1
|
Balhara R, Verma D, Kaur R, Singh K. MYB transcription factors, their regulation and interactions with non-coding RNAs during drought stress in Brassica juncea. BMC PLANT BIOLOGY 2024; 24:999. [PMID: 39448923 PMCID: PMC11515528 DOI: 10.1186/s12870-024-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs. RESULTS Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress. CONCLUSIONS The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.
Collapse
Affiliation(s)
- Rinku Balhara
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Li Z, Wang W, Yu X, Zhao P, Li W, Zhang X, Peng M, Li S, Ruan M. Integrated analysis of DNA methylome and transcriptome revealing epigenetic regulation of CRIR1-promoted cold tolerance. BMC PLANT BIOLOGY 2024; 24:631. [PMID: 38965467 PMCID: PMC11225538 DOI: 10.1186/s12870-024-05285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND DNA methylation contributes to the epigenetic regulation of nuclear gene expression, and is associated with plant growth, development, and stress responses. Compelling evidence has emerged that long non-coding RNA (lncRNA) regulates DNA methylation. Previous genetic and physiological evidence indicates that lncRNA-CRIR1 plays a positive role in the responses of cassava plants to cold stress. However, it is unclear whether global DNA methylation changes with CRIR1-promoted cold tolerance. RESULTS In this study, a comprehensive comparative analysis of DNA methylation and transcriptome profiles was performed to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression. Compared with the wild-type plants, CRIR1-overexpressing plants present gained DNA methylation in over 37,000 genomic regions and lost DNA methylation in about 16,000 genomic regions, indicating a global decrease in DNA methylation after CRIR1 overexpression. Declining DNA methylation is not correlated with decreased/increased expression of the DNA methylase/demethylase genes, but is associated with increased transcripts of a few transcription factors, chlorophyll metabolism and photosynthesis-related genes, which could contribute to the CRIR1-promoted cold tolerance. CONCLUSIONS In summary, a first set of transcriptome and epigenome data was integrated in this study to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression, with the identification of several TFs, chlorophyll metabolism and photosynthesis-related genes that may be involved in CRIR1-promoted cold tolerance. Therefore, our study has provided valuable data for the systematic study of molecular insights for plant cold stress response.
Collapse
Affiliation(s)
- Zhibo Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenjuan Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
- College of Tropical Crops, Hainan University, Haikou, 570228, P.R. China
| | - Xiaoling Yu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Pingjuan Zhao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Wenbin Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Ming Peng
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Shuxia Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| |
Collapse
|
3
|
Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. Transcription factors as molecular switches regulating plant responses to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14366. [PMID: 38812034 DOI: 10.1111/ppl.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.
Collapse
Affiliation(s)
- Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
4
|
Haq SAU, Bashir T, Roberts TH, Husaini AM. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches. Mol Biol Rep 2023; 51:41. [PMID: 38158512 DOI: 10.1007/s11033-023-09042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
While global climate change poses a significant environmental threat to agriculture, the increasing population is another big challenge to food security. To address this, developing crop varieties with increased productivity and tolerance to biotic and abiotic stresses is crucial. Breeders must identify traits to ensure higher and consistent yields under inconsistent environmental challenges, possess resilience against emerging biotic and abiotic stresses and satisfy customer demands for safer and more nutritious meals. With the advent of omics-based technologies, molecular tools are now integrated with breeding to understand the molecular genetics of genotype-based traits and develop better climate-smart crops. The rapid development of omics technologies offers an opportunity to generate novel datasets for crop species. Identifying genes and pathways responsible for significant agronomic traits has been made possible by integrating omics data with genetic and phenotypic information. This paper discusses the importance and use of omics-based strategies, including genomics, transcriptomics, proteomics and phenomics, for agricultural and horticultural crop improvement, which aligns with developing better adaptability in these crop species to the changing climate conditions.
