1
|
Nowak K, Wójcik AM, Konopka K, Jarosz A, Dombert K, Gaj MD. miR156-SPL and miR169-NF-YA Modules Regulate the Induction of Somatic Embryogenesis in Arabidopsis via LEC- and Auxin-Related Pathways. Int J Mol Sci 2024; 25:9217. [PMID: 39273166 PMCID: PMC11394981 DOI: 10.3390/ijms25179217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The embryogenic transition of plant somatic cells to produce somatic embryos requires extensive reprogramming of the cell transcriptome. The prominent role of transcription factors (TFs) and miRNAs in controlling somatic embryogenesis (SE) induction in plants was documented. The profiling of MIRNA expression in the embryogenic culture of Arabidopsis implied the contribution of the miR156 and miR169 to the embryogenic induction. In the present study, the function of miR156 and miR169 and the candidate targets, SPL and NF-YA genes, were investigated in Arabidopsis SE. The results showed that misexpression of MIRNA156 and candidate SPL target genes (SPL2, 3, 4, 5, 9, 10, 11, 13, 15) negatively affected the embryogenic potential of transgenic explants, suggesting that specific fine-tuning of the miR156 and target genes expression levels seems essential for efficient SE induction. The results revealed that SPL11 under the control of miR156 might contribute to SE induction by regulating the master regulators of SE, the LEC (LEAFY COTYLEDON) genes (LEC1, LEC2, FUS3). Moreover, the role of miR169 and its candidate NF-YA targets in SE induction was demonstrated. The results showed that several miR169 targets, including NF-YA1, 3, 5, 8, and 10, positively regulated SE. We found, that miR169 via NF-YA5 seems to modulate the expression of a master SE regulator LEC1/NF-YA and other auxin-related genes: YUCCA (YUC4, 10) and PIN1 in SE induction. The study provided new insights into miR156-SPL and miR169-NF-YA functions in the auxin-related and LEC-controlled regulatory network of SE.
Collapse
Affiliation(s)
| | | | | | | | | | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (A.M.W.); (K.K.); (A.J.); (K.D.)
| |
Collapse
|
2
|
Guo H, Wang J, Huo X, Cui X, Zhang L, Qi X, Wu X, Liu J, Wang A, Liu J, Chen X, Zeng F, Guo H. Proteomic and Phosphoproteomic Analyses during Plant Regeneration Initiation in Cotton ( Gossypium hirsutum L.). Genes (Basel) 2024; 15:1079. [PMID: 39202437 PMCID: PMC11353933 DOI: 10.3390/genes15081079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Somatic embryogenesis (SE) is a biotechnological tool used to generate new individuals and is the preferred method for rapid plant regeneration. However, the molecular basis underlying somatic cell regeneration through SE is not yet fully understood, particularly regarding interactions between the proteome and post-translational modifications. Here, we performed association analysis of high-throughput proteomics and phosphoproteomics in three representative samples (non-embryogenic calli, NEC; primary embryogenic calli, PEC; globular embryos, GE) during the initiation of plant regeneration in cotton, a pioneer crop for genetic biotechnology applications. Our results showed that protein accumulation is positively regulated by phosphorylation during SE, as revealed by correlation analyses. Of the 1418 proteins that were differentially accumulated in the proteome and the 1106 phosphoproteins that were differentially regulated in the phosphoproteome, 115 proteins with 229 phosphorylation sites overlapped (co-differential). Furthermore, seven dynamic trajectory patterns of differentially accumulated proteins (DAPs) and the correlated differentially regulated phosphoproteins (DRPPs) pairs with enrichment features were observed. During the initiation of plant regeneration, functional enrichment analysis revealed that the overlapping proteins (DAPs-DRPPs) were considerably enriched in cellular nitrogen metabolism, spliceosome formation, and reproductive structure development. Moreover, 198 DRPPs (387 phosphorylation sites) were specifically regulated at the phosphorylation level and showed four patterns of stage-enriched phosphorylation susceptibility. Furthermore, enrichment annotation analysis revealed that these phosphoproteins were significantly enriched in endosomal transport and nucleus organization processes. During embryogenic differentiation, we identified five DAPs-DRPPs with significantly enriched characteristic patterns. These proteins may play essential roles in transcriptional regulation and signaling events that initiate plant regeneration through protein accumulation and/or phosphorylation modification. This study enriched the understanding of key proteins and their correlated phosphorylation patterns during plant regeneration, and also provided a reference for improving plant regeneration efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Huihui Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (H.G.); (J.W.); (X.H.); (X.C.); (L.Z.); (X.Q.); (X.W.); (J.L.); (A.W.); (J.L.); (X.C.); (F.Z.)
| |
Collapse
|
3
|
Türkoğlu A, Haliloğlu K, Demirel F, Aydin M, Çiçek S, Yiğider E, Demirel S, Piekutowska M, Szulc P, Niedbała G. Machine Learning Analysis of the Impact of Silver Nitrate and Silver Nanoparticles on Wheat ( Triticum aestivum L.): Callus Induction, Plant Regeneration, and DNA Methylation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4151. [PMID: 38140479 PMCID: PMC10747064 DOI: 10.3390/plants12244151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The objective of this study was to comprehend the efficiency of wheat regeneration, callus induction, and DNA methylation through the application of mathematical frameworks and artificial intelligence (AI)-based models. This research aimed to explore the impact of treatments with AgNO3 and Ag-NPs on various parameters. The study specifically concentrated on analyzing RAPD profiles and modeling regeneration parameters. The treatments and molecular findings served as input variables in the modeling process. It included the use of AgNO3 and Ag-NPs at different concentrations (0, 2, 4, 6, and 8 mg L-1). The in vitro and epigenetic characteristics were analyzed using several machine learning (ML) methods, including support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbor classifier (KNN), and Gaussian processes classifier (GP) methods. This study's results revealed that the highest values for callus induction (CI%) and embryogenic callus induction (EC%) occurred at a concentration of 2 mg L-1 of Ag-NPs. Additionally, the regeneration efficiency (RE) parameter reached its peak at a concentration of 8 mg L-1 of AgNO3. Taking an epigenetic approach, AgNO3 at a concentration of 2 mg L-1 demonstrated the highest levels of genomic template stability (GTS), at 79.3%. There was a positive correlation seen between increased levels of AgNO3 and DNA hypermethylation. Conversely, elevated levels of Ag-NPs were associated with DNA hypomethylation. The models were used to estimate the relationships between the input elements, including treatments, concentration, GTS rates, and Msp I and Hpa II polymorphism, and the in vitro output parameters. The findings suggested that the XGBoost model exhibited superior performance scores for callus induction (CI), as evidenced by an R2 score of 51.5%, which explained the variances. Additionally, the RF model explained 71.9% of the total variance and showed superior efficacy in terms of EC%. Furthermore, the GP model, which provided the most robust statistics for RE, yielded an R2 value of 52.5%, signifying its ability to account for a substantial portion of the total variance present in the data. This study exemplifies the application of various machine learning models in the cultivation of mature wheat embryos under the influence of treatments and concentrations involving AgNO3 and Ag-NPs.
Collapse
Affiliation(s)
- Aras Türkoğlu
- Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya 42310, Türkiye
| | - Kamil Haliloğlu
- Department of Field Crops, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye;
| | - Fatih Demirel
- Department of Agricultural Biotechnology, Faculty of Agriculture, Igdır University, Igdir 76000, Türkiye;
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye; (M.A.); (S.Ç.); (E.Y.)
| | - Semra Çiçek
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye; (M.A.); (S.Ç.); (E.Y.)
| | - Esma Yiğider
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye; (M.A.); (S.Ç.); (E.Y.)
| | - Serap Demirel
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yüzüncü Yıl University, Van 65080, Türkiye;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 27 Partyzantów St., 76-200 Słupsk, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| |
Collapse
|
4
|
Lopos LC, Panthi U, Kovalchuk I, Bilichak A. Modulation of Plant MicroRNA Expression: Its Potential Usability in Wheat ( Triticum aestivum L.) Improvement. Curr Genomics 2023; 24:197-206. [PMID: 38169773 PMCID: PMC10758129 DOI: 10.2174/0113892029264886231016050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024] Open
Abstract
Wheat, a crucial crop for the pursuit of food security, is faced with a plateauing yield projected to fall short of meeting the demands of the exponentially increasing human population. To raise global wheat productivity levels, strong efforts must be made to overcome the problems of (1) climate change-induced heat and drought stress and (2) the genotype-dependent amenability of wheat to tissue culture, which limits the success of recovering genetically engineered plants, especially in elite cultivars. Unfortunately, the mainstream approach of genetically engineering plant protein-coding genes may not be effective in solving these problems as it is difficult to map, annotate, functionally verify, and modulate all existing homeologs and paralogs within wheat's large, complex, allohexaploid genome. Additionally, the quantitative, multi-genic nature of most agronomically important traits furthers the complications faced by this approach. miRNAs are small, noncoding RNAs (sncRNAs) that repress gene expression at the post-transcriptional level, regulating various aspects of plant growth and development. They are gaining popularity as alternative targets of genetic engineering efforts for crop improvement due to their (1) highly conserved nature, which facilitates reasonable prediction of their gene targets and phenotypic effects under different expression levels, and (2) the capacity to target multiple genes simultaneously, making them suitable for enhancing complex and multigenic agronomic traits. In this mini-review, we will discuss the biogenesis, manipulation, and potential applications of plant miRNAs in improving wheat's yield, somatic embryogenesis, thermotolerance, and drought-tolerance in response to the problems of plateauing yield, genotype-dependent amenability to tissue culture, and susceptibility to climate change-induced heat and drought stress. © His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food, 2023.
Collapse
Affiliation(s)
- Louie Cris Lopos
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Urbashi Panthi
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Andriy Bilichak
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
5
|
Ramakrishnan M, Zhou M, Ceasar SA, Ali DJ, Maharajan T, Vinod KK, Sharma A, Ahmad Z, Wei Q. Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos. PLANT CELL REPORTS 2023; 42:1845-1873. [PMID: 37792027 DOI: 10.1007/s00299-023-03071-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE This review discusses the epigenetic changes during somatic embryo (SE) development, highlights the genes and miRNAs involved in the transition of somatic cells into SEs as a result of epigenetic changes, and draws insights on biotechnological opportunities to study SE development. Somatic embryogenesis from somatic cells occurs in a series of steps. The transition of somatic cells into somatic embryos (SEs) is the most critical step under genetic and epigenetic regulations. Major regulatory genes such as SERK, WUS, BBM, FUS3/FUSA3, AGL15, and PKL, control SE steps and development by turning on and off other regulatory genes. Gene transcription profiles of somatic cells during SE development is the result of epigenetic changes, such as DNA and histone protein modifications, that control and decide the fate of SE formation. Depending on the type of somatic cells and the treatment with plant growth regulators, epigenetic changes take place dynamically. Either hypermethylation or hypomethylation of SE-related genes promotes the transition of somatic cells. For example, the reduced levels of DNA methylation of SERK and WUS promotes SE initiation. Histone modifications also promote SE induction by regulating SE-related genes in somatic cells. In addition, miRNAs contribute to the various stages of SE by regulating the expression of auxin signaling pathway genes (TIR1, AFB2, ARF6, and ARF8), transcription factors (CUC1 and CUC2), and growth-regulating factors (GRFs) involved in SE formation. These epigenetic and miRNA functions are unique and have the potential to regenerate bipolar structures from somatic cells when a pluripotent state is induced. However, an integrated overview of the key regulators involved in SE development and downstream processes is lacking. Therefore, this review discusses epigenetic modifications involved in SE development, SE-related genes and miRNAs associated with epigenetics, and common cis-regulatory elements in the promoters of SE-related genes. Finally, we highlight future biotechnological opportunities to alter epigenetic pathways using the genome editing tool and to study the transition mechanism of somatic cells.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
6
|
Xu W, Fan H, Pei X, Hua X, Xu T, He Q. mRNA-Seq and miRNA-Seq Analyses Provide Insights into the Mechanism of Pinellia ternata Bulbil Initiation Induced by Phytohormones. Genes (Basel) 2023; 14:1727. [PMID: 37761867 PMCID: PMC10531394 DOI: 10.3390/genes14091727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Pinellia ternata (Thunb.) Breit (abbreviated as P. ternata) is a plant with an important medicinal value whose yield is restricted by many factors, such as low reproductive efficiency and continuous cropping obstacles. As an essential breeding material for P. ternata growth and production, the bulbils have significant advantages such as a high survival rate and short breeding cycles. However, the location effect, influencing factors, and molecular mechanism of bulbil occurrence and formation have not been fully explored. In this study, exogenously applied phytohormones were used to induce in vitro petiole of P. ternata to produce bulbil structure. Transcriptome sequencing of mRNA and miRNA were performed in the induced petiole (TCp) and the induced bulbil (TCb). Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for the identification of key genes and pathways involved in bulbil development. A total of 58,019 differentially expressed genes (DEGs) were identified. The GO and KEGG analysis indicated that DEGs were mainly enriched in plant hormone signal transduction and the starch and sucrose metabolism pathway. The expression profiles of miR167a, miR171a, and miR156a during bulbil induction were verified by qRT-PCR, indicating that these three miRNAs and their target genes may be involved in the process of bulbil induction and play an important role. However, further molecular biological experiments are required to confirm the functions of the identified bulbil development-related miRNAs and targets.
