1
|
Jones CT, Bakshani C, Lelenaite I, Mravec J, Kračun SK, Pearson J, Wilcox MD, Hardouin K, Kridi S, Hervé C, Willats WG. Spatiotemporal regulation of alginate sub-structures at multiple scales revealed by monoclonal antibodies. Cell Surf 2025; 13:100136. [PMID: 39850458 PMCID: PMC11755070 DOI: 10.1016/j.tcsw.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 01/25/2025] Open
Abstract
Alginates are abundant linear polysaccharides produced by brown algae and some bacteria. They have multiple biological roles and important medical and commercial uses. Alginates are comprised of D-mannuronic acid (M) and L-guluronic acid (G) and the ratios and distribution patterns of M and G profoundly impact their physiological and rheological properties. The structure/function relationships of alginates have been extensively studied in vitro but our understanding of the in vivo spatiotemporal regulation of alginate fine structures and their biological implications is limited. Monoclonal antibodies (mAbs) are powerful tools for localising and quantifying glycan structures and several alginate-directed mAbs have been developed. We used a library of well-defined alginates, with M and G block ratios determined by NMR, to refine our understanding of the binding properties of alginate-directed mAbs. Using these probes, we obtained new insight into how structural features of alginates are regulated at different scales, from cellular to seasonal.
Collapse
Affiliation(s)
- Catherine T. Jones
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Current Affiliation: Leica Biosystems Newcastle Ltd, Balliol Business Park, Benton Lane, Newcastle Upon Tyne NE12 8EW, UK
| | - Cassie Bakshani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Current Affiliation: Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ieva Lelenaite
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Denmark
- Current Affiliation: Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Akademická 2, 94901 Nitra, Slovakia
| | - Stjepan Krešimir Kračun
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Denmark
- Current Affiliation: Novonesis A/S, Gammel Venlighedsvej, 142970 Hørsholm, Denmark
| | - Jeff Pearson
- Newcastle University Biosciences Institute, The Medical School, University of Newcastle Upon Tyne Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew D. Wilcox
- Newcastle University Biosciences Institute, The Medical School, University of Newcastle Upon Tyne Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin Hardouin
- CNRS / Sorbonne Université, Station Biologique De Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Sonia Kridi
- CNRS / Sorbonne Université, Station Biologique De Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Cécile Hervé
- CNRS / Sorbonne Université, Station Biologique De Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - William G.T. Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| |
Collapse
|
2
|
Boscq S, Theodorou I, Milstein R, Le Bail A, Chenivesse S, Billoud B, Charrier B. Longitudinal growth of the Saccharina kelp embryo depends on actin filaments that control the formation of a corset-like structure composed of alginate. Sci Rep 2025; 15:1178. [PMID: 39774153 PMCID: PMC11706932 DOI: 10.1038/s41598-024-83814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The initiation of embryogenesis in the kelp Saccharina latissima is accompanied by significant anisotropy in cell shape. Using monoclonal antibodies, we show that this anisotropy coincides with a spatio-temporal pattern of accumulation of alginates in the cell wall of the zygote and embryo. Alginates rich in guluronates as well as sulphated fucans show a homogeneous distribution in the embryo throughout Phase I of embryogenesis, but mannuronate alginates accumulate mainly on the sides of the zygote and embryo, disappearing as the embryo enlarges at the start of Phase II. This pattern depends on the presence of cortical actin filaments. In contrast, within the embryo lamina, the alginate composition of the walls newly formed by cytokinesis is not affected by the depolymerisation of actin filaments. Thus, in addition to revealing the existence of a mannuronate-rich alginate corset-like structure that may restrict the enlargement of the zygote and the embryo, thereby promoting the formation of the apico-basal growth axis, we demonstrate stage- and cytoskeleton-dependent differences in cell wall deposition in Saccharina embryos.
Collapse
Affiliation(s)
- Samuel Boscq
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| | - Ioannis Theodorou
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
- Plant Sciences Department, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Roman Milstein
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| | - Aude Le Bail
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| | - Sabine Chenivesse
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| | - Bernard Billoud
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
- Morphogenesis of Brown Algae, Institut de Génomique fonctionnelle de Lyon (IGFL), UMR5242, ENS-Lyon, CNRS, INRAE, UCBL, 32-34 avenue Tony Garnier, Lyon, 69007, France
| | - Bénédicte Charrier
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France.
