1
|
Nascimento CP, da Fonseca-Pereira P, Ferreira-Silva M, Rosado-Souza L, Linka N, Fernie AR, Araújo WL, Nunes-Nesi A. Functional analysis of the extraplastidial TRX system in germination and early stages of development of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112310. [PMID: 39477093 DOI: 10.1016/j.plantsci.2024.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
A series of processes occur during seed formation, including remarkable metabolic changes that extend from early seed development to seedling establishment. The changes associated with processes initiated mainly after seed imbibition are usually characterized by extensive modification in the redox state of seed storage proteins and of pivotal enzymes for reserve mobilization and usage. Such changes in the redox state are often mediated by thioredoxins (TRXs), oxidoreductase capable of catalyzing the reduction of disulfide bonds in target proteins to regulate its structure and function. Here, we analyzed the previously characterized Arabidopsis mutants of NADPH-dependent TRX reductase types A and B (ntra ntrb), two independent mutant lines of mitochondrial thioredoxin o1 (trxo1) and two thioredoxin h2 (trxh2) mutant lines. Our results indicate that plants deficient in the NADPH dependent thioredoxin system are able to mobilize their reserves, but, at least partly, fail to use these reserves during germination. TRX mutants also show decreased activity of regulatory systems required to maintain redox homeostasis. Moreover, we observed reduced respiration in mutant seeds and seedlings, which in parallel with an impaired energy metabolism affects core biological processes responsible for germination and early development of TRX mutants. Together, these findings suggest that the lack of TRX system induces significant change in the respiration of seeds and seedlings, which undergo metabolic reprogramming to adapt to the new redox state.
Collapse
Affiliation(s)
- Carolina Pereira Nascimento
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Marcelle Ferreira-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil.
| |
Collapse
|
2
|
Fañanás‐Pueyo I, Anhel A, Goñi‐Moreno Á, Oñate‐Sánchez L, Carrera‐Castaño G. Workflow to Select Functional Promoter DNA Baits and Screen Arrayed Gene Libraries in Yeast. Curr Protoc 2024; 4:e70059. [PMID: 39570200 PMCID: PMC11580771 DOI: 10.1002/cpz1.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The yeast one-hybrid system (Y1H) is used extensively to identify DNA-protein interactions. The generation of large collections of open reading frames (ORFs) to be used as prey in screenings is not a bottleneck nowadays and can be carried out in-house or offered as a service by companies. However, the straightforward use of full gene promoters as baits to identify interacting proteins undermines the accuracy and sensitivity of the assay, especially in the case of multicellular eukaryotes. Therefore, it is paramount to implement procedures for efficient identification of suitable promoter fragments compatible with the Y1H assay. Here, we describe a workflow to identify biologically relevant conserved promoter fragments of Arabidopsis thaliana through simple and robust phylogenetic analyses. Additionally, we describe a manual method and its automated robotized version for rapid and efficient high-throughput Y1H screenings of arrayed ORF libraries with the identified DNA fragments. Moreover, this method can be scaled up or down and used for yeast two-hybrid screenings to search for possible interactors of proteins identified by the Y1H approach or any other protein of interest, altogether underscoring its suitability to build gene regulatory networks. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Selection of DNA baits for Y1H screenings Basic Protocol 2: Y1H screenings with arrayed gene libraries Alternate Protocol: Automated screening with a liquid-handling robot.