Collapse
Affiliation(s)
- Wenxin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Haoyu Fan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Xiaomin Pei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Xuejun Hua
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Tao Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Qiuling He
- Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
7
|
Adhikari A, Roy D, Adhikari S, Saha S, Ghosh PK, Shaw AK, Hossain Z. microRNAomic profiling of maize root reveals multifaceted mechanisms to cope with Cr (VI) stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107693. [PMID: 37060869 DOI: 10.1016/j.plaphy.2023.107693] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Chromium (Cr) contamination of soil and water poses serious threats to agricultural crop production. MicroRNAs (miRNAs) are conserved, non-coding small RNAs that play pivotal roles in plant growth, development and stress responses through fine-tuning of post-transcriptional gene expression. To better understand the molecular circuit of Cr-responsive miRNAs, two sRNA libraries were prepared from control and Cr (VI) [100 ppm] exposed maize roots. Using deep sequencing, we identified 80 known (1 up and 79 down) and 18 downregulated novel miRNAs from Cr (VI) challenged roots. Gene ontology (GO) analysis reveals that predicted target genes of Cr (VI) responsive miRNAs are potentially involved in diverse cellular and biological processes including plant growth and development (miR159c, miR164d, miR319b-3p and zma_25.145), redox homeostasis (miR528-5p, miR396a-5p and zma_9.132), heavy metal uptake and detoxification (miR159f-5p, 164e-5p, miR408a, miR444f and zma_2.127), signal transduction (miR159f, miR160a-5p, miR393a-5p, miR408-5p and zma_43.158), cell signalling (miR156j, 159c-5p, miR166c-5p and miR398b). Higher accumulation of Cr in maize roots might be due to upregulation of ABC transporter G family member 29 targeted by miR444f. Instead of isolated increase in SOD expression, significant decline in GSH:GSSH ratio and histochemical staining strongly suggest Cr (VI) stress mediated disruption of ROS scavenging machinery thus unbalancing normal cellular homeostasis. Moreover, miR159c-mediated enhanced expression of GAMYB might be a reason for impaired root growth under Cr (VI) stress. In a nutshell, the present microRNAomic study sheds light on the miRNA-target gene regulatory network involved in adaptive responses of maize seedlings to Cr (VI) stress.
Collapse
Affiliation(s)
- Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sinchan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Shrabani Saha
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pratyush Kanti Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arun Kumar Shaw
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
8
|
Bai Y, Liu M, Zhou R, Jiang F, Li P, Li M, Zhang M, Wei H, Wu Z. Construction of ceRNA Networks at Different Stages of Somatic Embryogenesis in Garlic. Int J Mol Sci 2023; 24:ijms24065311. [PMID: 36982386 PMCID: PMC10049443 DOI: 10.3390/ijms24065311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
LncRNA (long non-coding RNA) and mRNA form a competitive endogenous RNA (ceRNA) network by competitively binding to common miRNAs. This network regulates various processes of plant growth and development at the post-transcriptional level. Somatic embryogenesis is an effective means of plant virus-free rapid propagation, germplasm conservation, and genetic improvement, which is also a typical process to study the ceRNA regulatory network during cell development. Garlic is a typical asexual reproductive vegetable. Somatic cell culture is an effective means of virus-free rapid propagation in garlic. However, the ceRNA regulatory network of somatic embryogenesis remains unclear in garlic. In order to clarify the regulatory role of the ceRNA network in garlic somatic embryogenesis, we constructed lncRNA and miRNA libraries of four important stages (explant stage: EX; callus stage: AC; embryogenic callus stage: EC; globular embryo stage: GE) in the somatic embryogenesis of garlic. It was found that 44 lncRNAs could be used as precursors of 34 miRNAs, 1511 lncRNAs were predicted to be potential targets of 144 miRNAs, and 45 lncRNAs could be used as eTMs of 29 miRNAs. By constructing a ceRNA network with miRNA as the core, 144 miRNAs may bind to 1511 lncRNAs and 12,208 mRNAs. In the DE lncRNA-DE miRNA-DE mRNA network of adjacent stages of somatic embryo development (EX-VS-CA, CA-VS-EC, EC-VS-GE), by KEGG enrichment of adjacent stage DE mRNA, plant hormone signal transduction, butyric acid metabolism, and C5-branched dibasic acid metabolism were significantly enriched during somatic embryogenesis. Since plant hormones play an important role in somatic embryogenesis, further analysis of plant hormone signal transduction pathways revealed that the auxin pathway-related ceRNA network (lncRNAs-miR393s-TIR) may play a role in the whole stage of somatic embryogenesis. Further verification by RT-qPCR revealed that the lncRNA125175-miR393h-TIR2 network plays a major role in the network and may affect the occurrence of somatic embryos by regulating the auxin signaling pathway and changing the sensitivity of cells to auxin. Our results lay the foundation for studying the role of the ceRNA network in the somatic embryogenesis of garlic.
Collapse
Affiliation(s)
- Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Ping Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Mengqian Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Meng Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Hanyu Wei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
9
|
Cordeiro D, Canhoto J, Correia S. Regulatory non-coding RNAs: Emerging roles during plant cell reprogramming and in vitro regeneration. FRONTIERS IN PLANT SCIENCE 2022; 13:1049631. [PMID: 36438127 PMCID: PMC9684189 DOI: 10.3389/fpls.2022.1049631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Plant regeneration is a well-known capacity of plants occurring either in vivo or in vitro. This potential is the basis for plant micropropagation and genetic transformation as well as a useful system to analyse different aspects of plant development. Recent studies have proven that RNA species with no protein-coding capacity are key regulators of cellular function and essential for cell reprogramming. In this review, the current knowledge on the role of several ncRNAs in plant regeneration processes is summarized, with a focus on cell fate reprogramming. Moreover, the involvement/impact of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and small-interfering RNAs (siRNAs) in the regulatory networks of cell dedifferentiation, proliferation and differentiation is also analysed. A deeper understanding of plant ncRNAs in somatic cell reprogramming will allow a better modulation of in vitro regeneration processes such as organogenesis and somatic embryogenesis.
Collapse
|
10
|
Fan B, Sun F, Yu Z, Zhang X, Yu X, Wu J, Yan X, Zhao Y, Nie L, Fang Y, Ma Y. Integrated analysis of small RNAs, transcriptome and degradome sequencing reveal the drought stress network in Agropyron mongolicum Keng. FRONTIERS IN PLANT SCIENCE 2022; 13:976684. [PMID: 36061788 PMCID: PMC9433978 DOI: 10.3389/fpls.2022.976684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Agropyron mongolicum (A. mongolicum) is an excellent gramineous forage with extreme drought tolerance, which lives in arid and semiarid desert areas. However, the mechanism that underlies the response of microRNAs (miRNAs) and their targets in A. mongolicum to drought stress is not well understood. In this study, we analyzed the transcriptome, small RNAome (specifically the miRNAome) and degradome to generate a comprehensive resource that focused on identifying key regulatory miRNA-target circuits under drought stress. The most extended transcript in each collection is known as the UniGene, and a total of 41,792 UniGenes and 1,104 miRNAs were identified, and 99 differentially expressed miRNAs negatively regulated 1,474 differentially expressed target genes. Among them, eight miRNAs were unique to A. mongolicum, and there were 36 target genes. A weighted gene co-expression network analysis identified five hub genes. The miRNAs of five hub genes were screened with an integration analysis of the degradome and sRNAs, such as osa-miR444a-3p.2-MADS47, bdi-miR408-5p_1ss19TA-CCX1, tae-miR9774_L-2R-1_1ss11GT-carC, ata-miR169a-3p-PAO2, and bdi-miR528-p3_2ss15TG20CA-HOX24. The functional annotations revealed that they were involved in mediating the brassinosteroid signal pathway, transporting and exchanging sodium and potassium ions and regulating the oxidation-reduction process, hydrolase activity, plant response to water deprivation, abscisic acid (ABA) and the ABA-activated signaling pathway to regulate drought stress. Five hub genes were discovered, which could play central roles in the regulation of drought-responsive genes. These results show that the combined analysis of miRNA, the transcriptome and degradation group provides a useful platform to investigate the molecular mechanism of drought resistance in A. mongolicum and could provide new insights into the genetic engineering of Poaceae crops in the future.
Collapse
Affiliation(s)
- Bobo Fan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengcheng Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Zhuo Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuefeng Zhang
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoxia Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Wu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiuxiu Yan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lizhen Nie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yongyu Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yanhong Ma
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
11
|
Sivanesan I, Nayeem S, Venkidasamy B, Kuppuraj SP, RN C, Samynathan R. Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biol Futur 2022; 73:259-277. [DOI: 10.1007/s42977-022-00126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023]
|
12
|
Wang G, Yue X, Feng Z, Cai L, Li N, Geng F, Xu C, Wang L, Wang D, Fahad S. Identification of
AtSND1
homologous
NAC
genes related to cotton fiber development, in silico analyses, and gene expression patterns. Food Energy Secur 2022. [DOI: 10.1002/fes3.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Guifeng Wang
- School of Resources and Environmental Engineering Wuhan University of Technology Wuhan Hubei China
- Shandong Cotton Production Technical Guidance Station Jinan Shandong China
| | - Xiaomin Yue
- College of Life Science Linyi University Linyi Shandong China
| | - Zongqin Feng
- College of Life Science Linyi University Linyi Shandong China
| | - Lijuan Cai
- College of Life Science Linyi University Linyi Shandong China
| | - Na Li
- College of Life Science Linyi University Linyi Shandong China
| | - Fang Geng
- College of Life Science Linyi University Linyi Shandong China
| | - Chuanjie Xu
- College of Life Science Linyi University Linyi Shandong China
| | - Lichen Wang
- College of Life Science Linyi University Linyi Shandong China
| | - Depeng Wang
- College of Life Science Linyi University Linyi Shandong China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops Hainan University Haikou China
- Department of Agronomy The University of Haripur Haripur Pakistan
| |
Collapse
|
13
|
Fan Y, Tang Z, Wei J, Yu X, Guo H, Li T, Guo H, Zhang L, Fan Y, Zhang C, Zeng F. Dynamic Transcriptome Analysis Reveals Complex Regulatory Pathway Underlying Induction and Dose Effect by Different Exogenous Auxin IAA and 2,4-D During in vitro Embryogenic Redifferentiation in Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:931105. [PMID: 35845676 PMCID: PMC9278894 DOI: 10.3389/fpls.2022.931105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant somatic cells can reprogram into differentiated embryos through somatic embryogenesis (SE) on the condition of plant growth regulators (PGRs). RNA sequencing analysis was performed to investigate transcriptional profiling on cotton redifferentiated callus that was induced by different auxin types (IAA and 2,4-D), different concentrations (0, 0.025, and 0.05 mg L-1), and different incubation times (0, 5, and 20 days). Under the 2,4-D induction effect, signal transduction pathways of plant hormones were significantly enriched in the embryogenic response stage (5 days). These results indicated that auxin signal transduction genes were necessary for the initial response of embryogenic differentiation. In the pre-embryonic initial period (20 days), the photosynthetic pathway was significantly enriched. Most differentially expressed genes (DEGs) were downregulated under the induction of 2,4-D. Upon the dose effect of IAA and 2,4-D, respectively, pathways were significantly enriched in phenylpropanoid biosynthesis, fatty acid metabolism, and carbon metabolic pathways. Therefore, primary and secondary metabolism pathways were critical in cotton SE. These results showed that complex synergistic mechanisms involving multiple cellular pathways were the causes of the induction and dose effect of auxin-induced SE. This study reveals a systematic molecular response to auxin signals and reveals the way that regulates embryogenic redifferentiation during cotton SE.
