1
|
Meinzer M, Ahmad N, Nielsen BL. Halophilic Plant-Associated Bacteria with Plant-Growth-Promoting Potential. Microorganisms 2023; 11:2910. [PMID: 38138054 PMCID: PMC10745547 DOI: 10.3390/microorganisms11122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The salinization of soils is a growing agricultural concern worldwide. Irrigation practices, drought, and climate change are leading to elevated salinity levels in many regions, resulting in reduced crop yields. However, there is potential for a solution in the microbiome of halophytes, which are naturally salt-tolerant plants. These plants harbor a salt-tolerant microbiome in their rhizosphere (around roots) and endosphere (within plant tissue). These bacteria may play a significant role in conferring salt tolerance to the host plants. This leads to the possibility of transferring these beneficial bacteria, known as salt-tolerant plant-growth-promoting bacteria (ST-PGPB), to salt-sensitive plants, enabling them to grow in salt-affected areas to improve crop productivity. In this review, the background of salt-tolerant microbiomes is discussed and their potential use as ST-PGPB inocula is explored. We focus on two Gram-negative bacterial genera, Halomonas and Kushneria, which are commonly found in highly saline environments. These genera have been found to be associated with some halophytes, suggesting their potential for facilitating ST-PGPB activity. The study of salt-tolerant microbiomes and their use as PGPB holds promise for addressing the challenges posed by soil salinity in the context of efforts to improve crop growth in salt-affected areas.
Collapse
Affiliation(s)
- McKay Meinzer
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan;
| | - Brent L. Nielsen
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan;
| |
Collapse
|
2
|
John JE, Maheswari M, Kalaiselvi T, Prasanthrajan M, Poornachandhra C, Rakesh SS, Gopalakrishnan B, Davamani V, Kokiladevi E, Ranjith S. Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L. Front Microbiol 2023; 14:1085787. [PMID: 36865783 PMCID: PMC9971939 DOI: 10.3389/fmicb.2023.1085787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Halophytic plants can tolerate a high level of salinity through several morphological and physiological adaptations along with the presence of salt tolerant rhizo-microbiome. These microbes release phytohormones which aid in alleviating salinity stress and improve nutrient availability. The isolation and identification of such halophilic PGPRs can be useful in developing bio-inoculants for improving the salt tolerance and productivity of non-halophytic plants under saline conditions. In this study, salt-tolerant bacteria with multiple plant growth promoting characteristics were isolated from the rhizosphere of a predominant halophyte, Sesuvium portulacastrum grown in the coastal and paper mill effluent irrigated soils. Among the isolates, nine halotolerant rhizobacterial strains that were able to grow profusely at a salinity level of 5% NaCl were screened. These isolates were found to have multiple plant growth promoting (PGP) traits, especially 1-aminocyclopropane-1-carboxylic acid deaminase activity (0.32-1.18 μM of α-ketobutyrate released mg-1 of protein h-1) and indole acetic acid (9.4-22.8 μg mL-1). The halotolerant PGPR inoculation had the potential to improve salt tolerance in Vigna mungo L. which was reflected in significantly (p < 0.05) higher germination percentage (89%) compared to un-inoculated seeds (65%) under 2% NaCl. Similarly, shoot length (8.9-14.6 cm) and vigor index (792-1785) were also higher in inoculated seeds. The strains compatible with each other were used for the preparation of two bioformulations and these microbial consortia were tested for their efficacy in salt stress alleviation of Vigna mungo L. under pot study. The inoculation improved the photosynthetic rate (12%), chlorophyll content (22%), shoot length (5.7%) and grain yield (33%) in Vigna mungo L. The enzymatic activity of catalase and superoxide dismutase were found to be lower (7.0 and 1.5%, respectively) in inoculated plants. These results revealed that halotolerant PGPR isolated from S. portulacastrum can be a cost-effective and ecologically sustainable method to improve crop productivity under high saline conditions.
