1
|
Eirich J, Boyer JB, Armbruster L, Ivanauskaite A, De La Torre C, Meinnel T, Wirtz M, Mulo P, Finkemeier I, Giglione C. Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks. Mol Cell Proteomics 2024; 23:100845. [PMID: 39321874 PMCID: PMC11546460 DOI: 10.1016/j.mcpro.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.
Collapse
Affiliation(s)
- Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany.
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Zhang M, Ming Y, Wang HB, Jin HL. Strategies for adaptation to high light in plants. ABIOTECH 2024; 5:381-393. [PMID: 39279858 PMCID: PMC11399379 DOI: 10.1007/s42994-024-00164-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 09/18/2024]
Abstract
Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yu Ming
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hong-Bin Wang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006 China
| | - Hong-Lei Jin
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375 China
| |
Collapse
|
3
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
4
|
Zhang H, Xiong X, Guo K, Zheng M, Cao T, Yang Y, Song J, Cen J, Zhang J, Jiang Y, Feng S, Tian L, Li X. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light. Nat Commun 2024; 15:5578. [PMID: 38956103 PMCID: PMC11219949 DOI: 10.1038/s41467-024-49991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Diatoms often outnumber other eukaryotic algae in the oceans, especially in coastal environments characterized by frequent fluctuations in light intensity. The identities and operational mechanisms of regulatory factors governing diatom acclimation to high light stress remain largely elusive. Here, we identified the AUREO1c protein from the coastal diatom Phaeodactylum tricornutum as a crucial regulator of non-photochemical quenching (NPQ), a photoprotective mechanism that dissipates excess energy as heat. AUREO1c detects light stress using a light-oxygen-voltage (LOV) domain and directly activates the expression of target genes, including LI818 genes that encode NPQ effector proteins, via its bZIP DNA-binding domain. In comparison to a kinase-mediated pathway reported in the freshwater green alga Chlamydomonas reinhardtii, the AUREO1c pathway exhibits a faster response and enables accumulation of LI818 transcript and protein levels to comparable degrees between continuous high-light and fluctuating-light treatments. We propose that the AUREO1c-LI818 pathway contributes to the resilience of diatoms under dynamic light conditions.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofeng Xiong
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Kangning Guo
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiaojiao Song
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie Cen
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiahuan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
5
|
Wang L, Dang QL. Elevated CO 2 and ammonium nitrogen promoted the plasticity of two maple in great lakes region by adjusting photosynthetic adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1367535. [PMID: 38654907 PMCID: PMC11035798 DOI: 10.3389/fpls.2024.1367535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Introduction Climate change-related CO2 increases and different forms of nitrogen deposition are thought to affect the performance of plants, but their interactions have been poorly studied. Methods This study investigated the responses of photosynthesis and growth in two invasive maple species, amur maple (Acer ginnala Maxim.) and boxelder maple (Acer negundo L.), to elevated CO2 (400 µmol mol-1 (aCO2) vs. 800 µmol mol-1 (eCO2) and different forms of nitrogen fertilization (100% nitrate, 100% ammonium, and an equal mix of the two) with pot experiment under controlled conditions. Results and discussion The results showed that eCO2 significantly promoted photosynthesis, biomass, and stomatal conductance in both species. The biochemical limitation of photosynthesis was switched to RuBP regeneration (related to Jmax) under eCO2 from the Rubisco carboxylation limitation (related to Vcmax) under aCO2. Both species maximized carbon gain by lower specific leaf area and higher N concentration than control treatment, indicating robust morphological plasticity. Ammonium was not conducive to growth under aCO2, but it significantly promoted biomass and photosynthesis under eCO2. When nitrate was the sole nitrogen source, eCO2 significantly reduced N assimilation and growth. The total leaf N per tree was significantly higher in boxelder maple than in amur maple, while the carbon and nitrogen ratio was significantly lower in boxelder maple than in amur maple, suggesting that boxelder maple leaf litter may be more favorable for faster nutrient cycling. The results suggest that increases in ammonium under future elevated CO2 will enhance the plasticity and adaptation of the two maple species.