- Morphogenesis of Brown Algae, Institut de Génomique fonctionnelle de Lyon (IGFL), UMR5242, ENS-Lyon, CNRS, INRAE, UCBL, 32-34 avenue Tony Garnier, Lyon, 69007, France.
| |
Collapse
|
3
|
Priest T, Vidal-Melgosa S, Hehemann JH, Amann R, Fuchs BM. Carbohydrates and carbohydrate degradation gene abundance and transcription in Atlantic waters of the Arctic. ISME COMMUNICATIONS 2023; 3:130. [PMID: 38071398 PMCID: PMC10710508 DOI: 10.1038/s43705-023-00324-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 02/13/2024]
Abstract
Carbohydrates are chemically and structurally diverse, represent a substantial fraction of marine organic matter and are key substrates for heterotrophic microbes. Studies on carbohydrate utilisation by marine microbes have been centred on phytoplankton blooms in temperate regions, while far less is known from high-latitude waters and during later seasonal stages. Here, we combine glycan microarrays and analytical chromatography with metagenomics and metatranscriptomics to show the spatial heterogeneity in glycan distribution and potential carbohydrate utilisation by microbes in Atlantic waters of the Arctic. The composition and abundance of monomers and glycan structures in POM varied with location and depth. Complex fucose-containing sulfated polysaccharides, known to accumulate in the ocean, were consistently detected, while the more labile β-1,3-glucan exhibited a patchy distribution. Through 'omics analysis, we identify variations in the abundance and transcription of carbohydrate degradation-related genes across samples at the community and population level. The populations contributing the most to transcription were taxonomically related to those known as primary responders and key carbohydrate degraders in temperate ecosystems, such as NS4 Marine Group and Formosa. The unique transcription profiles for these populations suggest distinct substrate utilisation potentials, with predicted glycan targets corresponding to those structurally identified in POM from the same sampling sites. By combining cutting-edge technologies and protocols, we provide insights into the carbohydrate component of the carbon cycle in the Arctic during late summer and present a high-quality dataset that will be of great value for future comparative analyses.
Collapse
Affiliation(s)
- Taylor Priest
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | - Silvia Vidal-Melgosa
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- University of Bremen, MARUM, Bremen, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- University of Bremen, MARUM, Bremen, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
4
|
Vincent F, Gralka M, Schleyer G, Schatz D, Cabrera-Brufau M, Kuhlisch C, Sichert A, Vidal-Melgosa S, Mayers K, Barak-Gavish N, Flores JM, Masdeu-Navarro M, Egge JK, Larsen A, Hehemann JH, Marrasé C, Simó R, Cordero OX, Vardi A. Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms. Nat Commun 2023; 14:510. [PMID: 36720878 PMCID: PMC9889395 DOI: 10.1038/s41467-023-36049-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
Algal blooms are hotspots of marine primary production and play central roles in microbial ecology and global elemental cycling. Upon demise of the bloom, organic carbon is partly respired and partly transferred to either higher trophic levels, bacterial biomass production or sinking. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains largely unquantified. Here, we characterize the interplay between viral infection and the composition of a bloom-associated microbiome and consequently the evolving biogeochemical landscape, by conducting a large-scale mesocosm experiment where we monitor seven induced coccolithophore blooms. The blooms show different degrees of viral infection and reveal that only high levels of viral infection are followed by significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, upon viral infection the biomass of eukaryotic heterotrophs (thraustochytrids) rivals that of bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection causes a 2-4 fold increase in per-cell rates of extracellular carbon release in the form of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.
Collapse
Affiliation(s)
- Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Developmental Biology Unit, European Molecular Biological Laboratory, 69117, Heidelberg, Germany
| | - Matti Gralka
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, 02145, MA, USA.,Systems Biology Lab, Amsterdam Institute for Life and Environment (A-Life)/Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081, Amsterdam, The Netherlands
| | - Guy Schleyer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Andreas Sichert
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, 02145, MA, USA.,Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Silvia Vidal-Melgosa
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.,Center for Marine Environmental Sciences (MARUM), University of Bremen, 28359, Bremen, Germany
| | - Kyle Mayers
- NORCE Norwegian Research Centre, 5008, Bergen, Norway
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - J Michel Flores
- Department of Earth and Planetary Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Jorun Karin Egge
- Department of Biological Sciences (BIO), University of Bergen, 5020, Bergen, Norway
| | - Aud Larsen
- NORCE Norwegian Research Centre, 5008, Bergen, Norway.,Department of Biological Sciences (BIO), University of Bergen, 5020, Bergen, Norway
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.,Center for Marine Environmental Sciences (MARUM), University of Bremen, 28359, Bremen, Germany
| | - Celia Marrasé
- Institut de Ciències del Mar, CSIC, 08003, Barcelona, Spain
| | - Rafel Simó
- Institut de Ciències del Mar, CSIC, 08003, Barcelona, Spain
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, 02145, MA, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
5
|
Mazéas L, Yonamine R, Barbeyron T, Henrissat B, Drula E, Terrapon N, Nagasato C, Hervé C. Assembly and synthesis of the extracellular matrix in brown algae. Semin Cell Dev Biol 2023; 134:112-124. [PMID: 35307283 DOI: 10.1016/j.semcdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022]
Abstract
In brown algae, the extracellular matrix (ECM) and its constitutive polymers play crucial roles in specialized functions, including algal growth and development. In this review we offer an integrative view of ECM construction in brown algae. We briefly report the chemical composition of its main constituents, and how these are interlinked in a structural model. We examine the ECM assembly at the tissue and cell level, with consideration on its structure in vivo and on the putative subcellular sites for the synthesis of its main constituents. We further discuss the biosynthetic pathways of two major polysaccharides, alginates and sulfated fucans, and the progress made beyond the candidate genes with the biochemical validation of encoded proteins. Key enzymes involved in the elongation of the glycan chains are still unknown and predictions have been made at the gene level. Here, we offer a re-examination of some glycosyltransferases and sulfotransferases from published genomes. Overall, our analysis suggests novel investigations to be performed at both the cellular and biochemical levels. First, to depict the location of polysaccharide structures in tissues. Secondly, to identify putative actors in the ECM synthesis to be functionally studied in the future.