Collapse
Affiliation(s)
- Iris Fañanás‐Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)MadridSpain
| | - Ana‐Mariya Anhel
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)MadridSpain
| | - Ángel Goñi‐Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)MadridSpain
- Systems Biology DepartmentCentro Nacional de Biotecnologia, CSICMadridSpain
| | - Luis Oñate‐Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)MadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUPMMadridSpain
| | - Gerardo Carrera‐Castaño
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)MadridSpain
| |
Collapse
|
3
|
Wen J, Zhou R, Jiang F, Chen Z, Sun M, Li H, Wu Z. SlCathB2 as a negative regulator mediates a novel regulatory pathway upon high-temperature stress response in tomato. PHYSIOLOGIA PLANTARUM 2024; 176:e14267. [PMID: 38566236 DOI: 10.1111/ppl.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
High-temperature stress (HS) is a major abiotic stress that affects the yield and quality of plants. Cathepsin B-like protease 2 (CathB2) has been reported to play a role in developmental processes and stress response, but its involvement in HS response has not been identified. Here, overexpression, virus-induced gene silencing (VIGS)and RNA-sequencing analysis were performed to uncover the functional characteristics of SlCathB2-1 and SlCathB2-2 genes for HS response in tomato. The results showed that overexpression of SlCathB2-1 and SlCathB2-2 resulted in reduced heat tolerance of tomato to HS while silencing the genes resulted in enhanced heat tolerance. RNA-sequencing analysis revealed that the heat shock proteins (HSPs) exhibited higher expression in WT than in SlCathB2-1 and SlCathB2-2 overexpression lines. Furthermore, the possible molecular regulation mechanism underlying SlCathB2-1 and SlCathB2-2-mediated response to HS was investigated. We found that SlCathB2-1 and SlCathB2-2 negatively regulated antioxidant capacity by regulating a set of genes involved in antioxidant defence and reactive oxygen species (ROS) signal transduction. We also demonstrated that SlCathB2-1 and SlCathB2-2 positively regulated ER-stress-induced PCD (ERSID) by regulating unfolded protein response (UPR) gene expression. Furthermore, SlCathB2-1 and SlCathB2-2 interacting with proteasome subunit beta type-4 (PBA4) was identified in the ERSID pathway using yeast two-hybrid (Y2H) analysis and bimolecular fluorescence complementation (BiFC) screening. Overall, the study identified both SlCathB2-1 and SlCathB2-2 as new negative regulators to HS and presented a new HS response pathway. This provided the foundation for the construction of heat-tolerant molecular mechanisms and breeding strategies aiming to improve the thermotolerance of tomato plants.
Collapse
Affiliation(s)
- Junqin Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zheng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mintao Sun
- Institute of Vegetable and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haolong Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Coppola M, Mach L, Gallois P. Plant cathepsin B, a versatile protease. FRONTIERS IN PLANT SCIENCE 2024; 15:1305855. [PMID: 38463572 PMCID: PMC10920296 DOI: 10.3389/fpls.2024.1305855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 03/12/2024]
Abstract
Plant proteases are essential enzymes that play key roles during crucial phases of plant life. Some proteases are mainly involved in general protein turnover and recycle amino acids for protein synthesis. Other proteases are involved in cell signalling, cleave specific substrates and are key players during important genetically controlled molecular processes. Cathepsin B is a cysteine protease that can do both because of its exopeptidase and endopeptidase activities. Animal cathepsin B has been investigated for many years, and much is known about its mode of action and substrate preferences, but much remains to be discovered about this potent protease in plants. Cathepsin B is involved in plant development, germination, senescence, microspore embryogenesis, pathogen defence and responses to abiotic stress, including programmed cell death. This review discusses the structural features, the activity of the enzyme and the differences between the plant and animal forms. We discuss its maturation and subcellular localisation and provide a detailed overview of the involvement of cathepsin B in important plant life processes. A greater understanding of the cell signalling processes involving cathepsin B is needed for applied discoveries in plant biotechnology.
Collapse
Affiliation(s)
- Marianna Coppola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Ramírez-Sánchez D, Gibelin-Viala C, Roux F, Vailleau F. Genetic architecture of the response of Arabidopsis thaliana to a native plant-growth-promoting bacterial strain. FRONTIERS IN PLANT SCIENCE 2023; 14:1266032. [PMID: 38023938 PMCID: PMC10665851 DOI: 10.3389/fpls.2023.1266032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
By improving plant nutrition and alleviating abiotic and biotic stresses, plant growth-promoting bacteria (PGPB) can help to develop eco-friendly and sustainable agricultural practices. Besides climatic conditions, soil conditions, and microbe-microbe interactions, the host genotype influences the effectiveness of PGPB. Yet, most GWAS conducted to characterize the genetic architecture of response to PGPB are based on non-native interactions between a host plant and PGPB strains isolated from the belowground compartment of other plants. In this study, a GWAS was set up under in vitro conditions to describe the genetic architecture of the response of Arabidopsis thaliana to the PGPB Pseudomonas siliginis, by inoculating seeds of 162 natural accessions from the southwest of France with one strain isolated from the leaf compartment in the same geographical region. Strong genetic variation of plant growth response to this native PGPB was observed at a regional scale, with the strain having a positive effect on the vegetative growth of small plants and a negative effect on the vegetative growth of large plants. The polygenic genetic architecture underlying this negative trade-off showed suggestive signatures of local adaptation. The main eco-evolutionary relevant candidate genes are involved in seed and root development.