Collapse
Affiliation(s)
- Lei Wang
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, China
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Qing-Lai Dang
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
6
|
Hu Q, Zhong A, Hawes I. Improved illumination homogeneity increased accuracies of derived light utilization efficiency for aquatic photosynthesis-irradiance curve analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108027. [PMID: 37729856 DOI: 10.1016/j.plaphy.2023.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Accumulating knowledge of photo-physiological acclimation and adaptation in aquatic phototrophs to altered environmental factors are valuable for managing and conserving aquatic ecosystems. Photosynthesis-irradiance curve (PI curve) analysis is an essential technique to assess the photo-physiological states of and environmental stresses on photosystems. For PI curve analysis, replicates were rarely homogeneously illuminated, which could generate variations potentially obscuring treatment effects or lead to considerable errors. Here we present an incubation apparatus with a novel configuration of illuminating unit that supplied a gradient of irradiances with improved homogeneity. The achieved homogeneity exceeds that of other homogeneous illuminating apparatus reported for photosynthetic research. We used the elaborated apparatus to develop PI curves for S. pectinata photo-acclimated to contrasting light conditions in both greenhouse and field scenarios. Photo-acclimation to lower irradiances enhanced both maximum photosynthetic rates and light utilization efficiencies in general. And improved homogeneity for PI curve analysis most likely reduced variations of derived light utilization efficiency compared to those using conventional incubation apparatus. The elaborated incubation apparatus could provide insights into developments of illumination techniques for photosynthetic studies and has the potential to refine the subtleties of photo-acclimation studies.
Collapse
Affiliation(s)
- Qian Hu
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, China; Waterways Centre for Freshwater Management, Lincoln University, Lincoln, New Zealand.
| | - Aiwen Zhong
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, China
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand; Waterways Centre for Freshwater Management, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
7
|
Proverbio D, Skupin A, Gonçalves J. Systematic analysis and optimization of early warning signals for critical transitions using distribution data. iScience 2023; 26:107156. [PMID: 37456849 PMCID: PMC10338236 DOI: 10.1016/j.isci.2023.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/21/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Abrupt shifts between alternative regimes occur in complex systems, from cell regulation to brain functions to ecosystems. Several model-free early warning signals (EWS) have been proposed to detect impending transitions, but failure or poor performance in some systems have called for better investigation of their generic applicability. Notably, there are still ongoing debates whether such signals can be successfully extracted from data in particular from biological experiments. In this work, we systematically investigate properties and performance of dynamical EWS in different deteriorating conditions, and we propose an optimized combination to trigger warnings as early as possible, eventually verified on experimental data from microbiological populations. Our results explain discrepancies observed in the literature between warning signs extracted from simulated models and from real data, provide guidance for EWS selection based on desired systems and suggest an optimized composite indicator to alert for impending critical transitions using distribution data.
Collapse
Affiliation(s)
- Daniele Proverbio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue Du Swing, 4367 Belvaux, Luxembourg
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QL, UK
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue Du Swing, 4367 Belvaux, Luxembourg
- National Center for Microscopy and Imaging Research, University of California San Diego, Gilman Drive, La Jolla, CA 9500, USA
- Department of Physics and Material Science, University of Luxembourg, 162a Avenue de La Faiencerie, 1511 Luxembourg, Luxembourg
| | - Jorge Gonçalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue Du Swing, 4367 Belvaux, Luxembourg
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
8
|
Svoboda V, Oung HMO, Koochak H, Yarbrough R, Mckenzie SD, Puthiyaveetil S, Kirchhoff H. Quantification of energy-converting protein complexes in plant thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148945. [PMID: 36442511 DOI: 10.1016/j.bbabio.2022.148945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Knowledge about the exact abundance and ratio of photosynthetic protein complexes in thylakoid membranes is central to understanding structure-function relationships in energy conversion. Recent modeling approaches for studying light harvesting and electron transport reactions rely on quantitative information on the constituent complexes in thylakoid membranes. Over the last decades several quantitative methods have been established and refined, enabling precise stoichiometric information on the five main energy-converting building blocks in the thylakoid membrane: Light-harvesting complex II (LHCII), Photosystem II (PSII), Photosystem I (PSI), cytochrome b6f complex (cyt b6f complex), and ATPase. This paper summarizes a few quantitative spectroscopic and biochemical methods that are currently available for quantification of plant thylakoid protein complexes. Two new methods are presented for quantification of LHCII and the cyt b6f complex, which agree well with established methods. In addition, recent improvements in mass spectrometry (MS) allow deeper compositional information on thylakoid membranes. The comparison between mass spectrometric and more classical protein quantification methods shows similar quantities of complexes, confirming the potential of thylakoid protein complex quantification by MS. The quantitative information on PSII, PSI, and LHCII reveal that about one third of LHCII must be associated with PSI for a balanced light energy absorption by the two photosystems.