Collapse
Affiliation(s)
- Yupeng Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
- College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Zhengmin Tang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Junmei Wei
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiaoman Yu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Huihui Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Yijie Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Changyu Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
14
|
Shi QF, Long JM, Yin ZP, Jiang N, Feng MQ, Zheng B, Guo WW, Wu XM. miR171 modulates induction of somatic embryogenesis in citrus callus. PLANT CELL REPORTS 2022; 41:1403-1415. [PMID: 35381869 DOI: 10.1007/s00299-022-02865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of miR171 restored SE competence in the recalcitrant citrus callus, and inhibition of miR171 function weakened SE competence in the strongly embryogenic citrus callus. Somatic embryogenesis (SE) is an important way of in vitro regeneration for plants. For perennial woody crops such as citrus, embryogenic callus is usually induced from unfertilized aborted ovules and widely used in biotechnology aided breeding. However, SE capacity always declines in callus during subculture, which makes regeneration difficult and hinders the application of biotechnology. We previously found that miR171 may be a regulator of SE in citrus, based on the abundant expression of csi-miR171c in the embryogenic callus and during SE of citrus. Here, we report that miR171 promotes SE and is required for SE in citrus. Overexpression of miR171 restored SE competence in the recalcitrant callus of 'Guoqing No.1' Satsuma mandarin (G1), whereas inhibition of miR171 function by Short Tandem Target Mimic (STTM) weakened SE competence in the strongly embryogenic callus of 'Valencia' sweet orange (V). The comparative transcriptomic analysis in miR171 overexpressed callus line (OE) and the wild type callus (WT) indicated that overexpression of miR171 decreased the expression level of its SCARECROW-LIKE (CsSCL) targets, and activated stress response related biological processes and metabolic processes that are required for cell differentiation. However, CsSCLs were up-regulated in the OE callus during SE induction process, which activated the cell division and developmental processes that are required for embryogenesis progress. Our results validate the function of miR171 in regulation of SE and reveal the biological responses provoked by miR171 in citrus that may promote SE.
Collapse
Affiliation(s)
- Qiao-Fang Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Kong C, Su H, Deng S, Ji J, Wang Y, Zhang Y, Yang L, Fang Z, Lv H. Global DNA Methylation and mRNA-miRNA Variations Activated by Heat Shock Boost Early Microspore Embryogenesis in Cabbage ( Brassica oleracea). Int J Mol Sci 2022; 23:5147. [PMID: 35563550 PMCID: PMC9103256 DOI: 10.3390/ijms23095147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
Microspore culture, a type of haploid breeding, is extensively used in the cultivation of cruciferous crops such as cabbage. Heat shock (HS) treatment is essential to improve the embryo rate during the culture process; however, its molecular role in boosting early microspore embryogenesis (ME) remains unknown. Here we combined DNA methylation levels, miRNAs, and transcriptome profiles in isolated microspores of cabbage '01-88' under HS (32 °C for 24 h) and normal temperature (25 °C for 24 h) to investigate the regulatory roles of DNA methylation and miRNA in early ME. Global methylation levels were significantly different in the two pre-treatments, and 508 differentially methylated regions (DMRs) were identified; 59.92% of DMRs were correlated with transcripts, and 39.43% of miRNA locus were associated with methylation levels. Significantly, the association analysis revealed that 31 differentially expressed genes (DEGs) were targeted by methylation and miRNA and were mainly involved in the reactive oxygen species (ROS) response and abscisic acid (ABA) signaling, indicating that HS induced DNA methylation, and miRNA might affect ME by influencing ROS and ABA. This study revealed that DNA methylation and miRNA interfered with ME by modulating key genes and pathways, which could broaden our understanding of the molecular regulation of ME induced by HS pre-treatment.
Collapse
Affiliation(s)
- Congcong Kong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Henan Su
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Siping Deng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (H.S.); (S.D.); (J.J.); (Y.W.); (Y.Z.); (L.Y.); (Z.F.)
| |
Collapse
|
16
|
Pawełkowicz ME, Skarzyńska A, Koter MD, Turek S, Pląder W. miRNA Profiling and Its Role in Multi-Omics Regulatory Networks Connected with Somaclonal Variation in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms23084317. [PMID: 35457133 PMCID: PMC9031375 DOI: 10.3390/ijms23084317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
The role of miRNAs in connection with the phenomenon of somaclonal variation, which occurs during plant in vitro culture, remains uncertain. This study aims to investigate the possible role of miRNAs in multi-omics regulatory pathways in cucumber somaclonal lines. For this purpose, we performed sRNA sequencing (sRNA-seq) from cucumber fruit samples identified 8, 10 and 44 miRNAs that are differentially expressed between somaclones (S1, S2, S3 lines) and the reference B10 line of Cucumis sativus. For miRNA identification, we use ShortStack software designed to filter miRNAs from sRNAs according to specific program criteria. The identification of predicted in-silico targets revealed 2,886 mRNAs encoded by 644 genes. The functional annotation of miRNA's target genes and gene ontology classification revealed their association with metabolic processes, response to stress, multicellular organism development, biosynthetic process and catalytic activity. We checked with bioinformatic analyses for possible interactions at the level of target proteins, differentially expressed genes (DEGs) and genes affected by genomic polymorphisms. We assume that miRNAs can indirectly influence molecular networks and play a role in many different regulatory pathways, leading to somaclonal variation. This regulation is supposed to occur through the process of the target gene cleavage or translation inhibition, which in turn affects the proteome, as we have shown in the example of molecular networks. This is a new approach combining levels from DNA-seq through mRNA-seq, sRNA-seq and in silico PPI in the area of plants' somaclonal variation.
Collapse
|
17
|
Yan R, Song S, Li H, Sun H. Functional analysis of the eTM-miR171-SCL6 module regulating somatic embryogenesis in Lilium pumilum DC. Fisch. HORTICULTURE RESEARCH 2022; 9:uhac045. [PMID: 35184179 PMCID: PMC9171120 DOI: 10.1093/hr/uhac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 05/29/2023]
Abstract
Somatic embryogenesis (SE) is of great significance in Lilium bulb production, germplasm preservation and genetic improvement. miRNAs are important regulators of plant growth and development at the transcriptional level. Previous research by our group has shown that lpu-miR171 and its target gene SCARECROW-LIKE 6 (SCL6) play an important regulatory role in lily SE, and we predicted and identified that endogenous target mimics (eTMs) can regulate lpu-miR171. However, the associated mechanism and internal regulatory network are not yet clear. In the present study, lpu-miR171 was used as an entry point to explore the regulatory network between its upstream eTMs and its downstream target gene LpSCL6, as well as to identify the mechanism of this regulatory network in Lilium SE. Tobacco transient transformation confirmed that miRNA171 significantly inhibited the expression of LpSCL6. On this basis, the Lilium stable genetic transformation system was used to demonstrate that silencing lpu-miR171a and lpu-miR171b and overexpressing LpSCL6-II and LpSCL6-I promoted starch accumulation in calli and the expression of key cell cycle genes, thus providing energy to meet preconditions for SE and accelerate the formation and development of Lilium somatic embryos. LpSCL6-II and LpSCL6-I are nuclear proteins with self-activation activity in yeast cells. In addition, we confirmed in Lilium that lpu-eTM171 is the eTM of lpu-miR171 that binds lpu-miR171 to prevent cleavage of the target gene LpSCL6, thereby promoting SE. Therefore, the present study established a new mechanism whereby the eTM-miR171-SCL6 module regulates SE in Lilium pumilum DC. Fisch. and provided new insights clarifying the mechanism of SE.
Collapse
Affiliation(s)
- Rui Yan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Shengli Song
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
| | - Hongyu Li
- College of Life Science and Bioengineering, Shenyang University, Shenyang 110866, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
| |
Collapse
|
18
|
Nowak K, Morończyk J, Grzyb M, Szczygieł-Sommer A, Gaj MD. miR172 Regulates WUS during Somatic Embryogenesis in Arabidopsis via AP2. Cells 2022; 11:718. [PMID: 35203367 PMCID: PMC8869827 DOI: 10.3390/cells11040718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, the embryogenic transition of somatic cells requires the reprogramming of the cell transcriptome, which is under the control of genetic and epigenetic factors. Correspondingly, the extensive modulation of genes encoding transcription factors and miRNAs has been indicated as controlling the induction of somatic embryogenesis in Arabidopsis and other plants. Among the MIRNAs that have a differential expression during somatic embryogenesis, members of the MIRNA172 gene family have been identified, which implies a role of miR172 in controlling the embryogenic transition in Arabidopsis. In the present study, we found a disturbed expression of both MIRNA172 and candidate miR172-target genes, including AP2, TOE1, TOE2, TOE3, SMZ and SNZ, that negatively affected the embryogenic response of transgenic explants. Next, we examined the role of AP2 in the miR172-mediated mechanism that controls the embryogenic response. We found some evidence that by controlling AP2, miR172 might repress the WUS that has an important function in embryogenic induction. We showed that the mechanism of the miR172-AP2-controlled repression of WUS involves histone acetylation. We observed the upregulation of the WUS transcripts in an embryogenic culture that was overexpressing AP2 and treated with trichostatin A (TSA), which is an inhibitor of HDAC histone deacetylases. The increased expression of the WUS gene in the embryogenic culture of the hdac mutants further confirmed the role of histone acetylation in WUS control during somatic embryogenesis. A chromatin-immunoprecipitation analysis provided evidence about the contribution of HDA6/19-mediated histone deacetylation to AP2-controlled WUS repression during embryogenic induction. The upstream regulatory elements of the miR172-AP2-WUS pathway might involve the miR156-controlled SPL9/SPL10, which control the level of mature miR172 in an embryogenic culture.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata Grzyb
- Polish Academy of Sciences Botanical Garden—Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Aleksandra Szczygieł-Sommer
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| |
Collapse
|
19
|
Yuan Y, Cao X, Zhang H, Liu C, Zhang Y, Song XL, Gai S. Genome-wide identification and analysis of Oleosin gene family in four cotton species and its involvement in oil accumulation and germination. BMC PLANT BIOLOGY 2021; 21:569. [PMID: 34863105 PMCID: PMC8642851 DOI: 10.1186/s12870-021-03358-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cotton is not only a major textile fiber crop but also a vital oilseed, industrial, and forage crop. Oleosins are the structural proteins of oil bodies, influencing their size and the oil content in seeds. In addition, the degradation of oleosins is involved in the mobilization of lipid and oil bodies during seed germination. However, comprehensive identification and the systematic analysis of the Oleosin gene (OLEOs) family have not been conducted in cotton. RESULTS An in-depth analysis has enabled us to identify 25 and 24 OLEOs in tetraploid cotton species G. hirsutum and G. barbadense, respectively, while 12 and 13 OLEOs were identified in diploid species G. arboreum and G. raimondii, respectively. The 74 OLEOs were further clustered into three lineages according to the phylogenetic tree. Synteny analysis revealed that most of the OLEOs were conserved and that WGD or segmental duplications might drive their expansion. The transmembrane helices in GhOLEO proteins were predicted, and three transmembrane models were summarized, in which two were newly proposed. A total of 24 candidate miRNAs targeting GhOLEOs were predicted. Three highly expressed oil-related OLEOs, GH_A07G0501 (SL), GH_D10G0941 (SH), and GH_D01G1686 (U), were cloned, and their subcellular localization and function were analyzed. Their overexpression in Arabidopsis increased seed oil content and decreased seed germination rates. CONCLUSION We identified OLEO gene family in four cotton species and performed comparative analyses of their relationships, conserved structure, synteny, and gene duplication. The subcellular localization and function of three highly expressed oil-related OLEOs were detected. These results lay the foundation for further functional characterization of OLEOs and improving seed oil content.