Collapse
Affiliation(s)
- Joseph Ezra John
- Department of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, India,*Correspondence: Joseph Ezra John, ; Chidamparam Poornachandhra,
| | | | - Thangavel Kalaiselvi
- Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, Coimbatore, India
| | - Mohan Prasanthrajan
- Department of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chidamparam Poornachandhra
- Department of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, India,*Correspondence: Joseph Ezra John, ; Chidamparam Poornachandhra,
| | | | | | - Veeraswamy Davamani
- Department of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, India
| | - Eswaran Kokiladevi
- Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sellappan Ranjith
- Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
3
|
Analysis of Gene Expression Changes in Plants Grown in Salty Soil in Response to Inoculation with Halophilic Bacteria. Int J Mol Sci 2021; 22:ijms22073611. [PMID: 33807153 PMCID: PMC8036567 DOI: 10.3390/ijms22073611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/24/2022] Open
Abstract
Soil salinity is an increasing problem facing agriculture in many parts of the world. Climate change and irrigation practices have led to decreased yields of some farmland due to increased salt levels in the soil. Plants that have tolerance to salt are thus needed to feed the world's population. One approach addressing this problem is genetic engineering to introduce genes encoding salinity, but this approach has limitations. Another fairly new approach is the isolation and development of salt-tolerant (halophilic) plant-associated bacteria. These bacteria are used as inoculants to stimulate plant growth. Several reports are now available, demonstrating how the use of halophilic inoculants enhance plant growth in salty soil. However, the mechanisms for this growth stimulation are as yet not clear. Enhanced growth in response to bacterial inoculation is expected to be associated with changes in plant gene expression. In this review, we discuss the current literature and approaches for analyzing altered plant gene expression in response to inoculation with halophilic bacteria. Additionally, challenges and limitations to current approaches are analyzed. A further understanding of the molecular mechanisms involved in enhanced plant growth when inoculated with salt-tolerant bacteria will significantly improve agriculture in areas affected by saline soils.
Collapse
|
4
|
Galambos N, Compant S, Moretto M, Sicher C, Puopolo G, Wäckers F, Sessitsch A, Pertot I, Perazzolli M. Humic Acid Enhances the Growth of Tomato Promoted by Endophytic Bacterial Strains Through the Activation of Hormone-, Growth-, and Transcription-Related Processes. FRONTIERS IN PLANT SCIENCE 2020; 11:582267. [PMID: 33042195 PMCID: PMC7524882 DOI: 10.3389/fpls.2020.582267] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/31/2020] [Indexed: 06/01/2023]
Abstract
Plant growth-promoting bacteria (PGPB) are promising alternatives in the reduction of the use of chemical fertilizers. Likewise, humic acid (HA) can improve plant growth and/or the establishment of endophytic PGPB. Although the effects of PGPB colonization or HA treatment have been studied separately, little information is available on plant response to the combined applications of PGPB and HA. Thus, the aim of this work was to understand the physiological effects, bacterial colonization and transcriptional responses activated by endophytic bacterial strains in tomato roots and shoots in the absence (control condition) and presence of HA (HA condition). Tomato shoot length was promoted by seed inoculation with Paraburkholderia phytofirmans PsJN, Pantoea agglomerans D7G, or Enterobacter sp. 32A in the presence of HA, indicating a possible complementation of PGPB and HA effects. Tomato colonization by endophytic bacterial strains was comparable in the control and HA condition. The main transcriptional regulations occurred in tomato roots and the majority of differentially expressed genes (DEGs) was upregulated by endophytic bacterial strains in the HA condition. Half of the DEGs was modulated by two or three strains as possible common reactions to endophytic bacterial strains, involving protein metabolism, transcription, transport, signal transduction, and defense. Moreover, strain-specific tomato responses included the upregulation of signal transduction, transcription, hormone metabolism, protein metabolism, secondary metabolism, and defense processes, highlighting specific traits of the endophyte-tomato interaction. The presence of HA enhanced the upregulation of genes related to signal transduction, hormone metabolism, transcription, protein metabolism, transport, defense, and growth-related processes in terms of number of involved genes and fold change values. This study provides detailed information on HA-dependent enhancement of growth-related processes stimulated by endophytic bacterial strains in tomato plants and reports the optimized dosages, complementation properties and gene markers for the further development of efficient PGPB- and HA-based biostimulants.