Collapse
|
6
|
Contreras E, Martín-Fernández L, Manaa A, Vicente-Carbajosa J, Iglesias-Fernández R. Identification of Reference Genes for Precise Expression Analysis during Germination in Chenopodium quinoa Seeds under Salt Stress. Int J Mol Sci 2023; 24:15878. [PMID: 37958860 PMCID: PMC10650251 DOI: 10.3390/ijms242115878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chenopodium quinoa Willd. (quinoa), a member of the Amaranthaceae family, is an allotetraploid annual plant, endemic to South America. The plant of C. quinoa presents significant ecological plasticity with exceptional adaptability to several environmental stresses, including salinity. The resilience of quinoa to several abiotic stresses, as well as its nutritional attributes, have led to significant shifts in quinoa cultivation worldwide over the past century. This work first defines germination sensu stricto in quinoa where the breakage of the pericarp and the testa is followed by endosperm rupture (ER). Transcriptomic changes in early seed germination stages lead to unstable expression levels in commonly used reference genes that are typically stable in vegetative tissues. Noteworthy, no suitable reference genes have been previously identified specifically for quinoa seed germination under salt stress conditions. This work aims to identify these genes as a prerequisite step for normalizing qPCR data. To this end, germinating seeds from UDEC2 and UDEC4 accessions, with different tolerance to salt, have been analyzed under conditions of absence (0 mM NaCl) and in the presence (250 mM NaCl) of sodium chloride. Based on the relevant literature, six candidate reference genes, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Monensin sensitivity1 (MON1), Polypyrimidine tract-binding protein (PTB), Actin-7 (ACT7), Ubiquitin-conjugating enzyme (UBC), and 18S ribosomal RNA (18S), were selected and assessed for stability using the RefFinder Tool encompassing the statistical algorithms geNorm, NormFinder, BestKeeper, and ΔCt in the evaluation. The data presented support the suitability of CqACT7 and CqUBC as reference genes for normalizing gene expression during seed germination under salinity stress. These recommended reference genes can be valuable tools for consistent qPCR studies on quinoa seeds.
Collapse
Affiliation(s)
- Estefanía Contreras
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (E.C.); (J.V.-C.)
| | - Lucía Martín-Fernández
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (E.C.); (J.V.-C.)
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Centre of Biotechnology de Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia;
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (E.C.); (J.V.-C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (UPM), 28040 Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (E.C.); (J.V.-C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (UPM), 28040 Madrid, Spain
| |
Collapse
|
7
|
Iglesias-Fernández R, Vicente-Carbajosa J. A View into Seed Autophagy: From Development to Environmental Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3247. [PMID: 36501287 PMCID: PMC9739688 DOI: 10.3390/plants11233247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Autophagy is a conserved cellular mechanism involved in the degradation and subsequent recycling of cytoplasmic components. It is also described as a catabolic process implicated in the specific degradation of proteins in response to several stimuli. In eukaryotes, the endoplasmic reticulum accumulates an excess of proteins in response to environmental changes, and is the major cellular organelle at the crossroads of stress responses. Return to proteostasis involves the activation of the Unfolded Protein Response (UPR) and eventually autophagy as a feedback mechanism to relieve protein overaccumulation. Recent publications have focused on the relevance of autophagy in two central processes of seed biology: (i) seed storage protein accumulation upon seed maturation and (ii) reserve mobilization during seed imbibition. Although ER-protein accumulation and the subsequent activation of autophagy resemble the Seed Storage Protein (SSP) deposition during seed maturation, the molecular connection between seed development, autophagy, and seed response to abiotic stresses is still an underexplored field. This mini-review presents current advances in autophagy in seeds, highlighting its participation in the normal course of seed development from embryogenesis to germination. Finally, the function of autophagy in response to the seed environment is also considered, as is its involvement in controlling seed dormancy and germination.