Collapse
Affiliation(s)
- Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xinzhe Cao
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xian-Liang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| |
Collapse
|
20
|
Ahmed W, Xia Y, Li R, Zhang H, Siddique KHM, Guo P. Identification and Analysis of Small Interfering RNAs Associated With Heat Stress in Flowering Chinese Cabbage Using High-Throughput Sequencing. Front Genet 2021; 12:746816. [PMID: 34790225 PMCID: PMC8592252 DOI: 10.3389/fgene.2021.746816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Endogenous small interfering RNAs (siRNAs) are substantial gene regulators in eukaryotes and play key functions in plant development and stress tolerance. Among environmental factors, heat is serious abiotic stress that severely influences the productivity and quality of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). However, how siRNAs are involved in regulating gene expression during heat stress is not fully understood in flowering Chinese cabbage. Combining bioinformatical and next-generation sequencing approaches, we identified heat-responsive siRNAs in four small RNA libraries of flowering Chinese cabbage using leaves collected at 0, 1, 6, and 12 h after a 38°C heat-stress treatment; 536, 816, and 829 siRNAs exhibited substantial differential expression at 1, 6, and 12 h, respectively. Seventy-five upregulated and 69 downregulated differentially expressed siRNAs (DE-siRNAs) were common for the three time points of heat stress. We identified 795 target genes of DE-siRNAs, including serine/threonine-protein kinase SRK2I, CTR1-like, disease resistance protein RML1A-like, and RPP1, which may play a role in regulating heat tolerance. Gene ontology showed that predictive targets of DE-siRNAs may have key roles in the positive regulation of biological processes, organismal processes, responses to temperature stimulus, signaling, and growth and development. These novel results contribute to further understanding how siRNAs modulate the expression of their target genes to control heat tolerance in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Waqas Ahmed
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hua Zhang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
21
|
Arora S, Chaudhary B. Global expression dynamics and miRNA evolution profile govern floral/fiber architecture in the modern cotton (Gossypium). PLANTA 2021; 254:62. [PMID: 34459999 DOI: 10.1007/s00425-021-03711-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 05/15/2023]
Abstract
Majority of differentially expressed miRNAs with functional attributes have been recruited independently and parallelly during allopolyploidy followed by the millennia of human selection of both domesticated G. hirsutum and G. barbadense. The genus Gossypium is a marvelous evolutionary model for studying allopolyploidy and morpho-evolution of long-spinnable fibers from the ancestral wild-fuzz. Many genes, transcription factors, and notably, the regulatory miRNAs essentially govern such remarkable modern fiber phenotypes. To comprehend the impact of allopolyploidy on the evolutionary selection of transcriptional dynamicity of key miRNAs, comparative transcriptome profiling of vegetative and fiber tissues of domesticated diploid G. arboreum (A2) and allopolyploid cotton species G. hirsutum (AD1), and G. barbadense (AD2) identified > 300 differentially expressed miRNAs (DEmiRs) within or between corresponding tissues of A2, AD1 and AD2 species. Up to 49% and 32% DEmiRs were up- and down-regulated at fiber initiation stage of AD1 and AD2 species, respectively, whereas 50% and 18% DEmiRs were up- and down-regulated at fiber elongation stage of both the allopolyploid species. Interestingly, A-subgenome-specific DEmiRs exhibit expression dominance in the allopolyploid genetic backgrounds. Comparative spatio-temporal expression analyses of AD1 and AD2 species discovered that a majority of DEmiRs were recruited independently under millennia of human selection during domestication. Functional annotations of these DEmiRs revealed selection of associated molecular functions such as hormone-signaling, calcium-signaling and reactive oxygen species (ROS) signaling during fiber initiation and elongation. To validate the functional attributes of annotated DEmiRs, we demonstrated for the first time that the target-mimicry-based constitutive diminution of auxin-signaling associated miR167 directly affected the differentiation of floral and fiber tissues of transgenic cotton. These results strongly suggested that the evolutionarily favored DEmiRs including miR167 were involved in the transcriptional regulation of numerous genes during cotton evolution for enhanced fiber-associated agronomic traits.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
22
|
Su W, Raza A, Gao A, Jia Z, Zhang Y, Hussain MA, Mehmood SS, Cheng Y, Lv Y, Zou X. Genome-Wide Analysis and Expression Profile of Superoxide Dismutase (SOD) Gene Family in Rapeseed ( Brassica napus L.) under Different Hormones and Abiotic Stress Conditions. Antioxidants (Basel) 2021; 10:1182. [PMID: 34439430 PMCID: PMC8389029 DOI: 10.3390/antiox10081182] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/25/2023] Open
Abstract
Superoxide dismutase (SOD) is an important enzyme that acts as the first line of protection in the plant antioxidant defense system, involved in eliminating reactive oxygen species (ROS) under harsh environmental conditions. Nevertheless, the SOD gene family was yet to be reported in rapeseed (Brassica napus L.). Thus, a genome-wide investigation was carried out to identify the rapeseed SOD genes. The present study recognized 31 BnSOD genes in the rapeseed genome, including 14 BnCSDs, 11 BnFSDs, and six BnMSDs. Phylogenetic analysis revealed that SOD genes from rapeseed and other closely related plant species were clustered into three groups based on the binding domain with high bootstrap values. The systemic analysis exposed that BnSODs experienced segmental duplications. Gene structure and motif analysis specified that most of the BnSOD genes displayed a relatively well-maintained exon-intron and motif configuration within the same group. Moreover, we identified five hormones and four stress- and several light-responsive cis-elements in the promoters of BnSODs. Thirty putative bna-miRNAs from seven families were also predicted, targeting 13 BnSODs. Gene ontology annotation outcomes confirm the BnSODs role under different stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity, and different cellular components. Twelve BnSOD genes exhibited higher expression profiles in numerous developmental tissues, i.e., root, leaf, stem, and silique. The qRT-PCR based expression profiling showed that eight genes (BnCSD1, BnCSD3, BnCSD14, BnFSD4, BnFSD5, BnFSD6, BnMSD2, and BnMSD10) were significantly up-regulated under different hormones (ABA, GA, IAA, and KT) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. The predicted 3D structures discovered comparable conserved BnSOD protein structures. In short, our findings deliver a foundation for additional functional investigations on the BnSOD genes in rapeseed breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Lv
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China; (W.S.); (A.R.); (A.G.); (Z.J.); (Y.Z.); (M.A.H.); (S.S.M.); (Y.C.)
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China; (W.S.); (A.R.); (A.G.); (Z.J.); (Y.Z.); (M.A.H.); (S.S.M.); (Y.C.)
| |
Collapse
|
23
|
MicroRNA Zma-miR528 Versatile Regulation on Target mRNAs during Maize Somatic Embryogenesis. Int J Mol Sci 2021; 22:ijms22105310. [PMID: 34069987 PMCID: PMC8157881 DOI: 10.3390/ijms22105310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the accumulation and translation of their target mRNAs through sequence complementarity. miRNAs have emerged as crucial regulators during maize somatic embryogenesis (SE) and plant regeneration. A monocot-specific miRNA, mainly accumulated during maize SE, is zma-miR528. While several targets have been described for this miRNA, the regulation has not been experimentally confirmed for the SE process. Here, we explored the accumulation of zma-miR528 and several predicted targets during embryogenic callus induction, proliferation, and plantlet regeneration using the maize cultivar VS-535. We confirmed the cleavage site for all tested zma-miR528 targets; however, PLC1 showed very low levels of processing. The abundance of zma-miR528 slightly decreased in one month-induced callus compared to the immature embryo (IE) explant tissue. However, it displayed a significant increase in four-month sub-cultured callus, coincident with proliferation establishment. In callus-regenerated plantlets, zma-miR528 greatly decreased to levels below those observed in the initial explant. Three of the target transcripts (MATE, bHLH, and SOD1a) showed an inverse correlation with the miRNA abundance in total RNA samples at all stages. Using polysome fractionation, zma-miR528 was detected in the polysome fraction and exhibited an inverse distribution with the PLC1 target, which was not observed at total RNA. Accordingly, we conclude that zma-miR528 regulates multiple target mRNAs during the SE process by promoting their degradation, translation inhibition or both.
Collapse
|
24
|
Zhang C, Fu F, Lin C, Ding X, Zhang J, Yan H, Wang P, Zhang W, Peng B, Zhao L. MicroRNAs Involved in Regulatory Cytoplasmic Male Sterility by Analysis RNA-seq and Small RNA-seq in Soybean. Front Genet 2021; 12:654146. [PMID: 34054917 PMCID: PMC8153375 DOI: 10.3389/fgene.2021.654146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is an important plant characteristic for exploiting heterosis to enhance crop traits during breeding. However, the CMS regulatory network remains unclear in plants, even though researchers have attempted to isolate genes associated with CMS. In this study, we performed high-throughput sequencing and degradome analyses to identify microRNAs (miRNAs) and their targets in a soybean CMS line (JLCMS9A) and its maintainer line (JLCMS9B). Additionally, the differentially expressed genes during reproductive development were identified using RNA-seq data. A total of 280 miRNAs matched soybean miRNA sequences in miRBase, including mature miRNAs and pre-miRNAs. Of the 280 miRNAs, 30, 23, and 21 belonged to the miR166, miR156, and miR171 families, respectively. Moreover, 410 novel low-abundant miRNAs were identified in the JLCMS9A and JLCMS9B flower buds. Furthermore, 303 and 462 target genes unique to JLCMS9A and JLCMS9B, respectively, as well as 782 common targets were predicted based on the degradome analysis. Target genes differentially expressed between the CMS line and the maintainer line were revealed by an RNA-seq analysis. Moreover, all target genes were annotated with diverse functions related to biological processes, cellular components, and molecular functions, including transcriptional regulation, the nucleus, meristem maintenance, meristem initiation, cell differentiation, auxin-activated signaling, plant ovule development, and anther development. Finally, a network was built based on the interactions. Analyses of the miRNA, degradome, and transcriptome datasets generated in this study provided a comprehensive overview of the reproductive development of a CMS soybean line. The data presented herein represent useful information for soybean hybrid breeding. Furthermore, the study results indicate that miRNAs might contribute to the soybean CMS regulatory network by modulating the expression of CMS-related genes. These findings lay the foundation for future studies on the molecular mechanisms underlying soybean CMS.