Collapse
Affiliation(s)
- Lisa Mazéas
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Rina Yonamine
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Japan
| | - Tristan Barbeyron
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Bernard Henrissat
- CNRS, Aix Marseille Univ, UMR 7257 AFMB, 13288 Marseille, France; INRAE, USC1408 AFMB, 13288 Marseille, France; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Technical University of Denmark, DTU Bioengineering, DK-2800 Kgs., Lyngby, Denmark
| | - Elodie Drula
- CNRS, Aix Marseille Univ, UMR 7257 AFMB, 13288 Marseille, France; INRAE, USC1408 AFMB, 13288 Marseille, France
| | - Nicolas Terrapon
- CNRS, Aix Marseille Univ, UMR 7257 AFMB, 13288 Marseille, France; INRAE, USC1408 AFMB, 13288 Marseille, France
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Japan
| | - Cécile Hervé
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| |
Collapse
|
6
|
Beuder S, Braybrook SA. Brown algal cell walls and development. Semin Cell Dev Biol 2023; 134:103-111. [PMID: 35396168 DOI: 10.1016/j.semcdb.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
Brown algae are complex multicellular eukaryotes whose cells possess a cell wall, which is an important structure that regulates cell size and shape. Alginate and fucose-containing sulfated polysaccharides (FCSPs) are two carbohydrate types that have major roles in influencing the mechanical properties of the cell wall (i.e. increasing or decreasing wall stiffness), which in turn regulate cell expansion, division, adhesion, and other processes; however, how brown algal cell wall structure regulates its mechanical properties, and how this relationship influences cellular growth and organismal development, is not well-understood. This chapter is focused on reviewing what we currently know about how the roles of alginates and FCSPs in brown algal developmental processes, as well as how they influence the structural and mechanical properties of cell walls. Additionally, we discuss how brown algal mutants may be leveraged to learn more about the underlying mechanisms that regulate cell wall structure, mechanics, and developmental processes, and finally we propose questions to guide future research with the use of emerging technologies.
Collapse
Affiliation(s)
- Steven Beuder
- Department of Molecular, Cell, and Developmental Biology, UCLA, 610 Charles E Young Drive, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, 570 Westwood Plaza Building 114, Los Angeles, CA 90095, USA
| | - Siobhan A Braybrook
- Department of Molecular, Cell, and Developmental Biology, UCLA, 610 Charles E Young Drive, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, 570 Westwood Plaza Building 114, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Bogaert KA, Zakka EE, Coelho SM, De Clerck O. Polarization of brown algal zygotes. Semin Cell Dev Biol 2023; 134:90-102. [PMID: 35317961 DOI: 10.1016/j.semcdb.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Eliane E Zakka
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
8
|
Buck-Wiese H, Andskog MA, Nguyen NP, Bligh M, Asmala E, Vidal-Melgosa S, Liebeke M, Gustafsson C, Hehemann JH. Fucoid brown algae inject fucoidan carbon into the ocean. Proc Natl Acad Sci U S A 2023; 120:e2210561119. [PMID: 36584294 PMCID: PMC9910443 DOI: 10.1073/pnas.2210561119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 01/01/2023] Open
Abstract
Brown algae annually convert gigatons of carbon dioxide into carbohydrates, including the complex extracellular matrix polysaccharide fucoidan. Due to its persistence in the environment, fucoidan is potentially a pathway for marine carbon sequestration. Rates of fucoidan secretion by brown algae remain unknown due to the challenge of identifying and quantifying complex polysaccharides in seawater. We adapted the techniques of anion exchange chromatography, enzyme-linked immunosorbent assay, and biocatalytic enzyme-based assay for detection and quantification of fucoidan. We found the brown alga Fucus vesiculosus at the Baltic Sea coast of south-west Finland to secrete 0.3% of their biomass as fucoidan per day. Dissolved fucoidan concentrations in seawater adjacent to algae reached up to 0.48 mg L-1. Fucoidan accumulated during incubations of F. vesiculosus, significantly more in light than in darkness. Maximum estimation by acid hydrolysis indicated fucoidan secretion at a rate of 28 to 40 mg C kg-1 h-1, accounting for 44 to 50% of all exuded dissolved organic carbon. Composed only of carbon, oxygen, hydrogen, and sulfur, fucoidan secretion does not consume nutrients enabling carbon sequestration independent of algal growth. Extrapolated over a year, the algae sequester more carbon into secreted fucoidan than their biomass. The global utility of fucoidan secretion is an alternative pathway for carbon dioxide removal by brown algae without the need to harvest or bury algal biomass.