Collapse
Affiliation(s)
- Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA), 28223 Pozuelo de Alarcon, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA), 28223 Pozuelo de Alarcon, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
8
|
Liu H, Yuan L, Guo W, Wu W. Transcription factor TERF1 promotes seed germination under osmotic conditions by activating gibberellin acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111350. [PMID: 35709980 DOI: 10.1016/j.plantsci.2022.111350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Seed germination is the first step of seedling establishment, which is particularly sensitive to drought stress. Elucidating the mechanism regulating seed germination under drought stress is of great importance. We showed that overexpressing Tomato Ethylene Responsive Factor 1 (TERF1), an ERF transcription factor in the ethylene signaling pathway, significantly reduced seed sensitivity to mannitol treatment during seed germination. Germination assay demonstrated that TERF1 could activate gibberellin acid (GA) signaling pathway independent on GA metabolism during germination. By comparative transcriptome analysis (mannitol vs normal germination condition, mannitol vs mannitol plus paclobutrazol (PAC, an inhibitor of GA biosynthesis)) we identified the genes regulated by TERF1 specifically under mannitol treatment and confirmed that TERF1 could activate GA signaling pathway independent on GA metabolism, which were consistent with the germination assay with mannitol and mannitol plus PAC treatment. Based on sugar, gene expression and germination analysis we proved that TERF1 promoted seed germination through glucose signaling pathway mediated by GA. Thus our study provides an underlying mechanism for activating GA signaling pathway by TERF1 during seed germination under osmotic conditions.
Collapse
Affiliation(s)
- Hongzhi Liu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Long Yuan
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China.
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China.
| |
Collapse
|
9
|
Liu X, Mo L, Guo X, Zhang Q, Li H, Liu D, Lu H. How Cysteine Protease Gene PtCP5 Affects Seed Germination by Mobilizing Storage Proteins in Populus trichocarpa. Int J Mol Sci 2021; 22:ijms222312637. [PMID: 34884443 PMCID: PMC8657902 DOI: 10.3390/ijms222312637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
In higher plants, seed storage proteins are deposited in protein storage vacuoles (PSVs) and degraded by protease, especially cysteine proteases, as a source of nitrogen for seed germination. In this study, a cathepsin B-like cysteine protease PtCP5, which is important for seed germination and pollen development, was first cloned in Populus trichocarpa. The GUS staining of the ProPtCP5-GUS reporter line showed that PtCP5 is expressed in the roots, stems, leaves, flowers, siliques and seeds of Arabidopsis. We reveal that PtCP5 is present in plasma membrane and co-localizes with the plasma membrane marker REM1.3. Both seed germination and early seedling development are slower in OX-PtCP5 transgenic Arabidopsis when compared with the wild-type. Further analysis revealed that, when stained with toluidine blue, the observed storage protein accumulation was lower in OX-PtCP5 than in the wild-type. Our results also show that the number of abnormal pollen grains is higher and the germination rate of pollen is lower in OX-PtCP5 than in the wild-type. These results indicate that PtCP5 is an important factor in mobilizing storage proteins and that the proper expression of PtCP5 is necessary for both pollen and seed maturation and germination. This study sheds further light on the biological functions of cysteine proteases and provides further reference for seed development research on woody plants.
Collapse
Affiliation(s)
- Xiatong Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lijie Mo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaorui Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Di Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.L.); (H.L.)
| | - Hai Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.L.); (H.L.)
| |
Collapse
|
10
|
Porodko A, Cirnski A, Petrov D, Raab T, Paireder M, Mayer B, Maresch D, Nika L, Biniossek ML, Gallois P, Schilling O, Oostenbrink C, Novinec M, Mach L. The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities. Biol Chem 2019; 399:1223-1235. [PMID: 29924726 DOI: 10.1515/hsz-2018-0186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.