Collapse
Affiliation(s)
- Vaclav Svoboda
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Hui Min Olivia Oung
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Haniyeh Koochak
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Robert Yarbrough
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Steven D Mckenzie
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| |
Collapse
|
9
|
Research progress on maintaining chloroplast homeostasis under stress conditions: a review. Acta Biochim Biophys Sin (Shanghai) 2023; 55:173-182. [PMID: 36840466 PMCID: PMC10157539 DOI: 10.3724/abbs.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
On a global scale, drought, salinity, extreme temperature, and other abiotic stressors severely limit the quality and yield of crops. Therefore, it is crucial to clarify the adaptation strategies of plants to harsh environments. Chloroplasts are important environmental sensors in plant cells. For plants to thrive in different habitats, chloroplast homeostasis must be strictly regulated, which is necessary to maintain efficient plant photosynthesis and other metabolic reactions under stressful environments. To maintain normal chloroplast physiology, two important biological processes are needed: the import and degradation of chloroplast proteins. The orderly import of chloroplast proteins and the timely degradation of damaged chloroplast components play a key role in adapting plants to their environment. In this review, we briefly described the mechanism of chloroplast TOC-TIC protein transport. The importance and recent progress of chloroplast protein turnover, retrograde signaling, and chloroplast protein degradation under stress are summarized. Furthermore, the potential of targeted regulation of chloroplast homeostasis is emphasized to improve plant adaptation to environmental stresses.
Collapse
|
10
|
Frede K, Baldermann S. Accumulation of carotenoids in Brassica rapa ssp. chinensis by a high proportion of blue in the light spectrum. Photochem Photobiol Sci 2022; 21:1947-1959. [PMID: 35895283 DOI: 10.1007/s43630-022-00270-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Carotenoids have the potential to improve the human health which leads to an increasing consumer demand for carotenoid-rich vegetables. The implementation of new, less energy-consuming vegetable production systems using artificial light such as light-emitting diodes (LEDs) is essential. In the present study, pak choi (Brassica rapa ssp. chinensis 'Black Behi') sprouts were grown under a combination of blue and white LEDs, red and white LEDs or only white LEDs for 7 days. Total carotenoid levels of ~ 700 ng/mg DM were measured under white LEDs. The combination of blue and white LEDs increased the carotenoid levels by ~ 15% in comparison to only white LEDs, while red and white LEDs reduced them. The transcript levels of important carotenoid metabolism-related genes were enhanced under blue and white LEDs. Phytoene measurement after Norflurazon-treatment, a phytoene desaturase inhibitor, revealed that phytoene increased by 38% (37.5 µM Norflurazon) and by 56% (50.0 µM Norflurazon) after growth under blue and white LEDs in comparison to only white LEDs suggesting an up-regulation of the upper carotenoid biosynthetic pathway. Thus, the transcript levels and the enhanced phytoene levels correlated well with the higher accumulation of carotenoids under blue and white LEDs. Furthermore, a comparison to sprouts grown under blue LEDs without additional white LEDs showed that blue light alone does not increase the phytoene levels after Norflurazon-treatment. Overall, this study demonstrated a beneficial effect of a higher blue light percentage in growing carotenoid-rich pak choi sprouts, and implies that an increased biosynthesis within the upper carotenoid biosynthetic pathway is responsible for the enhanced carotenoid accumulation.