Collapse
Affiliation(s)
- Chunbao Zhang
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Fuyou Fu
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Chunjing Lin
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaoyang Ding
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jingyong Zhang
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hao Yan
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Pengnian Wang
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Wei Zhang
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Bao Peng
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Limei Zhao
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
25
|
Alves A, Cordeiro D, Correia S, Miguel C. Small Non-Coding RNAs at the Crossroads of Regulatory Pathways Controlling Somatic Embryogenesis in Seed Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:504. [PMID: 33803088 PMCID: PMC8001652 DOI: 10.3390/plants10030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
Small non-coding RNAs (sncRNAs) are molecules with important regulatory functions during development and environmental responses across all groups of terrestrial plants. In seed plants, the development of a mature embryo from the zygote follows a synchronized cell division sequence, and growth and differentiation events regulated by highly regulated gene expression. However, given the distinct features of the initial stages of embryogenesis in gymnosperms and angiosperms, it is relevant to investigate to what extent such differences emerge from differential regulation mediated by sncRNAs. Within these, the microRNAs (miRNAs) are the best characterized class, and while many miRNAs are conserved and significantly represented across angiosperms and other seed plants during embryogenesis, some miRNA families are specific to some plant lineages. Being a model to study zygotic embryogenesis and a relevant biotechnological tool, we systematized the current knowledge on the presence and characterization of miRNAs in somatic embryogenesis (SE) of seed plants, pinpointing the miRNAs that have been reported to be associated with SE in angiosperm and gymnosperm species. We start by conducting an overview of sncRNA expression profiles in the embryonic tissues of seed plants. We then highlight the miRNAs described as being involved in the different stages of the SE process, from its induction to the full maturation of the somatic embryos, adding references to zygotic embryogenesis when relevant, as a contribution towards a better understanding of miRNA-mediated regulation of SE.
Collapse
Affiliation(s)
- Ana Alves
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Daniela Cordeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (D.C.); (S.C.)
| | - Sandra Correia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (D.C.); (S.C.)
| | - Célia Miguel
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
26
|
Li T, Yuan W, Qiu S, Shi J. Selection of reference genes for gene expression analysis in Liriodendron hybrids' somatic embryogenesis and germinative tissues. Sci Rep 2021; 11:4957. [PMID: 33654231 PMCID: PMC7925589 DOI: 10.1038/s41598-021-84518-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
The differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.
Collapse
Affiliation(s)
- Tingting Li
- Zhejiang Academy of Forestry, Hangzhou, 310023, China.
| | - Weigao Yuan
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Shuai Qiu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,Research and Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
27
|
Huang S, Zhou J, Gao L, Tang Y. Plant miR397 and its functions. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:361-370. [PMID: 33333000 DOI: 10.1071/fp20342] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are noncoding, small RNAs of 20-24 nucleotides (nt) and function critically at the post-transcriptional level to regulate gene expression through cleaving mRNA targets or interfering with translation of the target mRNAs. They are broadly involved in many biological processes in plants. The miR397 family in plants contains several conserved members either in 21-nt or in 22-nt that mainly target the laccase (LAC) genes functioning in lignin synthesis and are involved in the development of plants under various conditions. Recent findings showed that miR397b in Arabidopsis could also target to Casein Kinase II Subunit Beta 3 (CKB3) and mediate circadian regulation and plant flowering. This review aims to summarise recent updates on miR397 and provides the available basis for understanding the functional mechanisms of miR397 in plant growth and development regulation and in response to external adverse stimulation.
Collapse
Affiliation(s)
- Shili Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong province, China
| | - Jiajie Zhou
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong province, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong province, China
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong province, China; and Corresponding author.
| |
Collapse
|
28
|
Lin Y, Chen Y, Zeng Y, Zhang S, Zhang Z, Chen Y, Gong J, Lai Z. Molecular characterization of miRNA genes and their expression in Dimocarpus longan Lour. PLANTA 2021; 253:41. [PMID: 33475870 DOI: 10.1007/s00425-021-03564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
A genome-wide analysis of longan miRNA genes was conducted, and full-length pri-miRNA transcripts were cloned. Bioinformatics and expression analyses contributed to the functional characterization of longan miRNA genes. MicroRNAs are important for the post-transcriptional regulation of target genes. However, little is known about the transcription and regulation of miRNA genes in longan (Dimocarpus longan Lour.). In this study, 80 miRNA precursors (pre-miRNA) were predicted, and their secondary structure, size, conservation, and diversity were analyzed. Furthermore, the full-length cDNA sequences of 13 longan primary miRNAs (pri-miRNAs) were amplified by RLM-RACE and SMART-RACE and analyzed, which revealed that longan pri-miRNA transcripts have multiple transcription start sites (TSSs) and the downstream pre-miRNAs are polymorphic. Accordingly, the longan pri-miRNAs and protein-encoding genes may have similar transcriptional specificities. An analysis of the longan miRNA gene promoter elements indicated that the three most abundant cis-acting elements were light-responsive, stress-responsive, and hormone-responsive elements. A quantitative real-time PCR assay elucidated the potential spatial and temporal expression patterns of longan pre-miRNAs during the early stages of somatic embryogenesis (SE) and in different longan organs/tissues. This is the first report regarding the molecular characterization of miRNA genes and their expression profiles in longan. The generated data may serve as a foundation for future research aimed at clarifying the longan miRNA gene functions.
Collapse
Affiliation(s)
- Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youjing Zeng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - YuKun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiawei Gong
- Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
29
|
Wang L, Yin Y, Jing X, Wang M, Zhao M, Yu J, Qiu Z, Li YF. Profiling of MicroRNAs Involved in Mepiquat Chloride-Mediated Inhibition of Internode Elongation in Cotton ( Gossypium hirsutum L.) Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:643213. [PMID: 33719323 PMCID: PMC7943613 DOI: 10.3389/fpls.2021.643213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 05/06/2023]
Abstract
Mepiquat chloride (MC) is the most important plant growth retardant that is widely used in cotton (Gossypium hirsutum L.) production to suppress excessive vegetative growth and improve plant architecture. MicroRNAs (miRNAs) are important gene expression regulators that control plant growth and development. However, miRNA-mediated post-transcriptional regulation in MC-induced growth inhibition remains unclear. In this study, the dynamic expression profiles of miRNAs responsive to MC in cotton internodes were investigated. A total of 508 known miRNAs belonging to 197 families and five novel miRNAs were identified. Among them, 104 miRNAs were differentially expressed at 48, 72, or 96 h post MC treatment compared with the control (0 h); majority of them were highly conserved miRNAs. The number of differentially expressed miRNAs increased with time after treatment. The expression of 14 known miRNAs was continuously suppressed, whereas 12 known miRNAs and one novel miRNA were continuously induced by MC. The expression patterns of the nine differentially expressed miRNAs were verified using qRT-PCR. The targets of the known and novel miRNAs were predicted. Four conserved and six novel targets were validated using the RLM-5' RACE assay. This study revealed that miRNAs play crucial regulatory roles in the MC-induced inhibition of internode elongation. It can improve our understanding of post-transcriptional gene regulation in MC-mediated growth inhibition and could potentially facilitate the breeding of dwarf cotton.
Collapse
Affiliation(s)
- Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, China
- Li Wang,
| | - Ying Yin
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiuxiu Jing
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Juanjuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, China
| | - Zongbo Qiu
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, China
| | - Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, China
- *Correspondence: Yong-Fang Li,
| |
Collapse
|
30
|
Cao H, Zhang X, Ruan Y, Zhang L, Cui Z, Li X, Jia B. miRNA expression profiling and zeatin dynamic changes in a new model system of in vivo indirect regeneration of tomato. PLoS One 2020; 15:e0237690. [PMID: 33332392 PMCID: PMC7745965 DOI: 10.1371/journal.pone.0237690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023] Open
Abstract
Callus formation and adventitious shoot differentiation could be observed on the cut surface of completely decapitated tomato plants. We propose that this process can be used as a model system to investigate the mechanisms that regulate indirect regeneration of higher plants without the addition of exogenous hormones. This study analyzed the patterns of trans-zeatin and miRNA expression during in vivo regeneration of tomato. Analysis of trans-zeatin revealed that the hormone cytokinin played an important role in in vivo regeneration of tomato. Among 183 miRNAs and 1168 predicted target genes sequences identified, 93 miRNAs and 505 potential targets were selected based on differential expression levels for further characterization. Expression patterns of six miRNAs, including sly-miR166, sly-miR167, sly-miR396, sly-miR397, novel 156, and novel 128, were further validated by qRT-PCR. We speculate that sly-miR156, sly-miR160, sly-miR166, and sly-miR397 play major roles in callus formation of tomato during in vivo regeneration by regulating cytokinin, IAA, and laccase levels. Overall, our microRNA sequence and target analyses of callus formation during in vivo regeneration of tomato provide novel insights into the regulation of regeneration in higher plants.
Collapse
Affiliation(s)
- Huiying Cao
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Yanye Ruan
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
- * E-mail: (YR); (LZ)
| | - Lijun Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
- * E-mail: (YR); (LZ)
| | - Zhenhai Cui
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Xuxiao Li
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Bing Jia
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
31
|
miRNAs as key regulators via targeting the phytohormone signaling pathways during somatic embryogenesis of plants. 3 Biotech 2020; 10:495. [PMID: 33150121 DOI: 10.1007/s13205-020-02487-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/13/2020] [Indexed: 01/12/2023] Open
Abstract
Somatic embryogenesis is the regeneration of embryos from the somatic cell via dedifferentiation and redifferentiation without the occurrence of fertilization. A complex network of genes regulates the somatic embryogenesis process. Especially, microRNAs (miRNAs) have emerged as key regulators by affecting phytohormone biosynthesis, transport and signal transduction pathways. miRNAs are small, non-coding small RNA regulatory molecules involved in various developmental processes including somatic embryogenesis. Several types of miRNAs such as miR156, miR157, miR 159, miR 160, miR165, miR166, miR167, miR390, miR393 and miR396 have been reported to intricate in regulating somatic embryogenesis via targeting the phytohormone signaling pathways. Here we review current research progress on the miRNA-mediated regulation involved in somatic embryogenesis via regulating auxin, ethylene, abscisic acid and cytokinin signaling pathways. Further, we also discussed the possible role of other phytohormone signaling pathways such as gibberellins, jasmonates, nitric oxide, polyamines and brassinosteroids. Finally, we conclude by discussing the expression of miRNAs and their targets involved in somatic embryogenesis and possible regulatory mechanisms cross talk with phytohormones during somatic embryogenesis.
Collapse
|
32
|
Nowak K, Morończyk J, Wójcik A, Gaj MD. AGL15 Controls the Embryogenic Reprogramming of Somatic Cells in Arabidopsis through the Histone Acetylation-Mediated Repression of the miRNA Biogenesis Genes. Int J Mol Sci 2020; 21:ijms21186733. [PMID: 32937992 PMCID: PMC7554740 DOI: 10.3390/ijms21186733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
The embryogenic transition of somatic cells requires an extensive reprogramming of the cell transcriptome. Relevantly, the extensive modulation of the genes that have a regulatory function, in particular the genes encoding the transcription factors (TFs) and miRNAs, have been indicated as controlling somatic embryogenesis (SE) that is induced in vitro in the somatic cells of plants. Identifying the regulatory relationships between the TFs and miRNAs during SE induction is of central importance for understanding the complex regulatory interplay that fine-tunes a cell transcriptome during the embryogenic transition. Hence, here, we analysed the regulatory relationships between AGL15 (AGAMOUS-LIKE 15) TF and miR156 in an embryogenic culture of Arabidopsis. Both AGL15 and miR156 control SE induction and AGL15 has been reported to target the MIR156 genes in planta. The results showed that AGL15 contributes to the regulation of miR156 in an embryogenic culture at two levels that involve the activation of the MIR156 transcription and the containment of the abundance of mature miR156 by repressing the miRNA biogenesis genes DCL1 (DICER-LIKE1), SERRATE and HEN1 (HUA-ENHANCER1). To repress the miRNA biogenesis genes AGL15 seems to co-operate with the TOPLESS co-repressors (TPL and TPR1-4), which are components of the SIN3/HDAC silencing complex. The impact of TSA (trichostatin A), an inhibitor of the HDAC histone deacetylases, on the expression of the miRNA biogenesis genes together with the ChIP results implies that histone deacetylation is involved in the AGL15-mediated repression of miRNA processing. The results indicate that HDAC6 and HDAC19 histone deacetylases might co-operate with AGL15 in silencing the complex that controls the abundance of miR156 during embryogenic induction. This study provides new evidence about the histone acetylation-mediated control of the miRNA pathways during the embryogenic reprogramming of plant somatic cells and the essential role of AGL15 in this regulatory mechanism.