Collapse
Affiliation(s)
- Andreas Porodko
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ana Cirnski
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia
| | - Drazen Petrov
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Teresa Raab
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Melanie Paireder
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Bettina Mayer
- Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier Strasse 17, D-79104 Freiburg, Germany
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Lisa Nika
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - Martin L Biniossek
- Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier Strasse 17, D-79104 Freiburg, Germany
| | - Patrick Gallois
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Oliver Schilling
- Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier Strasse 17, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Stefan-Meier Strasse 17, D-79104 Freiburg, Germany
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
11
|
Screening Arrayed Libraries with DNA and Protein Baits to Identify Interacting Proteins. Methods Mol Biol 2019; 1794:131-149. [PMID: 29855955 DOI: 10.1007/978-1-4939-7871-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Molecular interactions are an integral part of the regulatory mechanisms controlling gene expression. The yeast one- and two-hybrid systems (Y1H/Y2H) have been widely used by many laboratories to detect DNA-protein (Y1H) and protein-protein interactions (Y2H). The development of efficient cloning systems have promoted the generation of large open reading frame (ORF) clone collections (libraries) for several organisms. Functional analyses of such large collections require the establishment of adequate protocols. Here, we describe a simple straightforward procedure for high-throughput screenings of arrayed libraries with DNA or protein baits that can be carried out by one person with minimal labor and not requiring robotics. The protocol can also be scaled up or down and is compatible with several library formats. Procedures to make yeast stocks for long-term storage (tube and microplate formats) are also provided.
Collapse
|
12
|
Iglesias-Fernández R, Pastor-Mora E, Vicente-Carbajosa J, Carbonero P. A Possible Role of the Aleurone Expressed Gene HvMAN1 in the Hydrolysis of the Cell Wall Mannans of the Starchy Endosperm in Germinating Hordeum vulgare L. Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:1706. [PMID: 32038680 PMCID: PMC6983769 DOI: 10.3389/fpls.2019.01706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/17/2023]
Abstract
The barley endo-β-mannanase (MAN) gene family (HvMAN1-6) has been identified and the expression of its members analyzed throughout different plant organs, and upon grain development and germination. The HvMAN1 gene has been found to be highly expressed in developing and germinating grains. The MAN (EC 3.2.1.78) enzymatic activity gets a maximum in grains at 48 h of germination (post-germination event). Immunolocalization of mannan polymers in grains has revealed the presence of these polysaccharides in the endosperm cell walls (CWs). By mRNA in situ hybridization assays, the HvMAN1 transcripts have been localized to the aleurone layer, but not to the dead starchy endosperm cells. These data suggest that MAN1 is synthesized in the aleurone layer during early grain imbibition and moves potentially through the apoplast to the endosperm where the hydrolysis of the mannan polymers takes place after germination sensu stricto. Hence, mannans in the starchy endosperm CWs, besides their structural function, could be used as reserve compounds upon barley post-germination.
Collapse
Affiliation(s)
- Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Madrid, Spain
- *Correspondence: Raquel Iglesias-Fernández,
| | - Elena Pastor-Mora
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Madrid, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Madrid, Spain
| |
Collapse
|
13
|
Zhang H, Gannon L, Hassall KL, Deery MJ, Gibbs DJ, Holdsworth MJ, van der Hoorn RAL, Lilley KS, Theodoulou FL. N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway. THE NEW PHYTOLOGIST 2018; 218:1106-1126. [PMID: 29168982 PMCID: PMC5947142 DOI: 10.1111/nph.14909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/23/2017] [Indexed: 05/04/2023]
Abstract
The N-end rule pathway of targeted protein degradation is an important regulator of diverse processes in plants but detailed knowledge regarding its influence on the proteome is lacking. To investigate the impact of the Arg/N-end rule pathway on the proteome of etiolated seedlings, we used terminal amine isotopic labelling of substrates with tandem mass tags (TMT-TAILS) for relative quantification of N-terminal peptides in prt6, an Arabidopsis thaliana N-end rule mutant lacking the E3 ligase PROTEOLYSIS6 (PRT6). TMT-TAILS identified over 4000 unique N-terminal peptides representing c. 2000 protein groups. Forty-five protein groups exhibited significantly increased N-terminal peptide abundance in prt6 seedlings, including cruciferins, major seed storage proteins, which were regulated by Group VII Ethylene Response Factor (ERFVII) transcription factors, known substrates of PRT6. Mobilisation of endosperm α-cruciferin was delayed in prt6 seedlings. N-termini of several proteases were downregulated in prt6, including RD21A. RD21A transcript, protein and activity levels were downregulated in a largely ERFVII-dependent manner. By contrast, cathepsin B3 protein and activity were upregulated by ERFVIIs independent of transcript. We propose that the PRT6 branch of the pathway regulates protease activities in a complex manner and optimises storage reserve mobilisation in the transition from seed to seedling via control of ERFVII action.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | - Lucy Gannon
- Plant Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
| | - Kirsty L. Hassall
- Computational and Analytical Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
| | - Michael J. Deery
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | - Daniel J. Gibbs
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | | | | | - Kathryn S. Lilley
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | | |
Collapse
|
14
|
Havé M, Balliau T, Cottyn-Boitte B, Dérond E, Cueff G, Soulay F, Lornac A, Reichman P, Dissmeyer N, Avice JC, Gallois P, Rajjou L, Zivy M, Masclaux-Daubresse C. Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1369-1385. [PMID: 29281085 PMCID: PMC6037082 DOI: 10.1093/jxb/erx482] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.