Collapse
Affiliation(s)
- Katja Frede
- Leibniz Institute of Vegetable and Ornamental Crops, Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
- Faculty of Life Sciences, Food, Nutrition and Health, Professorship for Food Metabolome, University of Bayreuth, Fritz-Hornschuch-Straße 13, 95326, Kulmbach, Germany
| |
Collapse
|
11
|
Liu Y, Wei D, Chen W. Oleaginous Microalga Coccomyxa subellipsoidea as a Highly Effective Cell Factory for CO 2 Fixation and High-Protein Biomass Production by Optimal Supply of Inorganic Carbon and Nitrogen. Front Bioeng Biotechnol 2022; 10:921024. [PMID: 35733523 PMCID: PMC9207446 DOI: 10.3389/fbioe.2022.921024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 12/03/2022] Open
Abstract
Microalgae used for CO2 biofixation can effectively relieve CO2 emissions and produce high-value biomass to achieve "waste-to-treasure" bioconversion. However, the low CO2 fixation efficiency and the restricted application of biomass are currently bottlenecks, limiting the economic viability of CO2 biofixation by microalgae. To achieve high-efficient CO2 fixation and high-protein biomass production, the oleaginous microalga Coccomyxa subellipsoidea (C. subellipsoidea) was cultivated autotrophically through optimizing inorganic carbon and nitrogen supply. 0.42 g L-1 NaHCO3 supplemented with 2% CO2 as a hybrid carbon source resulted in high biomass concentration (3.89 g L-1) and productivity (318.33) with CO2 fixation rate 544.21 mg L-1 d-1 in shake flasks. Then, used in a 5-L photo-fermenter, the maximal protein content (60.93% DW) in batch 1, and the highest CO2 fixation rate (1043.95 mg L-1 d-1) with protein content (58.48% DW) in batch 2 of repeated fed-batch cultures were achieved under 2.5 g L-1 nitrate. The relative expression of key genes involved in photosynthesis, glycolysis, and protein synthesis showed significant upregulation. This study developed a promising approach for enhancing carbon allocation to protein synthesis in oleaginous microalga, facilitating the bioconversion of the fixed carbon into algal protein instead of oil in green manufacturing.
Collapse
Affiliation(s)
- Yu Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Dong Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Weining Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
12
|
Bwalya J, Alazem M, Kim K. Photosynthesis-related genes induce resistance against soybean mosaic virus: Evidence for involvement of the RNA silencing pathway. MOLECULAR PLANT PATHOLOGY 2022; 23:543-560. [PMID: 34962034 PMCID: PMC8916206 DOI: 10.1111/mpp.13177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 05/17/2023]
Abstract
Increasing lines of evidence indicate that chloroplast-related genes are involved in plant-virus interactions. However, the involvement of photosynthesis-related genes in plant immunity is largely unexplored. Analysis of RNA-Seq data from the soybean cultivar L29, which carries the Rsv3 resistance gene, showed that several chloroplast-related genes were strongly induced in response to infection with an avirulent strain of soybean mosaic virus (SMV), G5H, but were weakly induced in response to a virulent strain, G7H. For further analysis, we selected the PSaC gene from the photosystem I and the ATP-synthase α-subunit (ATPsyn-α) gene whose encoded protein is part of the ATP-synthase complex. Overexpression of either gene within the G7H genome reduced virus levels in the susceptible cultivar Lee74 (rsv3-null). This result was confirmed by transiently expressing both genes in Nicotiana benthamiana followed by G7H infection. Both proteins localized in the chloroplast envelope as well as in the nucleus and cytoplasm. Because the chloroplast is the initial biosynthesis site of defence-related hormones, we determined whether hormone-related genes are involved in the ATPsyn-α- and PSaC-mediated defence. Interestingly, genes involved in the biosynthesis of several hormones were up-regulated in plants infected with SMV-G7H expressing ATPsyn-α. However, only jasmonic and salicylic acid biosynthesis genes were up-regulated following infection with the SMV-G7H expressing PSaC. Both chimeras induced the expression of several antiviral RNA silencing genes, which indicate that such resistance may be partially achieved through the RNA silencing pathway. These findings highlight the role of photosynthesis-related genes in regulating resistance to viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture BiotechnologyCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Mazen Alazem
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Kook‐Hyung Kim
- Department of Agriculture BiotechnologyCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
- Research of Institute Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
13
|
Sundermann EM, Lercher MJ, Heckmann D. Modeling photosynthetic resource allocation connects physiology with evolutionary environments. Sci Rep 2021; 11:15979. [PMID: 34354112 PMCID: PMC8342476 DOI: 10.1038/s41598-021-94903-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
The regulation of resource allocation in biological systems observed today is the cumulative result of natural selection in ancestral and recent environments. To what extent are observed resource allocation patterns in different photosynthetic types optimally adapted to current conditions, and to what extent do they reflect ancestral environments? Here, we explore these questions for C3, C4, and C3–C4 intermediate plants of the model genus Flaveria. We developed a detailed mathematical model of carbon fixation, which accounts for various environmental parameters and for energy and nitrogen partitioning across photosynthetic components. This allows us to assess environment-dependent plant physiology and performance as a function of resource allocation patterns. Models of C4 plants optimized for conditions experienced by evolutionary ancestors perform better than models accounting for experimental growth conditions, indicating low phenotypic plasticity. Supporting this interpretation, the model predicts that C4 species need to re-allocate more nitrogen between photosynthetic components than C3 species to adapt to new environments. We thus hypothesize that observed resource distribution patterns in C4 plants still reflect optimality in ancestral environments, allowing the quantitative inference of these environments from today’s plants. Our work allows us to quantify environmental effects on photosynthetic resource allocation and performance in the light of evolutionary history.