Collapse
|
33
|
Zhang Y, Gong H, Li D, Zhou R, Zhao F, Zhang X, You J. Integrated small RNA and Degradome sequencing provide insights into salt tolerance in sesame (Sesamum indicum L.). BMC Genomics 2020; 21:494. [PMID: 32682396 PMCID: PMC7368703 DOI: 10.1186/s12864-020-06913-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) exhibit important regulatory roles in the response to abiotic stresses by post-transcriptionally regulating the target gene expression in plants. However, their functions in sesame response to salt stress are poorly known. To dissect the complex mechanisms underlying salt stress response in sesame, miRNAs and their targets were identified from two contrasting sesame genotypes by a combined analysis of small RNAs and degradome sequencing. RESULTS A total of 351 previously known and 91 novel miRNAs were identified from 18 sesame libraries. Comparison of miRNA expressions between salt-treated and control groups revealed that 116 miRNAs were involved in salt stress response. Using degradome sequencing, potential target genes for some miRNAs were also identified. The combined analysis of all the differentially expressed miRNAs and their targets identified miRNA-mRNA regulatory networks and 21 miRNA-mRNA interaction pairs that exhibited contrasting expressions in sesame under salt stress. CONCLUSIONS This comprehensive integrated analysis may provide new insights into the genetic regulation mechanism of miRNAs underlying the adaptation of sesame to salt stress.
Collapse
Affiliation(s)
- Yujuan Zhang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Huihui Gong
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengtao Zhao
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
34
|
Wójcik AM. Research Tools for the Functional Genomics of Plant miRNAs During Zygotic and Somatic Embryogenesis. Int J Mol Sci 2020; 21:E4969. [PMID: 32674459 PMCID: PMC7420248 DOI: 10.3390/ijms21144969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
During early plant embryogenesis, some of the most fundamental decisions on fate and identity are taken making it a fascinating process to study. It is no surprise that higher plant embryogenesis was intensively analysed during the last century, while somatic embryogenesis is probably the most studied regeneration model. Encoded by the MIRNA, short, single-stranded, non-coding miRNAs, are commonly present in all Eukaryotic genomes and are involved in the regulation of the gene expression during the essential developmental processes such as plant morphogenesis, hormone signaling, and developmental phase transition. During the last few years dedicated to miRNAs, analytical methods and tools have been developed, which have afforded new opportunities in functional analyses of plant miRNAs, including (i) databases for in silico analysis; (ii) miRNAs detection and expression approaches; (iii) reporter and sensor lines for a spatio-temporal analysis of the miRNA-target interactions; (iv) in situ hybridisation protocols; (v) artificial miRNAs; (vi) MIM and STTM lines to inhibit miRNA activity, and (vii) the target genes resistant to miRNA. Here, we attempted to summarise the toolbox for functional analysis of miRNAs during plant embryogenesis. In addition to characterising the described tools/methods, examples of the applications have been presented.
Collapse
Affiliation(s)
- Anna Maria Wójcik
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
35
|
López-Ruiz BA, Juárez-González VT, Gómez-Felipe A, De Folter S, Dinkova TD. tasiR-ARFs Production and Target Regulation during In Vitro Maize Plant Regeneration. PLANTS (BASEL, SWITZERLAND) 2020; 9:E849. [PMID: 32640631 PMCID: PMC7411845 DOI: 10.3390/plants9070849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
During in vitro maize plant regeneration somatic cells change their normal fate and undergo restructuring to generate pluripotent cells able to originate new plants. Auxins are essential to achieve such plasticity. Their physiological effects are mediated by auxin response factors (ARFs) that bind auxin responsive elements within gene promoters. Small trans-acting (ta)-siRNAs, originated from miR390-guided TAS3 primary transcript cleavage, target ARF3/4 class (tasiR-ARFs). Here we found that TAS3b precursor as well as derived tasiR-ARFbD5 and tasiR-ARFbD6 display significantly lower levels in non-embryogenic callus (NEC), while TAS3g, miR390 and tasiR-ARFg are more abundant in the same tissue. However, Argonaute (AGO7) and leafbladeless 1 (LBLl) required for tasiR-ARF biogenesis showed significantly higher transcript levels in EC suggesting limited tasiR-ARF biogenesis in NEC. The five maize ARFs targeted by tasiR-ARFs were also significantly enriched in EC and accompanied by higher auxin accumulation with punctuate patterns in this tissue. At hormone half-reduction and photoperiod implementation, plant regeneration initiated from EC with transient TAS3g, miR390 and tasiR-ARFg increase. Upon complete hormone depletion, TAS3b became abundant and derived tasiR-ARFs gradually increased at further regeneration stages. ZmARF transcripts targeted by tasiR-ARFs, as well as AGO7 and LBL1 showed significantly lower levels during regeneration than in EC. These results indicate a dynamic tasiR-ARF mediated regulation throughout maize in vitro plant regeneration.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de Mexico, 04510 Ciudad de Mexico, Mexico; (B.A.L.-R.); (V.T.J.-G.)
| | - Vasti Thamara Juárez-González
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de Mexico, 04510 Ciudad de Mexico, Mexico; (B.A.L.-R.); (V.T.J.-G.)
| | - Andrea Gómez-Felipe
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Unidad de Genómica Avanzada (UGA-LANGEBIO), 36821 Irapuato Gto., Mexico; (A.G.-F.); (S.D.F.)
| | - Stefan De Folter
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Unidad de Genómica Avanzada (UGA-LANGEBIO), 36821 Irapuato Gto., Mexico; (A.G.-F.); (S.D.F.)
| | - Tzvetanka D. Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de Mexico, 04510 Ciudad de Mexico, Mexico; (B.A.L.-R.); (V.T.J.-G.)
| |
Collapse
|
36
|
Characterization of Extra Early Spanish Clementine Varieties ( Citrus clementina Hort ex Tan) as a Relevant Source of Bioactive Compounds with Antioxidant Activity. Foods 2020; 9:foods9050642. [PMID: 32429360 PMCID: PMC7278874 DOI: 10.3390/foods9050642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
The most relevant nutrients and bioactive compounds (soluble sugars, dietary fiber, ascorbic acid and organic acids, individual phenolic compounds, fatty acids, and tocopherols) as well as antioxidant activity have been characterized in three extra early varieties of clementine (Citrus clementina Hort ex Tan. Basol, Clemensoon and Clemenrubí) cultivated in Valencia (Spain). Clementines are a relevant source of bioactive compounds, such as vitamin C (values around 80 mg/100 g), allowing to satisfy the recommended daily intake with the consumption of a normal portion. Sucrose was the most abundant sugar, and potassium the main mineral while manganese was the least. Fat content was very low (<0.5 mg/100 g), with palmitic acid and α-tocopherol the most abundant fatty acid and vitamin E form, respectively. Flavonoids were the predominant phenolic compounds, with narirutin/naringin and (neo)hesperidin the best represented ones. The antioxidant capacity evaluated by reducing power, DPPH, and β-carotene bleaching inhibition assays was satisfactory with values similar to those reported in other citrus fruits. Thus, this fruit is a relevant source of bioactive compounds with antioxidant properties of interest for consumers and the food industry.
Collapse
|
37
|
Zhao T, Tao X, Li M, Gao M, Chen J, Zhou N, Mei G, Fang L, Ding L, Zhou B, Zhang T, Guan X. Role of phasiRNAs from two distinct phasing frames of GhMYB2 loci in cis- gene regulation in the cotton genome. BMC PLANT BIOLOGY 2020; 20:219. [PMID: 32414380 PMCID: PMC7227086 DOI: 10.1186/s12870-020-02430-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/05/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Phased small interfering RNA (phasiRNA) is primarily derived from the 22-nt miRNA targeting loci. GhMYB2, a gene with potential roles in cotton fiber cell fate determination, is a target gene of miR828 and miR858 in the generation of phasiRNAs. RESULTS In the presented work, through the evaluation of phasing scores and phasiRNA distribution pattern, we found that phasiRNAs from GhMYB2 were derived from the 3' cleavage fragments of 22-nt miR828 and 21-nt miR858 respectively. These two miRNA targeting sites initiated two phasing frames on transcripts of one locus. By means of RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE), we further demonstrated that phasiRNAs derived from the two phasing frames played a role in cis-regulation of GhMYB2. The phasiRNAs derived from GhMYB2 were expressed in the somatic tissues, especially in anther and hypocotyl. We further employed our previous small RNA sequencing data as well as the degradome data of cotton fiber bearing ovules, anthers, hypocotyls and embryogenic calli tissues published in public databases, to validate the expression, phasing pattern and functions of phasiRNAs. CONCLUSIONS The presenting research provide insights of the molecular mechanism of phasiRNAs in regulation of GhMYB2 loci.
Collapse
Affiliation(s)
- Ting Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Xiaoyuan Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Menglin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Mengtao Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Jiedan Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Na Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Gaofu Mei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Lei Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Linyun Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Tianzhen Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Xueying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
38
|
Zhao C, Li T, Zhao Y, Zhang B, Li A, Zhao S, Hou L, Xia H, Fan S, Qiu J, Li P, Zhang Y, Guo B, Wang X. Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds. BMC PLANT BIOLOGY 2020; 20:215. [PMID: 32404101 PMCID: PMC7222326 DOI: 10.1186/s12870-020-02426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND MicroRNAs are important gene expression regulators in plants immune system. Aspergillus flavus is the most common causal agents of aflatoxin contamination in peanuts, but information on the function of miRNA in peanut-A. flavus interaction is lacking. In this study, the resistant cultivar (GT-C20) and susceptible cultivar (Tifrunner) were used to investigate regulatory roles of miRNAs in response to A. flavus growth. RESULTS A total of 30 miRNAs, 447 genes and 21 potential miRNA/mRNA pairs were differentially expressed significantly when treated with A. flavus. A total of 62 miRNAs, 451 genes and 44 potential miRNA/mRNA pairs exhibited differential expression profiles between two peanut varieties. Gene Ontology (GO) analysis showed that metabolic-process related GO terms were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses further supported the GO results, in which many enriched pathways were related with biosynthesis and metabolism, such as biosynthesis of secondary metabolites and metabolic pathways. Correlation analysis of small RNA, transcriptome and degradome indicated that miR156/SPL pairs might regulate the accumulation of flavonoids in resistant and susceptible genotypes. The miR482/2118 family might regulate NBS-LRR gene which had the higher expression level in resistant genotype. These results provided useful information for further understanding the roles of miR156/157/SPL and miR482/2118/NBS-LRR pairs. CONCLUSIONS Integration analysis of the transcriptome, miRNAome and degradome of resistant and susceptible peanut varieties were performed in this study. The knowledge gained will help to understand the roles of miRNAs of peanut in response to A. flavus.
Collapse
Affiliation(s)
- Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Tingting Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- Rizhao Experimental High School od Shandong, Rizhao, 276826 PR China
| | - Yuhan Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC USA
| | - Aiqin Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Jingjing Qiu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Pengcheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-Agricultural Research Service, Tifton, GA 31793 USA
- Department of Plant Pathology, University of Georgia, Tifton, GA USA
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| |
Collapse
|
39
|
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:ijms21072307. [PMID: 32225116 PMCID: PMC7177879 DOI: 10.3390/ijms21072307] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Somatic embryogenesis (SE) that is induced in plant explants in response to auxin treatment is closely associated with an extensive genetic reprogramming of the cell transcriptome. The significant modulation of the gene transcription profiles during SE induction results from the epigenetic factors that fine-tune the gene expression towards embryogenic development. Among these factors, microRNA molecules (miRNAs) contribute to the post-transcriptional regulation of gene expression. In the past few years, several miRNAs that regulate the SE-involved transcription factors (TFs) have been identified, and most of them were involved in the auxin-related processes, including auxin metabolism and signaling. In addition to miRNAs, chemical modifications of DNA and chromatin, in particular the methylation of DNA and histones and histone acetylation, have been shown to shape the SE transcriptomes. In response to auxin, these epigenetic modifications regulate the chromatin structure, and hence essentially contribute to the control of gene expression during SE induction. In this paper, we describe the current state of knowledge with regard to the SE epigenome. The complex interactions within and between the epigenetic factors, the key SE TFs that have been revealed, and the relationships between the SE epigenome and auxin-related processes such as auxin perception, metabolism, and signaling are highlighted.