Collapse
Affiliation(s)
- Nikoletta Galambos
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Biobest NV, Westerlo, Belgium
| | - Stéphane Compant
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Carmela Sicher
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Gerardo Puopolo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige, Italy
| | | | - Angela Sessitsch
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige, Italy
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige, Italy
| |
Collapse
|
5
|
Kudoyarova G, Arkhipova T, Korshunova T, Bakaeva M, Loginov O, Dodd IC. Phytohormone Mediation of Interactions Between Plants and Non-Symbiotic Growth Promoting Bacteria Under Edaphic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1368. [PMID: 31737004 PMCID: PMC6828943 DOI: 10.3389/fpls.2019.01368] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/04/2019] [Indexed: 05/20/2023]
Abstract
The capacity of rhizoshere bacteria to influence plant hormonal status, by bacterial production or metabolism of hormones, is considered an important mechanism by which they promote plant growth, and productivity. Nevertheless, inoculating these bacteria into the plant rhizosphere may produce beneficial or detrimental results depending on bacterial effects on hormone composition and quantity in planta, and the environmental conditions under which the plants are growing. This review considers some effects of bacterial hormone production or metabolism on root growth and development and shoot physiological processes. We analyze how these changes in root and shoot growth and function help plants adapt to their growth conditions, especially as these change from optimal to stressful. Consistent effects are addressed, along with plant responses to specific environmental stresses: drought, salinity, and soil contamination (with petroleum in particular).
Collapse
Affiliation(s)
- Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre (RAS), Ufa, Russia
| | - Tatiana Arkhipova
- Ufa Institute of Biology, Ufa Federal Research Centre (RAS), Ufa, Russia
| | - Tatiana Korshunova
- Ufa Institute of Biology, Ufa Federal Research Centre (RAS), Ufa, Russia
| | - Margarita Bakaeva
- Ufa Institute of Biology, Ufa Federal Research Centre (RAS), Ufa, Russia
| | - Oleg Loginov
- Ufa Institute of Biology, Ufa Federal Research Centre (RAS), Ufa, Russia
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
6
|
Kearl J, McNary C, Lowman JS, Mei C, Aanderud ZT, Smith ST, West J, Colton E, Hamson M, Nielsen BL. Salt-Tolerant Halophyte Rhizosphere Bacteria Stimulate Growth of Alfalfa in Salty Soil. Front Microbiol 2019; 10:1849. [PMID: 31474952 PMCID: PMC6702273 DOI: 10.3389/fmicb.2019.01849] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Halophytes are plants that are adapted to grow in saline soils, and have been widely studied for their physiological and molecular characteristics, but little is known about their associated microbiomes. Bacteria were isolated from the rhizosphere and as root endophytes of Salicornia rubra, Sarcocornia utahensis, and Allenrolfea occidentalis, three native Utah halophytes. A total of 41 independent isolates were identified by 16S rRNA gene sequencing analysis. Isolates were tested for maximum salt tolerance, and some were able to grow in the presence of up to 4 M NaCl. Pigmentation, Gram stain characteristics, optimal temperature for growth, and biofilm formation of each isolate aided in species identification. Some variation in the bacterial population was observed in samples collected at different times of the year, while most of the genera were present regardless of the sampling time. Halomonas, Bacillus, and Kushneria species were consistently isolated both from the soil and as endophytes from roots of all three plant species at all collection times. Non-culturable bacterial species were analyzed by Illumina DNA sequencing. The most commonly identified bacteria were from several phyla commonly found in soil or extreme environments: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Gamma- and Delta-Proteobacteria. Isolates were tested for the ability to stimulate growth of alfalfa under saline conditions. This screening led to the identification of one Halomonas and one Bacillus isolate that, when used to inoculate young alfalfa seedlings, stimulate plant growth in the presence of 1% NaCl, a level that significantly inhibits growth of uninoculated plants. The same bacteria used in the inoculation were recovered from surface sterilized alfalfa roots, indicating the ability of the inoculum to become established as an endophyte. The results with these isolates have exciting promise for enhancing the growth of inoculated alfalfa in salty soil.