Collapse
Affiliation(s)
- Hagen Buck-Wiese
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| | - Mona A. Andskog
- Centre for Coastal Biogeochemistry, Southern Cross University, 2480Lismore, Australia
| | - Nguyen P. Nguyen
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| | - Margot Bligh
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| | - Eero Asmala
- Geological Survey of Finland, Environmental Solutions, 02151Espoo, Finland
| | - Silvia Vidal-Melgosa
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
| | - Camilla Gustafsson
- University of Helsinki, Tvärminne Zoological Station, 10900Hanko, Finland
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359Bremen, Germany
| |
Collapse
|
9
|
Mei X, Chang Y, Shen J, Zhang Y, Han J, Xue C. Characterization of a Novel Carrageenan-Specific Carbohydrate-Binding Module: a Promising Tool for the In Situ Investigation of Carrageenan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9066-9072. [PMID: 35830544 DOI: 10.1021/acs.jafc.2c03139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carrageenan is a commercially important polysaccharide widely applied in the food industry. Specific probes are critical tools for the in situ investigation of polysaccharides, whereas the carrageenan-specific probes are limited at present. Carbohydrate-binding modules (CBMs) could serve as specific probes for the in situ investigation of polysaccharides. In the present study, an unknown function module from the κ-carrageenase Cgk16A was cloned and expressed in Escherichia coli. The expressed protein Cgk16A-CBM92 could specifically bind to carrageenan. Its novelty sheds light on a new CBM family (CBM92) as the founding member. Furthermore, a fluorescent probe was successfully constructed by fusing Cgk16A-CBM92 with a green fluorescent protein. The application potential of Cgk16A-CBM92 as a probe served in the in situ visualization of carrageenan was evaluated. The discovery of Cgk16A-CBM92 provided a promising tool for the in situ investigation of carrageenan.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jin Han
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Pengyan Z, Chang L, Zhanru S, Fuli L, Jianting Y, Delin D. Genome-wide transcriptome profiling and characterization of mannuronan C5-epimerases in Saccharina japonica. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Yonamine R, Ichihara K, Tsuyuzaki S, Hervé C, Motomura T, Nagasato C. Changes in Cell Wall Structure During Rhizoid Formation of Silvetia babingtonii (Fucales, Phaeophyceae) Zygotes. JOURNAL OF PHYCOLOGY 2021; 57:1356-1367. [PMID: 33932028 DOI: 10.1111/jpy.13178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
We examined the ultrastructure of the cell wall and immunolocalization of alginates using specific antibodies against M-rich alginates and MG blocks during rhizoid formation in fucoid zygotes, Silvetia babingtonii. The thallus region of 24-h-old zygotes had a cell wall made of three layers with different fiber distribution. In the 12-h-old zygotes, three layers in the thallus were observed before rhizoid formation, namely the inner, middle, and outer layers. During rhizoid elongation, only the inner layer was apparent close to the rhizoid tip area. Immunoelectron microscopy detected M-rich blocks of alginate on the inner half of the cell wall, irrespective of the number of layers in the thallus and rhizoid regions. The MG blocks were seen to cover a slightly wider area than M-rich alginate blocks. It was suggested that parts of M in mannuronan would be rapidly converted to G, and MG-blocks are generated. Transcriptome analysis was performed using 3 -, 10 -, and 24-h-old zygotes after fertilization to examine the relationship between gene expression and alginate synthesis over time. The expression of two mannuronan C5-epimerase homologs that convert mannuronic acid into guluronic acid in alginates was upregulated or downregulated over the course of the examination.