Collapse
Affiliation(s)
- Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Thomas H Roberts
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Eveleigh, Australia
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
5
|
Wu K, Fu Y, Ren Y, Liu L, Zhang X, Ruan M. Turnip crinkle virus-encoded suppressor of RNA silencing suppresses mRNA decay by interacting with Arabidopsis XRN4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:744-755. [PMID: 37522642 DOI: 10.1111/tpj.16402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Plant cells employ intricate defense mechanisms, including mRNA decay pathways, to counter viral infections. Among the RNA quality control (RQC) mechanisms, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD) pathways play critical roles in recognizing and cleaving aberrant mRNA molecules. Turnip crinkle virus (TCV) is a plant virus that triggers mRNA decay pathways, but it has also evolved strategies to evade this antiviral defense. In this study, we investigated the activation of mRNA decay during TCV infection and its impact on TCV RNA accumulation. We found that TCV infection induced the upregulation of essential mRNA decay factors, indicating their involvement in antiviral defense and the capsid protein (CP) of TCV, a well-characterized viral suppressor of RNA silencing (VSR), also compromised the mRNA decay-based antiviral defense by targeting AtXRN4. This interference with mRNA decay was supported by the observation that TCV CP stabilized a reporter transcript with a long 3' untranslated region (UTR). Moreover, TCV CP suppressed the decay of known NMD target transcripts, further emphasizing its ability to modulate host RNA control mechanisms. Importantly, TCV CP physically interacted with AtXRN4, providing insight into the mechanism of viral interference with mRNA decay. Overall, our findings reveal an alternative strategy employed by TCV, wherein the viral coat protein suppresses the mRNA decay pathway to facilitate viral infection.
Collapse
Affiliation(s)
- Kunxin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
| | - Yan Fu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
| | - Yanli Ren
- School of Biological and Geographical Sciences, Yili Normal University, Yili, 835000, China
| | - Linyu Liu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- School of Biological and Geographical Sciences, Yili Normal University, Yili, 835000, China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| |
Collapse
|
6
|
Lin C, Guo X, Yu X, Li S, Li W, Yu X, An F, Zhao P, Ruan M. Genome-Wide Survey of the RWP-RK Gene Family in Cassava ( Manihot esculenta Crantz) and Functional Analysis. Int J Mol Sci 2023; 24:12925. [PMID: 37629106 PMCID: PMC10454212 DOI: 10.3390/ijms241612925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The plant-specific RWP-RK transcription factor family plays a central role in the regulation of nitrogen response and gametophyte development. However, little information is available regarding the evolutionary relationships and characteristics of the RWP-RK family genes in cassava, an important tropical crop. Herein, 13 RWP-RK proteins identified in cassava were unevenly distributed across 9 of the 18 chromosomes (Chr), and these proteins were divided into two clusters based on their phylogenetic distance. The NLP subfamily contained seven cassava proteins including GAF, RWP-RK, and PB1 domains; the RKD subfamily contained six cassava proteins including the RWP-RK domain. Genes of the NLP subfamily had a longer sequence and more introns than the RKD subfamily. A large number of hormone- and stress-related cis-acting elements were found in the analysis of RWP-RK promoters. Real-time quantitative PCR revealed that all MeNLP1-7 and MeRKD1/3/5 genes responded to different abiotic stressors (water deficit, cold temperature, mannitol, polyethylene glycol, NaCl, and H2O2), hormonal treatments (abscisic acid and methyl jasmonate), and nitrogen starvation. MeNLP3/4/5/6/7 and MeRKD3/5, which can quickly and efficiently respond to different stresses, were found to be important candidate genes for further functional assays in cassava. The MeRKD5 and MeNLP6 proteins were localized to the cell nucleus in tobacco leaf. Five and one candidate proteins interacting with MeRKD5 and MeNLP6, respectively, were screened from the cassava nitrogen starvation library, including agamous-like mads-box protein AGL14, metallothionein 2, Zine finger FYVE domain containing protein, glyceraldehyde-3-phosphate dehydrogenase, E3 Ubiquitin-protein ligase HUWE1, and PPR repeat family protein. These results provided a solid basis to understand abiotic stress responses and signal transduction mediated by RWP-RK genes in cassava.