Collapse
Affiliation(s)
- Marien Havé
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | | - Emeline Dérond
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Gwendal Cueff
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | | | - Aurélia Lornac
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Pavel Reichman
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Jean-Christophe Avice
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Patrick Gallois
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Loïc Rajjou
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | |
Collapse
|
15
|
Ortiz-Espín A, Iglesias-Fernández R, Calderón A, Carbonero P, Sevilla F, Jiménez A. Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 and AtAZF2 and affects seed germination under saline conditions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1025-1038. [PMID: 28184497 PMCID: PMC5441863 DOI: 10.1093/jxb/erx012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondrial thioredoxin-o (AtTrxo1) was characterized and its expression examined in different organs of Arabidopsis thaliana. AtTrxo1 transcript levels were particularly high in dry seeds and cotyledons where they reached a maximum 36 h after imbibition with water, coinciding with 50% germination. Expression was lower in seeds germinating in 100 mM NaCl. To gain insight into the transcriptional regulation of the AtTrxo1 gene, a phylogenomic analysis was coupled with the screening of an arrayed library of Arabidopsis transcription factors in yeast. The basic leucine zipper AtbZIP9 and the zinc finger protein AZF2 were identified as putative transcriptional regulators. Transcript regulation of AtbZIP9 and AtAFZ2 during germination was compatible with the proposed role in transcriptional regulation of AtTrxo1. Transient over-expression of AtbZIP9 and AtAZF2 in Nicotiana benthamiana leaves demonstrated an activation effect of AtbZIP9 and a repressor effect of AtAZF2 on AtTrxo1 promoter-driven reporter expression. Although moderate concentrations of salt delayed germination in Arabidopsis wild-type seeds, those of two different AtTrxo1 knock-out mutants germinated faster and accumulated higher H2O2 levels than the wild-type. All these data indicate that AtTrxo1 has a role in redox homeostasis during seed germination under salt conditions.
Collapse
Affiliation(s)
- Ana Ortiz-Espín
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Aingeru Calderón
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Francisca Sevilla
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Ana Jiménez
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| |
Collapse
|
16
|
The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells. Sci Rep 2017; 7:41245. [PMID: 28117452 PMCID: PMC5259747 DOI: 10.1038/srep41245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 12/19/2016] [Indexed: 02/05/2023] Open
Abstract
Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.
Collapse
|
17
|
Sánchez-Montesino R, Oñate-Sánchez L. Yeast One- and Two-Hybrid High-Throughput Screenings Using Arrayed Libraries. Methods Mol Biol 2017. [PMID: 28623579 DOI: 10.1007/978-1-4939-7125-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Since their original description more than 25 years ago, the yeast one- and two-hybrid systems (Y1H/Y2H) have been used by many laboratories to detect DNA-protein (Y1H) and protein-protein interactions (Y2H). These systems use yeast cells (Saccharomyces cerevisiae) as a eukaryotic "test tube" and are amenable for most labs in the world. The development of highly efficient cloning methods has fostered the generation of large collections of open reading frames (ORFs) for several organisms that have been used for yeast screenings. Here, we describe a simple mating based method for high-throughput screenings of arrayed ORF libraries with DNA (Y1H) or protein (Y2H) baits not requiring robotics. One person can easily carry out this protocol in approximately 10 h of labor spread over 5 days. It can also be scaled down to test one-to-one (few) interactions, scaled up (i.e., robotization) and is compatible with several library formats (i.e., 96, 384-well microtiter plates).