Collapse
Affiliation(s)
- Rina Yonamine
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kensuke Ichihara
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Shiro Tsuyuzaki
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Cécile Hervé
- Sorbonne Universités, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| |
Collapse
|
12
|
Linardić M, Braybrook SA. Identification and selection of optimal reference genes for qPCR-based gene expression analysis in Fucus distichus under various abiotic stresses. PLoS One 2021; 16:e0233249. [PMID: 33909633 PMCID: PMC8081170 DOI: 10.1371/journal.pone.0233249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/18/2021] [Indexed: 11/19/2022] Open
Abstract
Quantitative gene expression analysis is an important tool in the scientist's belt. The identification of evenly expressed reference genes is necessary for accurate quantitative gene expression analysis, whether by traditional RT-PCR (reverse-transcription polymerase chain reaction) or by qRT-PCR (quantitative real-time PCR; qPCR). In the Stramenopiles (the major line of eukaryotes that includes brown algae) there is a noted lack of known reference genes for such studies, largely due to the absence of available molecular tools. Here we present a set of nine reference genes (Elongation Factor 1 alpha (EF1A), Elongation Factor 2 alpha (EF2A), Elongation Factor 1 beta (EF1B), 14-3-3 Protein, Ubiquitin Conjugating Enzyme (UBCE2), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), Actin Related Protein Complex (ARP2/3), Ribosomal Protein (40s; S23), and Actin) for the brown alga Fucus distichus. These reference genes were tested on adult sporophytes across six abiotic stress conditions (desiccation, light and temperature modification, hormone addition, pollutant exposure, nutrient addition, and wounding). Suitability of these genes as reference genes was quantitatively evaluated across conditions using standard methods and the majority of the tested genes were evaluated favorably. However, we show that normalization genes should be chosen on a condition-by-condition basis. We provide a recommendation that at least two reference genes be used per experiment, a list of recommended pairs for the conditions tested here, and a procedure for identifying a suitable set for an experimenter's unique design. With the recent expansion of interest in brown algal biology and accompanied molecular tools development, the variety of experimental conditions tested here makes this study a valuable resource for future work in basic biology and understanding stress responses in the brown algal lineage.
Collapse
Affiliation(s)
- Marina Linardić
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Energy Institute of Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Siobhan A. Braybrook
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Energy Institute of Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Ponce NMA, Stortz CA. A Comprehensive and Comparative Analysis of the Fucoidan Compositional Data Across the Phaeophyceae. FRONTIERS IN PLANT SCIENCE 2020; 11:556312. [PMID: 33324429 PMCID: PMC7723892 DOI: 10.3389/fpls.2020.556312] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/02/2020] [Indexed: 05/21/2023]
Abstract
In the current review, compositional data on fucoidans extracted from more than hundred different species were surveyed through the available literature. The analysis of crude extracts, purified extracts or carefully isolated fractions is included in tabular form, discriminating the seaweed source by its taxonomical order (and sometimes the family). This survey was able to encounter some similarities between the different species, as well as some differences. Fractions which were obtained through anion-exchange chromatography or cationic detergent precipitation showed the best separation patterns: the fractions with low charge correspond mostly to highly heterogeneous fucoidans, containing (besides fucose) other monosaccharides like xylose, galactose, mannose, rhamnose, and glucuronic acid, and contain low-sulfate/high uronic acid proportions, whereas those with higher total charge usually contain mainly fucose, accompanied with variable proportions of galactose, are highly sulfated and show almost no uronic acids. The latter fractions are usually the most biologically active. Fractions containing intermediate proportions of both polysaccharides appear at middle ionic strengths. This pattern is common for all the orders of brown seaweeds, and most differences appear from the seaweed source (habitat, season), and from the diverse extraction, purification, and analytitcal methods. The Dictyotales appear to be the most atypical order, as usually large proportions of mannose and uronic acids appear, and thus they obscure the differences between the fractions with different charge. Within the family Alariaceae (order Laminariales), the presence of sulfated galactofucans with high galactose content (almost equal to that of fucose) is especially noteworthy.
Collapse
Affiliation(s)
- Nora M. A. Ponce
- Departamento de Química Orgánica, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A. Stortz
- Departamento de Química Orgánica, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Abstract
Model organisms are extensively used in research as accessible and convenient systems for studying a particular area or question in biology. Traditionally, only a limited number of organisms have been studied in detail, but modern genomic tools are enabling researchers to extend beyond the set of classical model organisms to include novel species from less-studied phylogenetic groups. This review focuses on model species for an important group of multicellular organisms, the brown algae. The development of genetic and genomic tools for the filamentous brown alga Ectocarpus has led to it emerging as a general model system for this group, but additional models, such as Fucus or Dictyota dichotoma, remain of interest for specific biological questions. In addition, Saccharina japonica has emerged as a model system to directly address applied questions related to algal aquaculture. We discuss the past, present, and future of brown algal model organisms in relation to the opportunities and challenges in brown algal research.