Collapse
Affiliation(s)
- Chenyu Lin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Xin Guo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
| | - Xiaohui Yu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Feng An
- Hainan Danzhou Agro-Ecosystem National Observation and Research Station, Rubber Research Institute of Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China;
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| |
Collapse
|
7
|
Wang X, Zhao S, Zhou R, Liu Y, Guo L, Hu H. Identification of Vitis vinifera MYB transcription factors and their response against grapevine berry inner necrosis virus. BMC PLANT BIOLOGY 2023; 23:279. [PMID: 37231351 DOI: 10.1186/s12870-023-04296-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The myeloblastosis (MYB) superfamily is the largest transcription factor family in plants that play diverse roles during stress responses. However, the biotic stress-responsive MYB transcription factors of the grapevine have not been systematically studied. In China, grapevine berries are often infected with the grapevine berry inner necrosis virus (GINV), which eventually reduces the nutritional quality and commodity value. RESULTS The present study identified and characterized 265 VvMYB or VvMYB-related genes of the "Crimson seedless" grapevine. Based on DNA-binding domain analysis, these VvMYB proteins were classified into four subfamilies, including MYB-related, 2R-MYB, 3R-MYB, and 4R-MYB. Phylogenetic analysis divided the MYB transcription factors into 26 subgroups. Overexpression of VvMYB58 suppressed GINV abundance in the grapevine. Further qPCR indicated that among 41 randomly selected VvMYB genes, 12 were induced during GINV infection, while 28 were downregulated. These findings suggest that VvMYB genes actively regulate defense response in the grapevine. CONCLUSION A deeper understanding of the MYB TFs engaged in GINV defense response will help devise better management strategies. The present study also provides a foundation for further research on the functions of the MYB transcription factors.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China.
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China.
| | - Shanshan Zhao
- School of Food Science, Henan Institute of Science and Technology, Henan, 453003, P. R. China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yunli Liu
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Longlong Guo
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Huiling Hu
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| |
Collapse
|
8
|
Liu L, Wang H, Fu Y, Tang W, Zhao P, Ren Y, Liu Z, Wu K, Zhang X. Turnip crinkle virus-encoded suppressor of RNA silencing interacts with Arabidopsis SGS3 to enhance virus infection. MOLECULAR PLANT PATHOLOGY 2023; 24:154-166. [PMID: 36433724 PMCID: PMC9831285 DOI: 10.1111/mpp.13282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Most plant viruses encode suppressors of RNA silencing (VSRs) to protect themselves from antiviral RNA silencing in host plants. The capsid protein (CP) of Turnip crinkle virus (TCV) is a well-characterized VSR, whereas SUPPRESSOR OF GENE SILENCING 3 (SGS3) is an important plant-encoded component of the RNA silencing pathways. Whether the VSR activity of TCV CP requires it to engage SGS3 in plant cells has yet to be investigated. Here, we report that TCV CP interacts with SGS3 of Arabidopsis in both yeast and plant cells. The interaction was identified with the yeast two-hybrid system, and corroborated with bimolecular fluorescence complementation and intracellular co-localization assays in Nicotiana benthamiana cells. While multiple partial TCV CP fragments could independently interact with SGS3, its hinge domain connecting the surface and protruding domains appears to be essential for this interaction. Conversely, SGS3 enlists its N-terminal domain and the XS rice gene X and SGS3 (XS) domain as the primary CP-interacting sites. Interestingly, SGS3 appears to stimulate TCV accumulation because viral RNA levels of a TCV mutant with low VSR activities decreased in the sgs3 knockout mutants, but increased in the SGS3-overexpressing transgenic plants. Transgenic Arabidopsis plants overexpressing TCV CP exhibited developmental abnormalities that resembled sgs3 knockout mutants and caused similar defects in the biogenesis of trans-acting small interfering RNAs. Our data suggest that TCV CP interacts with multiple RNA silencing pathway components that include SGS3, as well as previously reported DRB4 (dsRNA-binding protein 4) and AGO2 (ARGONAUTE protein 2), to achieve efficient suppression of RNA silencing-mediated antiviral defence.