Collapse
Affiliation(s)
- Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
18
|
Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death Differ 2016; 23:1493-501. [PMID: 27058316 PMCID: PMC5072426 DOI: 10.1038/cdd.2016.34] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 01/13/2023] Open
Abstract
Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation.
Collapse
|
19
|
Abraham Z, Iglesias-Fernández R, Martínez M, Rubio-Somoza I, Díaz I, Carbonero P, Vicente-Carbajosa J. A Developmental Switch of Gene Expression in the Barley Seed Mediated by HvVP1 (Viviparous-1) and HvGAMYB Interactions. PLANT PHYSIOLOGY 2016; 170:2146-58. [PMID: 26858366 PMCID: PMC4825118 DOI: 10.1104/pp.16.00092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/04/2016] [Indexed: 05/06/2023]
Abstract
The accumulation of storage compounds in the starchy endosperm of developing cereal seeds is highly regulated at the transcriptional level. These compounds, mainly starch and proteins, are hydrolyzed upon germination to allow seedling growth. The transcription factor HvGAMYB is a master activator both in the maturation phase of seed development and upon germination, acting in combination with other transcription factors. However, the precise mechanism controlling the switch from maturation to germination programs remains unclear. We report here the identification and molecular characterization of Hordeum vulgare VIVIPAROUS1 (HvVP1), orthologous to ABA-INSENSITIVE3 from Arabidopsis thaliana HvVP1 transcripts accumulate in the endosperm and the embryo of developing seeds at early stages and in the embryo and aleurone of germinating seeds up to 24 h of imbibition. In transient expression assays, HvVP1 controls the activation of Hor2 and Amy6.4 promoters exerted by HvGAMYB. HvVP1 interacts with HvGAMYB in Saccharomyces cerevisiae and in the plant nuclei, hindering its interaction with other transcription factors involved in seed gene expression programs, like BPBF. Similarly, this interaction leads to a decrease in the DNA binding of HvGAMYB and the Barley Prolamine-Box binding Factor (BPBF) to their target sequences. Our results indicate that the HvVP1 expression pattern controls the full Hor2 expression activated by GAMYB and BPBF in the developing endosperm and the Amy6.4 activation in postgerminative reserve mobilization mediated by GAMYB. All these data demonstrate the participation of HvVP1 in antagonistic gene expression programs and support its central role as a gene expression switch during seed maturation and germination.
Collapse
Affiliation(s)
- Zamira Abraham
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Ignacio Rubio-Somoza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
20
|
Llorca CM, Berendzen KW, Malik WA, Mahn S, Piepho HP, Zentgraf U. The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks. PLoS One 2015; 10:e0139884. [PMID: 26452049 PMCID: PMC4599898 DOI: 10.1371/journal.pone.0139884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
The function of the bZIP transcription factors is strictly dependent on their ability to dimerize. Heterodimerization has proven to be highly specific and is postulated to operate as a combinatorial mechanism allowing the generation of a large variety of dimers with unique qualities by specifically combining a small set of monomers; an assumption that has not yet been tested systematically. Here, the interaction pattern and the transactivation properties of 16 Arabidopsis thaliana bZIPs are examined in transiently transformed Arabidopsis protoplasts to deliver a perspective on the relationship between bZIP dimerization and function. An interaction matrix of bZIPs belonging to the C, G, H, and S1 bZIP groups was resolved by Bimolecular Fluorescent Complementation (BiFC) coupled to quantitative flow cytometric analysis, while an extensive GUS reporter gene assay was carried out to determine the effect of different bZIP pairs on the expression of four different known bZIP-targeted promoters. Statistical data treatment and complementary bioinformatic analysis were performed to substantiate the biological findings. According to these results, the 16 bZIPs interact in three isolated networks, within which their members dimerize non-specifically and exhibit a significant level of functional redundancy. A coherent explanation for these results is supported by in silico analysis of differences in the length, structure and composition of their leucine zippers and appears to explain their dimerization specificity and dynamics observed in vivo quite well. A model in which the bZIP networks act as functional units is proposed.