Collapse
Affiliation(s)
- Susana M Coelho
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
- Current affiliation: Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - J Mark Cock
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
| |
Collapse
|
15
|
Halat L, Galway ME, Garbary DJ. Cell wall structural changes lead to separation and shedding of biofouled epidermal cell wall layers by the brown alga Ascophyllum nodosum. PROTOPLASMA 2020; 257:1319-1331. [PMID: 32507923 DOI: 10.1007/s00709-020-01502-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Marine plants control the accumulation of biofouling organisms (epibionts) on their surfaces by various chemical and physical means. Ascophyllum nodosum is a perennial multicellular brown alga known to shed patches of epidermal material, thus removing epibionts and exposing unfouled surfaces to another cycle of colonization. While surface shedding is documented in multiple marine macroalgae, the cell and developmental biology of the phenomenon is almost unexplored. A previous investigation of Ascophyllum not only revealed regular cycles of epibiont accumulation and epidermal shedding but also stimulated the development of methods to detect the corresponding changes in epidermal (meristoderm) cells that are reported here. Confocal laser scanning microscopy of cell walls and cytoplasm fluorescently stained with Solophenyl Flavine 7GFE (Direct Yellow 96) and the lipophilic dye Rhodamine B (respectively) was combined with light and electron microscopy of chemically fixed or freeze-substituted tissues. As epibionts accumulated, epidermal cells generated thick, apical cell walls in which differentially stained central layers subsequently developed, marking the site of future cell wall separation. During cell wall separation, the outermost part of the cell wall and its epibionts plus the upper parts of the anticlinal walls between neighboring cells detached in a layer from multiple epidermal cells, exposing the remaining inner part of the cell wall to new colonizing organisms. These findings highlight the dynamic nature of apical cell wall structure and composition in response to colonizing organisms and lay a foundation for further investigations on the periodic removal of biofouling epibionts from the surface of Ascophyllum fronds.
Collapse
Affiliation(s)
- Laryssa Halat
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Moira E Galway
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada.
| | - David J Garbary
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada
- Jack McLachlan Laboratory of Aquatic Plant Resources, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada
| |
Collapse
|
16
|
Mei X, Chang Y, Shen J, Zhang Y, Xue C. Expression and characterization of a novel alginate-binding protein: A promising tool for investigating alginate. Carbohydr Polym 2020; 246:116645. [PMID: 32747278 DOI: 10.1016/j.carbpol.2020.116645] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Abstract
Alginate is a commercially important polysaccharide widely applied in various industries. Carbohydrate-binding proteins could be utilized as desirable tools in the investigation and further applications of polysaccharides. Few alginate-binding proteins have hitherto been characterized and reported. In the present study, a novel alginate-binding protein ABP_Wf, consisting of two "orphan" carbohydrate-binding modules, was cloned from a predicted alginate utilization locus of marine bacterium Wenyingzhuangia funcanilytica, and expressed in Escherichia coli. ABP_Wf exhibited a specific binding capacity to alginate, and the association constant (Ka) and affinity (KD) were 1.94 × 103 M-1s-1 and 1.16 × 10-6 M. It was confirmed that the binding capacity of ABP_Wf to alginate is attributed to its constituent CBM16 domain rather than the CBM44 domain. The potentials of ABP_Wf in the semi-quantitative detection and the in situ visualization of alginate were evaluated, which implied that ABP_Wf could be served as a promising tool for investigating alginate.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
17
|
Siméon A, Kridi S, Kloareg B, Hervé C. Presence of Exogenous Sulfate Is Mandatory for Tip Growth in the Brown Alga Ectocarpus subulatus. FRONTIERS IN PLANT SCIENCE 2020; 11:1277. [PMID: 33013948 PMCID: PMC7461865 DOI: 10.3389/fpls.2020.01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/05/2020] [Indexed: 05/08/2023]
Abstract
Brown algae (Phaeophyceae) are multicellular photoautrophic organisms and the largest biomass producers in coastal regions. A variety of observations indicate that their extracellular matrix (ECM) is involved with screening of salts, development, cell fate selection, and defense responses. It is likely that these functionalities are related to its constitutive structures. The major components of the ECM of brown algae are β-glucans, alginates, and fucose-containing sulfated polysaccharides. The genus Ectocarpus comprises a wide range of species that have adapted to different environments, including isolates of Ectocarpus subulatus, a species highly resistant to low salinity. Previous studies on a freshwater strain of E. subulatus indicated that the sulfate remodeling of fucans is related to the external salt concentration. Here we show that the sulfate content of the surrounding medium is a key parameter influencing both the patterning of the alga and the occurrence of the BAM4 sulfated fucan epitope in walls of apical cells. These results indicate that sulfate uptake and incorporation in the sulfated fucans from apical cells is an essential parameter to sustain tip growth, and we discuss its influence on the architectural plasticity of Ectocarpus.
Collapse
|
18
|
Wittine K, Saftić L, Peršurić Ž, Kraljević Pavelić S. Novel Antiretroviral Structures from Marine Organisms. Molecules 2019; 24:molecules24193486. [PMID: 31561445 PMCID: PMC6804230 DOI: 10.3390/molecules24193486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 11/24/2022] Open
Abstract
In spite of significant advancements and success in antiretroviral therapies directed against HIV infection, there is no cure for HIV, which scan persist in a human body in its latent form and become reactivated under favorable conditions. Therefore, novel antiretroviral drugs with different modes of actions are still a major focus for researchers. In particular, novel lead structures are being sought from natural sources. So far, a number of compounds from marine organisms have been identified as promising therapeutics for HIV infection. Therefore, in this paper, we provide an overview of marine natural products that were first identified in the period between 2013 and 2018 that could be potentially used, or further optimized, as novel antiretroviral agents. This pipeline includes the systematization of antiretroviral activities for several categories of marine structures including chitosan and its derivatives, sulfated polysaccharides, lectins, bromotyrosine derivatives, peptides, alkaloids, diterpenes, phlorotannins, and xanthones as well as adjuvants to the HAART therapy such as fish oil. We critically discuss the structures and activities of the most promising new marine anti-HIV compounds.