Collapse
Affiliation(s)
- Esther M Sundermann
- Institute for Computer Science and Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science and Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - David Heckmann
- Institute for Computer Science and Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
14
|
In Silico Analysis of Functionalized Hydrocarbon Production Using Ehrlich Pathway and Fatty Acid Derivatives in an Endophytic Fungus. J Fungi (Basel) 2021; 7:jof7060435. [PMID: 34072611 PMCID: PMC8228540 DOI: 10.3390/jof7060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Functionalized hydrocarbons have various ecological and industrial uses, from signaling molecules and antifungal/antibacterial agents to fuels and specialty chemicals. The potential to produce functionalized hydrocarbons using the cellulolytic, endophytic fungus, Ascocoryne sarcoides, was quantified using genome-enabled, stoichiometric modeling. In silico analysis identified available routes to produce these hydrocarbons, including both anabolic- and catabolic-associated strategies, and determined correlations between the type and size of the hydrocarbons and culturing conditions. The analysis quantified the limits of the wild-type metabolic network to produce functionalized hydrocarbons from cellulose-based substrates and identified metabolic engineering targets, including cellobiose phosphorylase (CP) and cytosolic pyruvate dehydrogenase complex (PDHcyt). CP and PDHcyt activity increased the theoretical production limits under anoxic conditions where less energy was extracted from the substrate. The incorporation of both engineering targets resulted in near-complete conservation of substrate electrons in functionalized hydrocarbons. The in silico framework was integrated with in vitro fungal batch growth experiments to support O2 limitation and functionalized hydrocarbon production predictions. The metabolic reconstruction of this endophytic filamentous fungus describes pathways for both specific and general production strategies of 161 functionalized hydrocarbons applicable to many eukaryotic hosts.
Collapse
|
15
|
Fernández-Marín B, Roach T, Verhoeven A, García-Plazaola JI. Shedding light on the dark side of xanthophyll cycles. THE NEW PHYTOLOGIST 2021; 230:1336-1344. [PMID: 33452715 DOI: 10.1111/nph.17191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Xanthophyll cycles are broadly important in photoprotection, and the reversible de-epoxidation of xanthophylls typically occurs in excess light conditions. However, as presented in this review, compiling evidence in a wide range of photosynthetic eukaryotes shows that xanthophyll de-epoxidation also occurs under diverse abiotic stress conditions in darkness. Light-driven photochemistry usually leads to the pH changes that activate de-epoxidases (e.g. violaxanthin de-epoxidase), but in darkness alternative electron transport pathways and luminal domains enriched in monogalactosyl diacyl glycerol (which enhance de-epoxidase activity) likely enable de-epoxidation. Another 'dark side' to sustaining xanthophyll de-epoxidation is inactivation and/or degradation of epoxidases (e.g. zeaxanthin epoxidase). There are obvious benefits of such activity regarding stress tolerance, and indeed this phenomenon has only been reported in stressful conditions. However, more research is required to unravel the mechanisms and understand the physiological roles of dark-induced formation of zeaxanthin. Notably, the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in darkness is still a frequently ignored process, perhaps because it questions a previous paradigm. With that in mind, this review seeks to shed some light on the dark side of xanthophyll de-epoxidation, and point out areas for future work.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, 38200, Spain
| | - Thomas Roach
- Department of Botany, University of Innsbruck and Center for Molecular Biosciences Innsbruck (CMBI), Sternwartestrasse 15, Innsbruck, 6020, Austria
| | - Amy Verhoeven
- Department of Biology, University of St Thomas, 2115 Summit Ave, St Paul, MN, 55105, USA
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| |
Collapse
|
16
|
Assembly of eukaryotic photosystem II with diverse light-harvesting antennas. Curr Opin Struct Biol 2020; 63:49-57. [PMID: 32389895 DOI: 10.1016/j.sbi.2020.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 11/21/2022]
Abstract
Photosystem II (PSII) catalyzes the light-driven oxygen-evolving reaction via its catalytic core and peripheral light-harvesting antennas. Oxyphototrophs have evolved diverse antenna systems, enabling them to adapt to different habitats. Recently, high-resolution structures of PSII-antenna supercomplexes from the green lineage (higher plants and green algae) and the red lineage (diatoms) were solved. The antenna complexes from the two lineages share similar protein folding, but differ in terms of the oligomeric states, pigment composition, and assembly patterns with the core. These differences result in distinct pigment-protein networks in PSII from different organisms. We herein summarize the similarities and differences in these structures and outline the molecular basis of the assembly, energy transfer, and regulation of the eukaryotic PSII-antenna supercomplexes.