Collapse
Affiliation(s)
- Linyu Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
- School of Biological and Geographical SciencesYili Normal UniversityYiliChina
| | - Haiyan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Yan Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Wen Tang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Yanli Ren
- School of Biological and Geographical SciencesYili Normal UniversityYiliChina
| | - Zhixin Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Kunxin Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Xiuchun Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| |
Collapse
|
9
|
Siriwan W, Hemniam N, Vannatim N, Malichan S, Chaowongdee S, Roytrakul S, Charoenlappanit S, Sawwa A. Analysis of proteomic changes in cassava cv. Kasetsart 50 caused by Sri Lankan cassava mosaic virus infection. BMC PLANT BIOLOGY 2022; 22:573. [PMID: 36494781 PMCID: PMC9737768 DOI: 10.1186/s12870-022-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sri Lankan cassava mosaic virus (SLCMV) is a plant virus causing significant economic losses throughout Southeast Asia. While proteomics has the potential to identify molecular markers that could assist the breeding of virus resistant cultivars, the effects of SLCMV infection in cassava have not been previously explored in detail. RESULTS Liquid Chromatography-Tandem Mass Spectrometry (LC/MS-MS) was used to identify differentially expressed proteins in SLCMV infected leaves, and qPCR was used to confirm changes at mRNA levels. LC/MS-MS identified 1,813 proteins, including 479 and 408 proteins that were upregulated in SLCMV-infected and healthy cassava plants respectively, while 109 proteins were detected in both samples. Most of the identified proteins were involved in biosynthetic processes (29.8%), cellular processes (20.9%), and metabolism (18.4%). Transport proteins, stress response molecules, and proteins involved in signal transduction, plant defense responses, photosynthesis, and cellular respiration, although present, only represented a relatively small subset of the detected differences. RT-qPCR confirmed the upregulation of WRKY 77 (A0A140H8T1), WRKY 83 (A0A140H8T7), NAC 6 (A0A0M4G3M4), NAC 35 (A0A0M5JAB4), NAC 22 (A0A0M5J8Q6), NAC 54 (A0A0M4FSG8), NAC 70 (A0A0M4FEU9), MYB (A0A2C9VER9 and A0A2C9VME6), bHLH (A0A2C9UNL9 and A0A2C9WBZ1) transcription factors. Additional upregulated transcripts included receptors, such as receptor-like serine/threonine-protein kinase (RSTK) (A0A2C9UPE4), Toll/interleukin-1 receptor (TIR) (A0A2C9V5Q3), leucine rich repeat N-terminal domain (LRRNT_2) (A0A2C9VHG8), and cupin (A0A199UBY6). These molecules participate in innate immunity, plant defense mechanisms, and responses to biotic stress and to phytohormones. CONCLUSIONS We detected 1,813 differentially expressed proteins infected cassava plants, of which 479 were selectively upregulated. These could be classified into three main biological functional groups, with roles in gene regulation, plant defense mechanisms, and stress responses. These results will help identify key proteins affected by SLCMV infection in cassava plants.
Collapse
Affiliation(s)
- Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| | - Nuannapa Hemniam
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Somruthai Chaowongdee
- Center of Excellence On Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic and Engineering and Biotechnology (BIOTECH), National Science and Technology Development Agency, Pathumthani, 12100, Thailand
| | - Sawanya Charoenlappanit
- National Center for Genetic and Engineering and Biotechnology (BIOTECH), National Science and Technology Development Agency, Pathumthani, 12100, Thailand
| | - Aroonothai Sawwa
- Biotechnology Research and Development Office, Department of Agriculture, Thanyaburi, Pathumthani, 12110, Thailand
| |
Collapse
|
10
|
Guo X, Yu X, Xu Z, Zhao P, Zou L, Li W, Geng M, Zhang P, Peng M, Ruan M. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2389-2405. [PMID: 36053917 PMCID: PMC9674314 DOI: 10.1111/pbi.13920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Glutaredoxins (GRXs) are essential for reactive oxygen species (ROS) homeostasis in responses of plants to environment changes. We previously identified several drought-responsive CC-type GRXs in cassava, an important tropical crop. However, how CC-type GRX regulates ROS homeostasis of cassava under drought stress remained largely unknown. Here, we report that a drought-responsive CC-type GRX, namely MeGRXC3, was associated with activity of catalase in the leaves of 100 cultivars (or unique unnamed genotypes) of cassava under drought stress. MeGRXC3 negatively regulated drought tolerance by modulating drought- and abscisic acid-induced stomatal closure in transgenic cassava. It antagonistically regulated hydrogen peroxide (H2 O2 ) accumulation in epidermal cells and guard cells. Moreover, MeGRXC3 interacted with two catalases of cassava, MeCAT1 and MeCAT2, and regulated their activity in vivo. Additionally, MeGRXC3 interacts with a cassava TGA transcription factor, MeTGA2, in the nucleus, and regulates the expression of MeCAT7 through a MeTGA2-MeMYB63 pathway. Overall, we demonstrated the roles of MeGRXC3 in regulating activity of catalase at both transcriptional and post-translational levels, therefore involving in ROS homeostasis and stomatal movement in responses of cassava to drought stress. Our study provides the first insights into how MeGRXC3 may be used in molecular breeding of cassava crops.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Ziyin Xu
