT1 undergoes substrate-induced endocytosis presenting the question as to whether altered sucrose accumulation in leaves in response to stresses is also related to enhanced endocytosis or altered activity of the sucrose transporter. StSUT1 is known to interact with several stress-inducible proteins; here we investigated whether one of the interacting candidates, StPDI1, affects its subcellular localization in response to stress: StPDI1 expression is induced by ER-stress and salt. Both proteins, StSUT1 and StPDI1, were found in the detergent resistant membrane (DRM) fraction, and this might affect internalization. Knockdown of StPDI1 expression severely affects abiotic stress tolerance of transgenic potato plants. Analysis of these plants does not reveal modified subcellular localization or endocytosis of StSUT1, but rather a disturbed redox homeostasis, reduced detoxification of reactive oxygen species and effects on primary metabolism. Parallel observations with other StSUT1-interacting proteins are discussed. The redox status in leaves seems to be linked to the sugar status in response to various stress stimuli and to play a role in stress tolerance.
Collapse
Affiliation(s)
- Erik Eggert
- Humboldt University, Institute of Biology, Department of Plant Physiology, Philippstr. 13, Building 12, 10115, Berlin, Germany
| | - Toshihiro Obata
- MPI Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Anne Gerstenberger
- Humboldt University, Institute of Biology, Department of Plant Physiology, Philippstr. 13, Building 12, 10115, Berlin, Germany
| | - Konstanze Gier
- Humboldt University, Institute of Biology, Department of Plant Physiology, Philippstr. 13, Building 12, 10115, Berlin, Germany
| | - Tobias Brandt
- Humboldt University, Institute of Biology, Department of Plant Physiology, Philippstr. 13, Building 12, 10115, Berlin, Germany
| | - Alisdair R Fernie
- MPI Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Waltraud Schulze
- MPI Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- University Hohenheim, Department of Plant Systems Biology, 70593, Stuttgart, Germany
| | - Christina Kühn
- Humboldt University, Institute of Biology, Department of Plant Physiology, Philippstr. 13, Building 12, 10115, Berlin, Germany
| |
Collapse
|
21
|
Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya. J Mol Evol 2016; 82:279-90. [PMID: 27209522 DOI: 10.1007/s00239-016-9745-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
SOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role.
Collapse
|
22
|
Litholdo CG, Parker BL, Eamens AL, Larsen MR, Cordwell SJ, Waterhouse PM. Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies Major Latex Protein Family Members Critical for Normal Development. Mol Cell Proteomics 2016; 15:2033-47. [PMID: 27067051 DOI: 10.1074/mcp.m115.053124] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/06/2022] Open
Abstract
Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem organization. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development.
Collapse
Affiliation(s)
- Celso G Litholdo
- From the ‡School of Biological Sciences, The University of Sydney, Camperdown NSW 2006, Australia; §Laboratório de Biologia Molecular de Plantas, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ, Brazil;
| | - Benjamin L Parker
- ¶Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Darlington NSW 2006, Australia
| | - Andrew L Eamens
- ‖School of Environmental and Life Sciences, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Martin R Larsen
- **Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Stuart J Cordwell
- ¶Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Darlington NSW 2006, Australia
| | - Peter M Waterhouse
- From the ‡School of Biological Sciences, The University of Sydney, Camperdown NSW 2006, Australia; ‡‡Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| |
Collapse
|
23
|
Nagahatenna DSK, Langridge P, Whitford R. Tetrapyrrole-based drought stress signalling. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:447-59. [PMID: 25756609 PMCID: PMC5054908 DOI: 10.1111/pbi.12356] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 01/05/2015] [Accepted: 01/31/2015] [Indexed: 05/07/2023]
Abstract
Tetrapyrroles such as chlorophyll and heme play a vital role in primary plant metabolic processes such as photosynthesis and respiration. Over the past decades, extensive genetic and molecular analyses have provided valuable insights into the complex regulatory network of the tetrapyrrole biosynthesis. However, tetrapyrroles are also implicated in abiotic stress tolerance, although the mechanisms are largely unknown. With recent reports demonstrating that modified tetrapyrrole biosynthesis in plants confers wilting avoidance, a component physiological trait to drought tolerance, it is now timely that this pathway be reviewed in the context of drought stress signalling. In this review, the significance of tetrapyrrole biosynthesis under drought stress is addressed, with particular emphasis on the inter-relationships with major stress signalling cascades driven by reactive oxygen species (ROS) and organellar retrograde signalling. We propose that unlike the chlorophyll branch, the heme branch of the pathway plays a key role in mediating intracellular drought stress signalling and stimulating ROS detoxification under drought stress. Determining how the tetrapyrrole biosynthetic pathway is involved in stress signalling provides an opportunity to identify gene targets for engineering drought-tolerant crops.
Collapse
Affiliation(s)
- Dilrukshi S. K. Nagahatenna
- Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Peter Langridge
- Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Ryan Whitford
- Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| |
Collapse
|
24
|
Wakao S, Chin BL, Ledford HK, Dent RM, Casero D, Pellegrini M, Merchant SS, Niyogi KK. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii. eLife 2014; 3:e02286. [PMID: 24859755 PMCID: PMC4067076 DOI: 10.7554/elife.02286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/22/2014] [Indexed: 01/07/2023] Open
Abstract
Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001.
Collapse
Affiliation(s)
- Setsuko Wakao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Brian L Chin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Heidi K Ledford
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Rachel M Dent
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - David Casero
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States
| | - Sabeeha S Merchant
- Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|