Collapse
|
17
|
Lacour T, Babin M, Lavaud J. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology. JOURNAL OF PHYCOLOGY 2020; 56:245-263. [PMID: 31674660 DOI: 10.1111/jpy.12944] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/04/2019] [Indexed: 05/12/2023]
Abstract
Xanthophyll cycle-related nonphotochemical quenching (NPQ), which is present in most photoautotrophs, allows dissipation of excess light energy. Xanthophyll cycle-related NPQ depends principally on xanthophyll cycle pigments composition and their effective involvement in NPQ. Xanthophyll cycle-related NPQ is tightly controlled by environmental conditions in a species-/strain-specific manner. These features are especially relevant in microalgae living in a complex and highly variable environment. The goal of this study was to perform a comparative assessment of NPQ ecophysiologies across microalgal taxa in order to underline the specific involvement of NPQ in growth adaptations and strategies. We used both published results and data acquired in our laboratory to understand the relationships between growth conditions (irradiance, temperature, and nutrient availability), xanthophyll cycle composition, and xanthophyll cycle pigments quenching efficiency in microalgae from various taxa. We found that in diadinoxanthin-containing species, the xanthophyll cycle pigment pool is controlled by energy pressure in all species. At any given energy pressure, however, the diatoxanthin content is higher in diatoms than in other diadinoxanthin-containing species. XC pigments quenching efficiency is species-specific and decreases with acclimation to higher irradiances. We found a clear link between the natural light environment of species/ecotypes and quenching efficiency amplitude. The presence of diatoxanthin or zeaxanthin at steady state in all species examined at moderate and high irradiances suggests that cells maintain a light-harvesting capacity in excess to cope with potential decrease in light intensity.
Collapse
Affiliation(s)
| | - Marcel Babin
- Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Pavillon Alexandre-Vachon, 1045, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Johann Lavaud
- Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Pavillon Alexandre-Vachon, 1045, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
18
|
Dautermann O, Lyska D, Andersen-Ranberg J, Becker M, Fröhlich-Nowoisky J, Gartmann H, Krämer LC, Mayr K, Pieper D, Rij LM, Wipf HML, Niyogi KK, Lohr M. An algal enzyme required for biosynthesis of the most abundant marine carotenoids. SCIENCE ADVANCES 2020; 6:eaaw9183. [PMID: 32181334 PMCID: PMC7056318 DOI: 10.1126/sciadv.aaw9183] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/11/2019] [Indexed: 05/04/2023]
Abstract
Fucoxanthin and its derivatives are the main light-harvesting pigments in the photosynthetic apparatus of many chromalveolate algae and represent the most abundant carotenoids in the world's oceans, thus being major facilitators of marine primary production. A central step in fucoxanthin biosynthesis that has been elusive so far is the conversion of violaxanthin to neoxanthin. Here, we show that in chromalveolates, this reaction is catalyzed by violaxanthin de-epoxidase-like (VDL) proteins and that VDL is also involved in the formation of other light-harvesting carotenoids such as peridinin or vaucheriaxanthin. VDL is closely related to the photoprotective enzyme violaxanthin de-epoxidase that operates in plants and most algae, revealing that in major phyla of marine algae, an ancient gene duplication triggered the evolution of carotenoid functions beyond photoprotection toward light harvesting.