Collapse
Affiliation(s)
- Carles Marco Llorca
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Waqas Ahmed Malik
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Stefan Mahn
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
21
|
Parkash J, Kashyap S, Kirti S, Singh AK, Dutt S. Cathepsin B cysteine protease gene is upregulated during leaf senescence and exhibits differential expression behavior in response to phytohormones in Picrorhiza kurrooa Royle ex Benth. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.plgene.2015.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
González-Calle V, Barrero-Sicilia C, Carbonero P, Iglesias-Fernández R. Mannans and endo-β-mannanases (MAN) in Brachypodium distachyon: expression profiling and possible role of the BdMAN genes during coleorhiza-limited seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3753-64. [PMID: 25922488 PMCID: PMC4473977 DOI: 10.1093/jxb/erv168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Immunolocalization of mannans in the seeds of Brachypodium distachyon reveals the presence of these polysaccharides in the root embryo and in the coleorhiza in the early stages of germination (12h), decreasing thereafter to the point of being hardly detected at 27h. Concurrently, the activity of endo-β-mannanases (MANs; EC 3.2.1.78) that catalyse the hydrolysis of β-1,4 bonds in mannan polymers, increases as germination progresses. The MAN gene family is represented by six members in the Brachypodium genome, and their expression has been explored in different organs and especially in germinating seeds. Transcripts of BdMAN2, BdMAN4 and BdMAN6 accumulate in embryos, with a maximum at 24-30h, and are detected in the coleorhiza and in the root by in situ hybridization analyses, before root protrusion (germination sensu stricto). BdMAN4 is not only present in the embryo root and coleorhiza, but is abundant in the de-embryonated (endosperm) imbibed seeds, while BdMAN2 and BdMAN6 are faintly expressed in endosperm during post-germination (36-42h). BdMAN4 and BdMAN6 transcripts are detected in the aleurone layer. These data indicate that BdMAN2, BdMAN4 and BdMAN6 are important for germination sensu stricto and that BdMAN4 and BdMAN6 may also influence reserve mobilization. Whether the coleorhiza in monocots and the micropylar endosperm in eudicots have similar functions, is discussed.
Collapse
Affiliation(s)
- Virginia González-Calle
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Cristina Barrero-Sicilia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| |
Collapse
|
23
|
González-Calle V, Iglesias-Fernández R, Carbonero P, Barrero-Sicilia C. The BdGAMYB protein from Brachypodium distachyon interacts with BdDOF24 and regulates transcription of the BdCathB gene upon seed germination. PLANTA 2014; 240:539-552. [PMID: 24957701 DOI: 10.1007/s00425-014-2105-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
BdDOF24 interacting with BdGAMYB regulates the BdCathB gene upon germination. During barley seed germination, hydrolytic enzymes (α-amylases, proteases, etc.) synthesized in the aleurone layer in response to gibberellins (GA), catalyse the mobilization of storage reserves accumulated in the endosperm during seed maturation. In Brachypodium distachyon, the BdCathB gene that encodes a Cathepsin B-like thiol-protease, orthologous to the wheat Al21 and barley HvCathB, is highly induced in germinating seeds and its expression is regulated by transcription factors (TFs) encoded by genes BdGamyb and BdDof24, orthologous to the barley HvGamyb and BPBF-HvDof24, respectively. Transcripts of both TF genes increase during germination and treatments with abscisic acid (ABA) or paclobutrazol (PAC, an inhibitor of GA biosynthesis) decrease mRNA expression of BdGamyb but do not affect that of BdDof24. Besides, proteins BdDOF24 and BdGAMYB interact in yeast-2 hybrid systems and in plant nuclei, and in transient expression assays in aleurone layers BdDOF24 is a transcriptional repressor and BdGAMYB is an activator of the BdCathB promoter, as occurs with the putative orthologous in barley BPBF-HvDOF24 and HvGAMYB. However, when both TFs are co-bombarded, BdDOF24 enhances the activation driven by BdGAMYB while BPBF-HvDOF24 strongly decreases the HvGAMYB-mediated activation of the BdCathB promoter. The different results obtained when BdDOF24 and BPBF-HvDOF24 interact with BdGAMYB and HvGAMYB are discussed.
Collapse
Affiliation(s)
- Virginia González-Calle
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). ETSI Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain,
| | | | | | | |
Collapse
|