Collapse
Affiliation(s)
- Karlo Wittine
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Lara Saftić
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Željka Peršurić
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| |
Collapse
|
19
|
Rabillé H, Torode TA, Tesson B, Le Bail A, Billoud B, Rolland E, Le Panse S, Jam M, Charrier B. Alginates along the filament of the brown alga Ectocarpus help cells cope with stress. Sci Rep 2019; 9:12956. [PMID: 31506545 PMCID: PMC6736953 DOI: 10.1038/s41598-019-49427-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022] Open
Abstract
Ectocarpus is a filamentous brown alga, which cell wall is composed mainly of alginates and fucans (80%), two non-crystalline polysaccharide classes. Alginates are linear chains of epimers of 1,4-linked uronic acids, β-D-mannuronic acid (M) and α-L-guluronic acid (G). Previous physico-chemical studies showed that G-rich alginate gels are stiffer than M-rich alginate gels when prepared in vitro with calcium. In order to assess the possible role of alginates in Ectocarpus, we first immunolocalised M-rich or G-rich alginates using specific monoclonal antibodies along the filament. As a second step, we calculated the tensile stress experienced by the cell wall along the filament, and varied it with hypertonic or hypotonic solutions. As a third step, we measured the stiffness of the cell along the filament, using cell deformation measurements and atomic force microscopy. Overlapping of the three sets of data allowed to show that alginates co-localise with the stiffest and most stressed areas of the filament, namely the dome of the apical cell and the shanks of the central round cells. In addition, no major distinction between M-rich and G-rich alginate spatial patterns could be observed. Altogether, these results support that both M-rich and G-rich alginates play similar roles in stiffening the cell wall where the tensile stress is high and exposes cells to bursting, and that these roles are independent from cell growth and differentiation.
Collapse
Affiliation(s)
- Hervé Rabillé
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
| | - Thomas A Torode
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, United Kingdom
| | - Benoit Tesson
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Aude Le Bail
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
- Department of Cell Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Bernard Billoud
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
| | - Elodie Rolland
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France
| | - Sophie Le Panse
- Platform Merimage, FR 2424, CNRS, Station Biologique, Roscoff, France
| | - Murielle Jam
- Marine Glycobiology team, UMR8227, CNRS-UPMC, Station Biologique, Roscoff, France
| | - Bénédicte Charrier
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique, Roscoff, France.
| |
Collapse
|
20
|
Charrier B, Rabillé H, Billoud B. Gazing at Cell Wall Expansion under a Golden Light. TRENDS IN PLANT SCIENCE 2019; 24:130-141. [PMID: 30472067 DOI: 10.1016/j.tplants.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
In plants, cell growth is constrained by a stiff cell wall, at least this is the way textbooks usually present it. Accordingly, many studies have focused on the elasticity and plasticity of the cell wall as prerequisites for expansion during growth. With their specific evolutionary history, cell wall composition, and environment, brown algae present a unique configuration offering a new perspective on the involvement of the cell wall, viewed as an inert material yet with intrinsic mechanical properties, in growth. In light of recent findings, we explore here how much of the functional relationship between cell wall chemistry and intrinsic mechanics on the one hand, and growth on the other hand, has been uncovered in brown algae.
Collapse
Affiliation(s)
- Bénédicte Charrier
- UMR8227, CNRS-Sorbonne Université, Station Biologique, Place Georges Teissier, 29680 Roscoff, France.
| | - Hervé Rabillé
- UMR8227, CNRS-Sorbonne Université, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
| | - Bernard Billoud
- UMR8227, CNRS-Sorbonne Université, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
| |
Collapse
|
21
|
Van de Wouwer D, Boerjan W, Vanholme B. Plant cell wall sugars: sweeteners for a bio-based economy. PHYSIOLOGIA PLANTARUM 2018; 164:27-44. [PMID: 29430656 DOI: 10.1111/ppl.12705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 05/23/2023]
Abstract
Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development.
Collapse
Affiliation(s)
- Dorien Van de Wouwer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Bartel Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| |
Collapse
|
22
|
Torode TA, O'Neill R, Marcus SE, Cornuault V, Pose S, Lauder RP, Kračun SK, Rydahl MG, Andersen MCF, Willats WGT, Braybrook SA, Townsend BJ, Clausen MH, Knox JP. Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics. PLANT PHYSIOLOGY 2018; 176:1547-1558. [PMID: 29150558 PMCID: PMC5813576 DOI: 10.1104/pp.17.01568] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 05/18/2023]
Abstract
A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis (Arabidopsis thaliana), Miscanthus x giganteus, and notably sugar beet (Beta vulgaris) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a β-1,6-galactosyl substitution of β-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic (Allium sativum) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear β-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls.