Collapse
Affiliation(s)
- O. Dautermann
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - D. Lyska
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - J. Andersen-Ranberg
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - M. Becker
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - J. Fröhlich-Nowoisky
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - H. Gartmann
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - L. C. Krämer
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - K. Mayr
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - D. Pieper
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - L. M. Rij
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - H. M.-L. Wipf
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - K. K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - M. Lohr
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| |
Collapse
|
19
|
Pralon T, Collombat J, Pipitone R, Ksas B, Shanmugabalaji V, Havaux M, Finazzi G, Longoni P, Kessler F. Mutation of the Atypical Kinase ABC1K3 Partially Rescues the PROTON GRADIENT REGULATION 6 Phenotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:337. [PMID: 32269582 PMCID: PMC7109304 DOI: 10.3389/fpls.2020.00337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 05/15/2023]
Abstract
Photosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness. Recently PROTON GRADIENT REGULATION 6 (PGR6-ABC1K1), an atypical plastoglobule-associated kinase, was shown to regulate a new mechanism of light response by controlling the homeostasis of photoactive plastoquinone (PQ). PQ is a crucial electron carrier existing as a free neutral lipid in the photosynthetic thylakoid membrane. Perturbed homeostasis of PQ impairs photosynthesis and plant acclimation to high light. Here we show that a homologous kinase, ABC1K3, which like PGR6-ABC1K1 is associated with plastoglobules, also contributes to the homeostasis of the photoactive PQ pool. Contrary to PGR6-ABC1K1, ABC1K3 disfavors PQ availability for photosynthetic electron transport. In fact, in the abc1k1/abc1k3 double mutant the pgr6(abc1k1) the photosynthetic defect seen in the abc1k1 mutant is mitigated. However, the PQ concentration in the photoactive pool of the double mutant is comparable to that of abc1k1 mutant. An increase of the PQ mobility, inferred from the kinetics of its oxidation in dark, contributes to the mitigation of the pgr6(abc1k1) photosynthetic defect. Our results also demonstrate that ABC1K3 contributes to the regulation of other mechanisms involved in the adaptation of the photosynthetic apparatus to changes in light quality and intensity such as the induction of thermal dissipation and state transitions. Overall, we suggests that, besides the absolute concentration of PQ, its mobility and exchange between storage and active pools are critical for light acclimation in plants.
Collapse
Affiliation(s)
- Thibaut Pralon
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Joy Collombat
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Rosa Pipitone
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Ksas
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | | | - Michel Havaux
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Giovanni Finazzi
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Recherche Agromique (INRA), Interdisciplinary Research Institute of Grenoble - Cell and Plant Physiology Laboratory (IRIG-LPCV), Grenoble, France
| | - Paolo Longoni
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Paolo Longoni,
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Felix Kessler,
| |
Collapse
|
20
|
Solovchenko A, Baulina O, Ptushenko O, Gorelova O. Ultrastructural patterns of photoacclimation and photodamage to photosynthetic algae cell under environmental stress. PHYSIOLOGIA PLANTARUM 2019; 166:251-263. [PMID: 30561763 DOI: 10.1111/ppl.12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 05/16/2023]
Abstract
In oxygenic phototrophs including unicellular algae, acclimation to and damage by diverse environmental stresses induce profound changes in the ultrastructural organization of the cell. These alterations reflect acclimation of the photosynthetic apparatus to unfavorable conditions (mainly reduction of the chloroplast and its membranal system) and rewiring of the photo-fixed carbon fluxes in the cell. These changes, eventually pursuing mitigation of the photooxidative damage risk, are manifested by the formation of diverse carbon-rich inclusions. Although the physiological and molecular basis of these processes are well understood, the ultrastructural manifestations of the stress responses are often fragmented and frequently controversial. This minireview attempts to generalize on the ultrastructural patterns accompanying stresses in the photosynthetic cell, involving the concerted rearrangements of its assimilatory and storage compartments. The changes characteristic of normal functioning and emergency reduction of the chloroplast thylakoids under harsh stress are also addressed. Special attention is paid to the manifestations of the engagement of photoprotection via active (energy-dependent non-photochemical quenching) and passive mechanisms (e.g. optical shielding by secondary carotenoids). We also underline the potentially important role of autophagy-like processes and provide a more integral view of ultrastructural rearrangements under stress.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
- Institute of Agriculture and Technolgy, Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Olga Baulina
- Department of Bioengineering, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Oksana Ptushenko
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
21
|
Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:18-30. [DOI: 10.1016/j.jphotobiol.2019.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/03/2019] [Accepted: 02/11/2019] [Indexed: 01/12/2023]
|
22
|
Sivakaminathan S, Hankamer B, Wolf J, Yarnold J. High-throughput optimisation of light-driven microalgae biotechnologies. Sci Rep 2018; 8:11687. [PMID: 30076312 PMCID: PMC6076246 DOI: 10.1038/s41598-018-29954-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Microalgae biotechnologies are rapidly developing into new commercial settings. Several high value products already exist on the market, and systems development is focused on cost reduction to open up future economic opportunities for food, fuel and freshwater production. Light is a key environmental driver for photosynthesis and optimising light capture is therefore critical for low cost, high efficiency systems. Here a novel high-throughput screen that simulates fluctuating light regimes in mass cultures is presented. The data was used to model photosynthetic efficiency (PEµ, mol photon-1 m2) and chlorophyll fluorescence of two green algae, Chlamydomonas reinhardtii and Chlorella sp. Response surface methodology defined the effect of three key variables: density factor (Df, 'culture density'), cycle time (tc, 'mixing rate'), and maximum incident irradiance (Imax). Both species exhibited a large rise in PEµ with decreasing Imax and a minimal effect of tc (between 3-20 s). However, the optimal Df of 0.4 for Chlamydomonas and 0.8 for Chlorella suggested strong preferences for dilute and dense cultures respectively. Chlorella had a two-fold higher optimised PEµ than Chlamydomonas, despite its higher light sensitivity. These results demonstrate species-specific light preferences within the green algae clade. Our high-throughput screen enables rapid strain selection and process optimisation.