Collapse
|
40
|
Identification and profiling of microRNAs and differentially expressed genes during anther development between a genetic male-sterile mutant and its wildtype cotton via high-throughput RNA sequencing. Mol Genet Genomics 2020; 295:645-660. [PMID: 32172356 PMCID: PMC7203095 DOI: 10.1007/s00438-020-01656-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/19/2020] [Indexed: 11/10/2022]
Abstract
Genetic male sterility (GMS) facilitates hybrid seed production in crops including cotton (Gossypium hirsutum). However, the genetic and molecular mechanisms specifically involved in this developmental process are poorly understood. In this study, small RNA sequencing, degradome sequencing, and transcriptome sequencing were performed to analyze miRNAs and their target genes during anther development in a GMS mutant (‘Dong A’) and its fertile wildtype (WT). A total of 80 known and 220 novel miRNAs were identified, 71 of which showed differential expressions during anther development. A further degradome sequencing revealed a total of 117 candidate target genes cleaved by 16 known and 36 novel miRNAs. Based on RNA-seq, 24, 11, and 21 predicted target genes showed expression correlations with the corresponding miRNAs at the meiosis, tetrad and uninucleate stages, respectively. In addition, a large number of differentially expressed genes were identified, most of which were involved in sucrose and starch metabolism, carbohydrate metabolism, and plant hormone signal transduction based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results of our study provide valuable information for further functional investigations of the important miRNAs and target genes involved in genetic male sterility and advance our understanding of miRNA regulatory functions during cotton anther development.
Collapse
|
41
|
Sabana AA, Rajesh MK, Antony G. Dynamic changes in the expression pattern of miRNAs and associated target genes during coconut somatic embryogenesis. PLANTA 2020; 251:79. [PMID: 32166498 DOI: 10.1007/s00425-020-03368-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Genome-wide analysis of small RNAs identifies somatic embryogenesis- specific miRNAs and their targets and provides novel insights into the mechanisms governing somatic embryogenesis in coconut, a highly in vitro recalcitrant species. Coconut, a major plantation crop of the tropics is recalcitrant to in vitro culture with a very low rate of somatic embryo turnover. Clonal propagation to enhance the production of high yielding, disease-free planting material in coconut has remained a distant reality. To better understand the molecular basis of this recalcitrance and to throw light on the complex regulatory network involved in the transition of coconut somatic cells to embryogenic calli, genome-wide profiling of small RNAs from embryogenic (EC) and non-embryogenic calli (NEC) was undertaken using Illumina Hiseq 2000 platform. We have identified a total of 110 conserved miRNAs (representing 46 known miRNA families) in both types of calli. In addition, 97 novel miRNAs (48 specific to EC, 21 specific to NEC and 28 common to both the libraries) were also identified. Among the conserved miRNAs, 10 were found to be differentially expressed between NEC and EC libraries with a log2 fold change > 2 following RPM-based normalization. miR156f, miR167c, miR169a, miR319a, miR535a, and miR5179 are upregulated and miR160a, miR166a, miR171a, and miR319b are down-regulated in NEC. To confirm the differential expression pattern and their regulatory role in SE, the expression patterns of miRNAs and their putative targets were analyzed using qRT- PCR and most of the analyzed miRNA-target pairs showed inverse correlation during somatic embryogenesis. Selected targets were further validated by RNA ligase mediated rapid amplification of 5' cDNA ends (5'RLM-RACE). Our data suggest that a few conserved miRNAs and species-specific miRNAs act in concert to regulate the process of somatic embryogenesis in coconut. The results of this study provide the first overview into the regulatory landscape of somatic embryogenesis in coconut and possible strategies for fine-tuning or reprogramming to enhance somatic embryo turn over in coconut.
Collapse
Affiliation(s)
- Abdulla Abdulla Sabana
- Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | | | - Ginny Antony
- Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India.
| |
Collapse
|
42
|
Wang G, Guo G, Tian X, Hu S, Du K, Zhang Q, Mao J, Jia X, Chen S, Wang J, Lai S. Screening and identification of MicroRNAs expressed in perirenal adipose tissue during rabbit growth. Lipids Health Dis 2020; 19:35. [PMID: 32145738 PMCID: PMC7060515 DOI: 10.1186/s12944-020-01219-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 03/03/2020] [Indexed: 01/26/2023] Open
Abstract
Background MicroRNAs (miRNAs) regulate adipose tissue development, which are closely related to subcutaneous and intramuscular fat deposition and adipocyte differentiation. As an important economic and agricultural animal, rabbits have low adipose tissue deposition and are an ideal model to study adipose regulation. However, the miRNAs related to fat deposition during the growth and development of rabbits are poorly defined. Methods In this study, miRNA-sequencing and bioinformatics analyses were used to profile the miRNAs in rabbit perirenal adipose tissue at 35, 85 and 120 days post-birth. Differentially expressed (DE) miRNAs between different stages were identified by DEseq in R. Target genes of DE miRNAs were predicted by TargetScan and miRanda. To explore the functions of identified miRNAs, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Results Approximately 1.6 GB of data was obtained by miRNA-seq. A total of 987 miRNAs (780 known and 207 newly predicted) and 174 DE miRNAs were identified. The miRNAs ranged from 18 nt to 26 nt. GO enrichment and KEGG pathway analyses revealed that the target genes of the DE miRNAs were mainly involved in zinc ion binding, regulation of cell growth, MAPK signaling pathway, and other adipose hypertrophy-related pathways. Six DE miRNAs were randomly selected, and their expression profiles were validated by q-PCR. Conclusions This is the first report of the miRNA profiles of adipose tissue during different growth stages of rabbits. Our data provide a theoretical reference for subsequent studies on rabbit genetics, breeding and the regulatory mechanisms of adipose development.
Collapse
Affiliation(s)
- Guoze Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China.,Guizhou Medical University, Guiyang, 550025, China
| | - Guo Guo
- Guizhou Medical University, Guiyang, 550025, China
| | - Xueting Tian
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Kun Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | | | - Jingxin Mao
- Southwest University, Chongqing, 400715, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
43
|
Wójcik AM, Wójcikowska B, Gaj MD. Current Perspectives on the Auxin-Mediated Genetic Network that Controls the Induction of Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:E1333. [PMID: 32079138 PMCID: PMC7072907 DOI: 10.3390/ijms21041333] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/22/2022] Open
Abstract
Auxin contributes to almost every aspect of plant development and metabolism as well as the transport and signalling of auxin-shaped plant growth and morphogenesis in response to endo- and exogenous signals including stress conditions. Consistently with the common belief that auxin is a central trigger of developmental changes in plants, the auxin treatment of explants was reported to be an indispensable inducer of somatic embryogenesis (SE) in a large number of plant species. Treating in vitro-cultured tissue with auxins (primarily 2,4-dichlorophenoxyacetic acid, which is a synthetic auxin-like plant growth regulator) results in the extensive reprogramming of the somatic cell transcriptome, which involves the modulation of numerous SE-associated transcription factor genes (TFs). A number of SE-modulated TFs that control auxin metabolism and signalling have been identified, and conversely, the regulators of the auxin-signalling pathway seem to control the SE-involved TFs. In turn, the different expression of the genes encoding the core components of the auxin-signalling pathway, the AUXIN/INDOLE-3-ACETIC ACIDs (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs), was demonstrated to accompany SE induction. Thus, the extensive crosstalk between the hormones, in particular, auxin and the TFs, was revealed to play a central role in the SE-regulatory network. Accordingly, LEAFY COTYLEDON (LEC1 and LEC2), BABY BOOM (BBM), AGAMOUS-LIKE15 (AGL15) and WUSCHEL (WUS) were found to constitute the central part of the complex regulatory network that directs the somatic plant cell towards embryogenic development in response to auxin. The revealing picture shows a high degree of complexity of the regulatory relationships between the TFs of the SE-regulatory network, which involve direct and indirect interactions and regulatory feedback loops. This review examines the recent advances in studies on the auxin-controlled genetic network, which is involved in the mechanism of SE induction and focuses on the complex regulatory relationships between the down- and up-stream targets of the SE-regulatory TFs. In particular, the outcomes from investigations on Arabidopsis, which became a model plant in research on genetic control of SE, are presented.
Collapse
|
44
|
Ramachandran SR, Mueth NA, Zheng P, Hulbert SH. Analysis of miRNAs in Two Wheat Cultivars Infected With Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2020; 10:1574. [PMID: 31998329 PMCID: PMC6965360 DOI: 10.3389/fpls.2019.01574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 05/27/2023]
Abstract
MicroRNAs are small RNAs that regulate gene expression in eukaryotes. In this study, we analyzed the small RNA profiles of two cultivars that exhibit different reactions to stripe rust infection: one susceptible, the other partially resistant. Using small RNA libraries prepared from the two wheat cultivars infected with stripe rust fungus (Puccinia striiformis f. sp. tritici), we identified 182 previously known miRNAs, 91 variants of known miRNAs, and 163 candidate novel wheat miRNAs. Known miRNA loci were usually copied in all three wheat sub-genomes, whereas novel miRNA loci were often specific to a single sub-genome. DESeq2 analysis of differentially expressed microRNAs revealed 23 miRNAs that exhibit cultivar-specific differences. TA078/miR399b showed cultivar-specific differential regulation in response to infection. Using different target prediction algorithms, 145 miRNAs were predicted to target wheat genes, while 69 miRNAs were predicted to target fungal genes. We also confirmed reciprocal expression of TA078/miR399b and tae-miR9664 and their target genes in different treatments, providing evidence for miRNA-mediated regulation during infection. Both known and novel miRNAs were predicted to target fungal genes, suggesting trans-kingdom regulation of gene expression. Overall, this study contributes to the current repository of wheat miRNAs and provides novel information on the yet-uncharacterized roles for miRNAs in the wheat-stripe rust pathosystem.
Collapse
Affiliation(s)
| | - Nicholas A. Mueth
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
45
|
Dynamic Transcriptome Analysis Reveals Uncharacterized Complex Regulatory Pathway Underlying Dose IBA-Induced Embryogenic Redifferentiation in Cotton. Int J Mol Sci 2020; 21:ijms21020426. [PMID: 31936561 PMCID: PMC7013799 DOI: 10.3390/ijms21020426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/17/2022] Open
Abstract
The somatic embryogenesis (SE) process of plants is regulated by exogenous hormones. During the SE, different genes sensitively respond to hormone signals through complex regulatory networks to exhibit plant totipotency. When cultured in indole-3-butyric acid (IBA) concentration gradient medium supplemented with 0 mg dm-3, 0.025 mg dm-3, and 0.05 mg dm-3 IBA, the callus differentiation rate first increased then decreased in cotton. To characterize the molecular basis of IBA-induced regulating SE, transcriptome analysis was conducted on embryogenic redifferentiation. Upon the examination of the IBA's embryogenic inductive effect, it was revealed that pathways related to plant hormone signal transduction and alcohol degradation were significantly enriched in the embryogenic responsive stage (5 days). The photosynthesis, alcohol metabolism and cell cycle pathways were specifically regulated in the pre-embryonic initial period (20 days). Upon the effect of the IBA dose, in the embryogenic responsive stage (5 days), the metabolism of xenobiotics by the cytochrome P450 pathway and secondary metabolism pathways of steroid, flavonoid, and anthocyanin biosynthesis were significantly enriched. The phenylpropanoid, brassinosteroid, and anthocyanin biosynthesis pathways were specifically associated in the pre-embryonic initial period (20 days). At different developmental stages of embryogenic induction, photosynthesis, flavonoid biosynthesis, phenylpropanoid biosynthesis, mitogen-activated protein kinase (MAPK) signaling, xenobiotics metabolism by cytochrome P450, and brassinosteroid biosynthesis pathways were enriched at low a IBA concentration. Meanwhile, at high IBA concentration, the carbon metabolism, alcohol degradation, circadian rhythm and biosynthesis of amino acids pathways were significantly enriched. The results reveal that complex regulating pathways participate in the process of IBA-induced redifferentiation in cotton somatic embryogenesis. In addition, collections of potential essential signaling and regulatory genes responsible for dose IBA-induced efficient embryogenic redifferentiation were identified. Quantitative real-time PCR (qRT-PCR) was performed on the candidate genes with different expression patterns, and the results are basically consistent with the RNA-seq data. The results suggest that the complicated and concerted IBA-induced mechanisms involving multiple cellular pathways are responsible for dose-dependent plant growth regulator-induced SE. This report represents a systematic study and provides new insight into molecular signaling and regulatory basis underlying the process of dose IBA-induced embryogenic redifferentiation during SE.