Collapse
Affiliation(s)
- Thomas A Torode
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
| | - Rachel O'Neill
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Valérie Cornuault
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sara Pose
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rebecca P Lauder
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Stjepan K Kračun
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Maja Gro Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Mathias C F Andersen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - William G T Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Siobhan A Braybrook
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
| | - Belinda J Townsend
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
23
|
Rydahl MG, Hansen AR, Kračun SK, Mravec J. Report on the Current Inventory of the Toolbox for Plant Cell Wall Analysis: Proteinaceous and Small Molecular Probes. FRONTIERS IN PLANT SCIENCE 2018; 9:581. [PMID: 29774041 PMCID: PMC5943554 DOI: 10.3389/fpls.2018.00581] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 05/18/2023]
Abstract
Plant cell walls are highly complex structures composed of diverse classes of polysaccharides, proteoglycans, and polyphenolics, which have numerous roles throughout the life of a plant. Significant research efforts aim to understand the biology of this cellular organelle and to facilitate cell-wall-based industrial applications. To accomplish this, researchers need to be provided with a variety of sensitive and specific detection methods for separate cell wall components, and their various molecular characteristics in vitro as well as in situ. Cell wall component-directed molecular detection probes (in short: cell wall probes, CWPs) are an essential asset to the plant glycobiology toolbox. To date, a relatively large set of CWPs has been produced-mainly consisting of monoclonal antibodies, carbohydrate-binding modules, synthetic antibodies produced by phage display, and small molecular probes. In this review, we summarize the state-of-the-art knowledge about these CWPs; their classification and their advantages and disadvantages in different applications. In particular, we elaborate on the recent advances in non-conventional approaches to the generation of novel CWPs, and identify the remaining gaps in terms of target recognition. This report also highlights the addition of new "compartments" to the probing toolbox, which is filled with novel chemical biology tools, such as metabolic labeling reagents and oligosaccharide conjugates. In the end, we also forecast future developments in this dynamic field.
Collapse
Affiliation(s)
- Maja G. Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aleksander R. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stjepan K. Kračun
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- GlycoSpot IVS, Frederiksberg, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Jozef Mravec
| |
Collapse
|
24
|
Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydr Polym 2017; 175:395-408. [PMID: 28917882 DOI: 10.1016/j.carbpol.2017.07.082] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Studies on brown algal cell walls have entered a new phase with the concomitant discovery of novel polysaccharides present in cell walls and the establishment of a comprehensive generic model for cell wall architecture. Brown algal cell walls are composites of structurally complex polysaccharides. In this review we discuss the most recent progress in the structural composition of brown algal cell walls, emphasizing the significance of extraction and screening techniques, and the biological activities of the corresponding polysaccharides, with a specific focus on the fucose-containing sulfated polysaccharides. They include valuable marine molecules that exert a broad range of pharmacological properties such as antioxidant and anti-inflammatory activities, functions in the regulation of immune responses and of haemostasis, anti-infectious and anticancer actions. We identify the key remaining challenges in this research field.
Collapse
Affiliation(s)
- Estelle Deniaud-Bouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Kevin Hardouin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Philippe Potin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Bernard Kloareg
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Cécile Hervé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| |
Collapse
|
25
|
Linardić M, Braybrook SA. Towards an understanding of spiral patterning in the Sargassum muticum shoot apex. Sci Rep 2017; 7:13887. [PMID: 29066850 PMCID: PMC5654765 DOI: 10.1038/s41598-017-13767-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/26/2017] [Indexed: 11/09/2022] Open
Abstract
In plants and parenchymatous brown algae the body arises through the activity of an apical meristem (a niche of cells or a single cell). The meristem produces lateral organs in specific patterns, referred to as phyllotaxis. In plants, two different control mechanisms have been proposed: one is position-dependent and relies on morphogen accumulation at future organ sites; the other is a lineage-based system which links phyllotaxis to the apical cell division pattern. Here we examine the apical patterning of the brown alga, Sargassum muticum, which exhibits spiral phyllotaxis (137.5° angle) and an unlinked apical cell division pattern. The Sargassum apex presents characteristics of a self-organising system, similar to plant meristems. In contrast to complex plant meristems, we were unable to correlate the plant morphogen auxin with bud positioning in Sargassum, nor could we predict cell wall softening at new bud sites. Our data suggests that in Sargassum muticum there is no connection between phyllotaxis and the apical cell division pattern indicating a position-dependent patterning mechanism may be in place. The underlying mechanisms behind the phyllotactic patterning appear to be distinct from those seen in plants.
Collapse
Affiliation(s)
- Marina Linardić
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Siobhan A Braybrook
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
- Molecular, Cell and Developmental Biology, UCLA, 610 Charles E Young Dr East, Los Angeles, CA, 90095-7239, USA.
| |
Collapse
|