Collapse
Affiliation(s)
- Shwetha Sivakaminathan
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia
| | - Ben Hankamer
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia
| | - Juliane Wolf
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| | - Jennifer Yarnold
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| |
Collapse
|
23
|
Molecular mechanisms involved in plant photoprotection. Biochem Soc Trans 2018; 46:467-482. [DOI: 10.1042/bst20170307] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 11/17/2022]
Abstract
Photosynthesis uses sunlight to convert water and carbon dioxide into biomass and oxygen. When in excess, light can be dangerous for the photosynthetic apparatus because it can cause photo-oxidative damage and decreases the efficiency of photosynthesis because of photoinhibition. Plants have evolved many photoprotective mechanisms in order to face reactive oxygen species production and thus avoid photoinhibition. These mechanisms include quenching of singlet and triplet excited states of chlorophyll, synthesis of antioxidant molecules and enzymes and repair processes for damaged photosystem II and photosystem I reaction centers. This review focuses on the mechanisms involved in photoprotection of chloroplasts through dissipation of energy absorbed in excess.
Collapse
|
24
|
Heinze M, Hanschen FS, Wiesner-Reinhold M, Baldermann S, Gräfe J, Schreiner M, Neugart S. Effects of Developmental Stages and Reduced UVB and Low UV Conditions on Plant Secondary Metabolite Profiles in Pak Choi (Brassica rapa subsp. chinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1678-1692. [PMID: 29397716 DOI: 10.1021/acs.jafc.7b03996] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pak choi (Brassica rapa subsp. chinensis) is rich in secondary metabolites and contains numerous antioxidants, including flavonoids; hydroxycinnamic acids; carotenoids; chlorophylls; and glucosinolates, which can be hydrolyzed to epithionitriles, nitriles, or isothiocyanates. Here, we investigate the effect of reduced exposure to ultraviolet B (UVB) and UV (UVA and UVB) light at four different developmental stages of pak choi. We found that both the plant morphology and secondary metabolite profiles were affected by reduced exposure to UVB and UV, depending on the plant's developmental stage. In detail, mature 15- and 30-leaf plants had higher concentrations of flavonoids, hydroxycinnamic acids, carotenoids, and chlorophylls, whereas sprouts contained high concentrations of glucosinolates and their hydrolysis products. Dry weights and leaf areas increased as a result of reduced UVB and low UV. For the flavonoids and hydroxycinnamic acids in 30-leaf plants, less complex compounds were favored, for example, sinapic acid acylated kaempferol triglycoside instead of the corresponding tetraglycoside. Moreover, also in 30-leaf plants, zeaxanthin, a carotenoid linked to protection during photosynthesis, was increased under low UV conditions. Interestingly, most glucosinolates were not affected by reduced UVB and low UV conditions. However, this study underlines the importance of 4-(methylsulfinyl)butyl glucosinolate in response to UVA and UVB exposure. Further, reduced UVB and low UV conditions resulted in higher concentrations of glucosinolate-derived nitriles. In conclusion, exposure to low doses of UVB and UV from the early to late developmental stages did not result in overall lower concentrations of plant secondary metabolites.
Collapse
Affiliation(s)
- Mandy Heinze
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Melanie Wiesner-Reinhold
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
- Institute of Nutritional Science, University of Potsdam , Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany
| | - Jan Gräfe
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
- Department of Biological Sciences, Loyola University New Orleans , 6363 Saint Charles Avenue, New Orleans, Louisiana 70118, United States
| |
Collapse
|