Collapse
Affiliation(s)
- Jennifer Kearl
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Caitlyn McNary
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - J. Scott Lowman
- The Plant Endophyte Research Center, The Institute for Advanced Learning and Research, Danville, VA, United States
| | - Chuansheng Mei
- The Plant Endophyte Research Center, The Institute for Advanced Learning and Research, Danville, VA, United States
| | - Zachary T. Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Steven T. Smith
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Jason West
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Emily Colton
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Michelle Hamson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
7
|
Więsyk A, Iwanicka-Nowicka R, Fogtman A, Zagórski-Ostoja W, Góra-Sochacka A. Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses 2018; 10:v10050257. [PMID: 29762480 PMCID: PMC5977250 DOI: 10.3390/v10050257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023] Open
Abstract
Viroids are small non-capsidated non-coding RNA replicons that utilize host factors for efficient propagation and spread through the entire plant. They can incite specific disease symptoms in susceptible plants. To better understand viroid-plant interactions, we employed microarray analysis to observe the changes of gene expression in “Rutgers” tomato leaves in response to the mild (M) and severe (S23) variants of potato spindle tuber viroid (PSTVd). The changes were analyzed over a time course of viroid infection development: (i) the pre-symptomatic stage; (ii) early symptoms; (iii) full spectrum of symptoms and (iv) the so-called ‘recovery’ stage, when stem regrowth was observed in severely affected plants. Gene expression profiles differed depending on stage of infection and variant. In S23-infected plants, the expression of over 3000 genes was affected, while M-infected plants showed 3-fold fewer differentially expressed genes, only 20% of which were specific to the M variant. The differentially expressed genes included many genes related to stress; defense; hormone metabolism and signaling; photosynthesis and chloroplasts; cell wall; RNA regulation, processing and binding; protein metabolism and modification and others. The expression levels of several genes were confirmed by nCounter analysis.
Collapse
Affiliation(s)
- Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Roksana Iwanicka-Nowicka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Włodzimierz Zagórski-Ostoja
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
- Correspondence: ; Tel.: +48-22-592-34-08; Fax: +48-22-592-21-90
| |
Collapse
|
8
|
Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:61-83. [PMID: 28489497 DOI: 10.1146/annurev-phyto-080516-035641] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.
Collapse
Affiliation(s)
- Günter Brader
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Stéphane Compant
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Kathryn Vescio
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Birgit Mitter
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Friederike Trognitz
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Angela Sessitsch
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
9
|
Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezerji R, von Maltzahn G, Sessitsch A. A New Approach to Modify Plant Microbiomes and Traits by Introducing Beneficial Bacteria at Flowering into Progeny Seeds. Front Microbiol 2017; 8:11. [PMID: 28167932 PMCID: PMC5253360 DOI: 10.3389/fmicb.2017.00011] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/03/2017] [Indexed: 11/13/2022] Open
Abstract
The microbial component of healthy seeds - the seed microbiome - appears to be inherited between plant generations and can dynamically influence germination, plant performance, and survival. As such, methods to optimize the seed microbiomes of major crops could have far-reaching implications for plant breeding and crop improvement to enhance agricultural food, feed, and fiber production. Here, we describe a new approach to modulate seed microbiomes of elite crop seed embryos and concomitantly design the traits to be mediated by seed microbiomes. Specifically, we discovered that by introducing the endophyte Paraburkholderia phytofirmans PsJN to the flowers of parent plants we could drive its inclusion in progeny seed microbiomes, thereby inducing vertical inheritance to the offspring generation. We demonstrated the introduction of PsJN to seeds of monocot and dicot plant species and the consequential modifications to seed microbiome composition and growth traits in wheat, illustrating the potential role of novel seed-based microbiomes in determining plant traits.
Collapse
Affiliation(s)
- Birgit Mitter
- Bioresources, Center for Health & Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| | - Nikolaus Pfaffenbichler
- Bioresources, Center for Health & Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| | | | - Stéphane Compant
- Bioresources, Center for Health & Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| | - Livio Antonielli
- Bioresources, Center for Health & Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| | - Alexandra Petric
- Bioresources, Center for Health & Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| | - Teresa Berninger
- Bioresources, Center for Health & Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| | - Muhammad Naveed
- Bioresources, Center for Health & Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| | - Raheleh Sheibani-Tezerji
- Bioresources, Center for Health & Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| | | | - Angela Sessitsch
- Bioresources, Center for Health & Bioresources, Austrian Institute of Technology GmbHTulln, Austria
| |
Collapse
|
10
|
|