Collapse
|
46
|
Szczygieł-Sommer A, Gaj MD. The miR396-GRF Regulatory Module Controls the Embryogenic Response in Arabidopsis via an Auxin-Related Pathway. Int J Mol Sci 2019; 20:ijms20205221. [PMID: 31640280 PMCID: PMC6829408 DOI: 10.3390/ijms20205221] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 01/26/2023] Open
Abstract
In plants, microRNAs have been indicated to control various developmental processes, including somatic embryogenesis (SE), which is triggered in the in vitro cultured somatic cells of plants. Although a transcriptomic analysis has indicated that numerous MIRNAs are differentially expressed in the SE of different plants, the role of specific miRNAs in the embryogenic reprogramming of the somatic cell transcriptome is still poorly understood. In this study, we focused on performing a functional analysis of miR396 in SE given that the transcripts of MIR396 genes and the mature molecules of miR396 were found to be increased during an SE culture of Arabidopsis. In terms of miR396 in embryogenic induction, we observed the SE-associated expression pattern of MIR396b in explants of the β-glucuronidase (GUS) reporter line. In order to gain insight into the miR396-controlled mechanism that is involved in SE induction, the embryogenic response of mir396 mutants and the 35S:MIR396b overexpressor line to media with different 2,4-Dichlorophenoxyacetic acid (2,4-D) concentrations was evaluated. The results suggested that miR396 might contribute to SE induction by controlling the sensitivity of tissues to auxin treatment. Within the targets of miR396 that are associated with SE induction, we identified genes encoding the GROWTH-REGULATING FACTOR (GRF) transcription factors, including GRF1, GRF4, GRF7, GRF8, and GRF9. Moreover, the study suggested a regulatory relationship between miR396, GRF, and the PLETHORA (PLT1 and PLT2) genes during SE induction. A complex regulatory relationship within the miR396–GRF1/4/8/9–PLT1/2 module that involves the negative and positive control of GRFs and PLT (respectively) by miR396 might be assumed.
Collapse
Affiliation(s)
- Aleksandra Szczygieł-Sommer
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, 40-032 Katowice, Poland.
| | - Małgorzata D Gaj
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, 40-032 Katowice, Poland.
| |
Collapse
|
47
|
Guo H, Wu T, Li S, He Q, Yang Z, Zhang W, Gan Y, Sun P, Xiang G, Zhang H, Deng H. The Methylation Patterns and Transcriptional Responses to Chilling Stress at the Seedling Stage in Rice. Int J Mol Sci 2019; 20:ijms20205089. [PMID: 31615063 PMCID: PMC6829347 DOI: 10.3390/ijms20205089] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/22/2023] Open
Abstract
Chilling stress is considered the major abiotic stress affecting the growth, development, and yield of rice. To understand the transcriptomic responses and methylation regulation of rice in response to chilling stress, we analyzed a cold-tolerant variety of rice (Oryza sativa L. cv. P427). The physiological properties, transcriptome, and methylation of cold-tolerant P427 seedlings under low-temperature stress (2–3 °C) were investigated. We found that P427 exhibited enhanced tolerance to low temperature, likely via increasing antioxidant enzyme activity and promoting the accumulation of abscisic acid (ABA). The Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) data showed that the number of methylation-altered genes was highest in P427 (5496) and slightly lower in Nipponbare (Nip) and 9311 (4528 and 3341, respectively), and only 2.7% (292) of methylation genes were detected as common differentially methylated genes (DMGs) related to cold tolerance in the three varieties. Transcriptome analyses revealed that 1654 genes had specifically altered expression in P427 under cold stress. These genes mainly belonged to transcription factor families, such as Myeloblastosis (MYB), APETALA2/ethylene-responsive element binding proteins (AP2-EREBP), NAM-ATAF-CUC (NAC) and WRKY. Fifty-one genes showed simultaneous methylation and expression level changes. Quantitative RT-PCR (qRT-PCR) results showed that genes involved in the ICE (inducer of CBF expression)-CBF (C-repeat binding factor)—COR (cold-regulated) pathway were highly expressed under cold stress, including the WRKY genes. The homologous gene Os03g0610900 of the open stomatal 1 (OST1) in rice was obtained by evolutionary tree analysis. Methylation in Os03g0610900 gene promoter region decreased, and the expression level of Os03g0610900 increased, suggesting that cold stress may lead to demethylation and increased gene expression of Os03g0610900. The ICE-CBF-COR pathway plays a vital role in the cold tolerance of the rice cultivar P427. Overall, this study demonstrates the differences in methylation and gene expression levels of P427 in response to low-temperature stress, providing a foundation for further investigations of the relationship between environmental stress, DNA methylation, and gene expression in rice.
Collapse
Affiliation(s)
- Hui Guo
- State Key Laboratory of Hybrid Rice, Longping Branch of Graduate School, Central South University, Changsha 410013, China.
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Tingkai Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shuxing Li
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Qiang He
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Zhanlie Yang
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Wuhan Zhang
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yu Gan
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Pingyong Sun
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Guanlun Xiang
- Rice Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China.
| | - Hongyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Huafeng Deng
- State Key Laboratory of Hybrid Rice, Longping Branch of Graduate School, Central South University, Changsha 410013, China.
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
48
|
Function of miR825 and miR825* as Negative Regulators in Bacillus cereus AR156-elicited Systemic Resistance to Botrytis cinerea in Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20205032. [PMID: 31614458 PMCID: PMC6829492 DOI: 10.3390/ijms20205032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/18/2023] Open
Abstract
Small RNAs function to regulate plant defense responses to pathogens. We previously showed that miR825 and miR825* downregulate Bacillus cereus AR156 (AR156)-triggered systemic resistance to Pseudomonassyringae pv. tomato DC3000 in Arabidopsis thaliana (Arabidopsis). Here, Northern blotting revealed that miR825 and miR825* were more strongly downregulated in wild type Arabidopsis Col-0 (Col-0) plants pretreated with AR156 than in nontreated plants upon Botrytis cinerea (B. cinerea) B1301 infection. Furthermore, compared with Col-0, transgenic plants with attenuated miR825 and miR825* expression were more resistant to B. cinerea B1301, yet miR825- and miR825*-overexpressing (OE) plants were more susceptible to the pathogen. With AR156 pretreatment, the transcription of four defense-related genes (PR1, PR2, PR5, and PDF1.2) and cellular defense responses (hydrogen peroxide production and callose deposition) were faster and stronger in miR825 and miR825* knockdown lines but weaker in their OE plants than in Col-0 plants upon pathogen attack. Also, AR156 pretreatment caused stronger phosphorylation of MPK3 and MPK6 and expression of FRK1 and WRKY53 genes upon B. cinerea B1301 inoculation in miR825 and miR825* knockdown plants than in Col-0 plants. Additionally, the assay of agrobacterium-mediated transient co-expression in Nicotiana benthamiana confirmed that AT5G40910, AT5G38850, AT3G04220, and AT5G44940 are target genes of miR825 or miR825*. Compared with Col-0, the target mutant lines showed higher susceptibility to B. cinerea B1301, while still expressing AR156-triggered induced systemic resistance (ISR). The two-way analysis of variance (ANOVA) revealed a significant (P < 0.01) interactive effect of treatment and genotype on the defense responses. Hence, miR825 and miR825*act as negative regulators of AR156-mediated systemic resistance to B. cinerea B1301 in Arabidopsis.
Collapse
|
49
|
Juárez-González VT, López-Ruiz BA, Baldrich P, Luján-Soto E, Meyers BC, Dinkova TD. The explant developmental stage profoundly impacts small RNA-mediated regulation at the dedifferentiation step of maize somatic embryogenesis. Sci Rep 2019; 9:14511. [PMID: 31601893 PMCID: PMC6786999 DOI: 10.1038/s41598-019-50962-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023] Open
Abstract
Maize somatic embryogenesis (SE) requires the induction of embryogenic callus and establishment of proliferation before plant regeneration. The molecular mechanisms underlying callus embryogenic potential are not well understood. Here we explored the role of small RNAs (sRNAs) and the accumulation of their target transcripts in maize SE at the dedifferentiation step using VS-535 zygotic embryos collected at distinct developmental stages and displaying contrasting in vitro embryogenic potential and morphology. MicroRNAs (miRNAs), trans-acting siRNAs (tasiRNAs), heterochromatic siRNAs (hc-siRNAs) populations and their RNA targets were analyzed by high-throughput sequencing. Abundances of specific miRNAs, tasiRNAs and targets were validated by qRT-PCR. Unique accumulation patterns were found for immature embryo at 15 Days After Pollination (DAP) and for the callus induction from this explant, as compared to 23 DAP and mature embryos. miR156, miR164, miR166, tasiARFs and the 24 nt hc-siRNAs displayed the most strikingly different patterns between explants and during dedifferentiation. According to their role in auxin responses and developmental cues, we conclude that sRNA-target regulation operating within the 15 DAP immature embryo explant provides key molecular hints as to why this stage is relevant for callus induction with successful proliferation and plant regeneration.
Collapse
Affiliation(s)
- Vasti T Juárez-González
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510, México
| | - Brenda A López-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510, México
| | - Patricia Baldrich
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Eduardo Luján-Soto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510, México
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Tzvetanka D Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510, México.
| |
Collapse
|
50
|
Ayubov MS, Mirzakhmedov MH, Sripathi VR, Buriev ZT, Ubaydullaeva KA, Usmonov DE, Norboboyeva RB, Emani C, Kumpatla SP, Abdurakhmonov IY. Role of MicroRNAs and small RNAs in regulation of developmental processes and agronomic traits in Gossypium species. Genomics 2019; 111:1018-1025. [PMID: 30026106 DOI: 10.1016/j.ygeno.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 02/08/2023]
Abstract
Small RNAs (sRNAs) are short, non-coding, 17-24 nucleotides long RNA molecules that play vital roles in regulating gene expression in every known organism investigated to date including cotton (Gossypium ssp.). These tiny RNA molecules target diverse categories of genes from different bioliogical and metabolic processes and have been reported in the three domains of life. Small RNAs, including miRNAs, are involved in ovule and fiber development, biotic and abiotic stresses, fertility, and other biochemical processes in cotton species. Also, sRNAs are the critical components in RNA interference pathway. In this article, we have reviewed the research efforts related to the isolation and characterization of miRNAs using molecular and genomic approaches. The progress made in understanding the functional roles of miRNAs in regulation, alteration, and inactivation of fundamental plant processes and traits of importance in cotton are presented here.
Collapse
Affiliation(s)
- Mirzakamol S Ayubov
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan
| | - Mukhammad H Mirzakhmedov
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan; Faculty of Agricultural Science, University of Hohenheim, Germany
| | - Venkateswara R Sripathi
- Center for Molecular Biology, Department of Biological and Environmental Sciences, Alabama A and M University, AL, USA
| | - Zabardast T Buriev
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan
| | | | - Dilshod E Usmonov
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan
| | - Risolat B Norboboyeva
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan
| | | | | | | |
Collapse
|