- College of Tropical CropsHainan UniversityHaikouChina
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Mengting Geng
- College of Tropical CropsHainan UniversityHaikouChina
| | - Peng Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
- Hainan Key Laboratory for Protection and Utilization of Tropical BioresourcesHainan Institute for Tropical Agricultural ResourcesHaikouChina
| |
Collapse
|
11
|
Zhang H, Liu Z, Luo R, Sun Y, Yang C, Li X, Gao A, Pu J. Genome-Wide Characterization, Identification and Expression Profile of MYB Transcription Factor Gene Family during Abiotic and Biotic Stresses in Mango ( Mangifera indica). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223141. [PMID: 36432870 PMCID: PMC9699602 DOI: 10.3390/plants11223141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/03/2023]
Abstract
Mango (Mangifera indica) is an economically important fruit tree, and is cultivated in tropical, subtropical, and dry-hot valley areas around the world. Mango fruits have high nutritional value, and are mainly consumed fresh and used for commercial purposes. Mango is affected by various environmental factors during its growth and development. The MYB transcription factors participates in various physiological activities of plants, such as phytohormone signal transduction and disease resistance. In this study, 54 MiMYB transcription factors were identified in the mango genome (371.6 Mb). A phylogenetic tree was drawn based on the amino acid sequences of 222 MYB proteins of mango and Arabidopsis. The phylogenetic tree showed that the members of the mango MYB gene family were divided into 7 group, including Groups 1, -3, -4, -5, -6, -8, and -9. Ka/Ks ratios generally indicated that the MiMYBs of mango were affected by negative or positive selection. Quantitative real-time PCR showed that the transcription levels of MiMYBs were different under abiotic and biotic stresses, including salicylic acid, methyl jasmonate, and H2O2 treatments, and Colletotrichum gloeosporioides and Xanthomonas campestris pv. mangiferaeindicae infection, respectively. The transcript levels of MiMYB5, -35, -36, and -54 simultaneously responded positively to early treatments with salicylic acid, methyl jasmonate, and H2O2. The transcript level of MiMYB54 was activated by pathogenic fungal and bacterial infection. These results are beneficial for future interested researchers aiming to understand the biological functions and molecular mechanisms of MiMYB genes.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Agricultural, Guizhou University, Guiyang 550225, China
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise 533000, China
| | - Zhixin Liu
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Agricultural, Guizhou University, Guiyang 550225, China
| | - Ruixiong Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu Sun
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Cuifeng Yang
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise 533000, China
| | - Xi Li
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise 533000, China
| | - Aiping Gao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinji Pu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
12
|
Wang YJ, Lu XH, Zhen XH, Yang H, Che YN, Hou JY, Geng MT, Liu J, Hu XW, Li RM, Guo JC, Yao Y. A Transformation and Genome Editing System for Cassava Cultivar SC8. Genes (Basel) 2022; 13:1650. [PMID: 36140817 PMCID: PMC9498335 DOI: 10.3390/genes13091650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Cassava starch is a widely used raw material for industrial production. South Chinese cassava cultivar 8 (Manihot esculenta Crantz cv. SC8) is one of the main locally planted cultivars. In this study, an efficient transformation system for cassava SC8 mediated with Agrobacterium strain LBA4404 was presented for the first time. Cassava friable embryogenic calli (FECs) were transformed through the binary vector pCAMBIA1304 harboring GUS- and GFP-fused genes driven by the CaMV35S promoter. The transformation efficiency was increased in the conditions of Agrobacterium strain cell infection density (OD600 = 0.65), 250 µM acetosyringone induction, and agro-cultivation with wet FECs for 3 days in dark. Based on the optimized transformation protocol, approximately 120-140 independent transgenic lines per mL settled cell volume (SCV) of FECs were created by gene transformation in approximately 5 months, and 45.83% homozygous mono-allelic mutations of the MePDS gene with a YAO promoter-driven CRISPR/Cas9 system were generated. This study will open a more functional avenue for the genetic improvement of cassava SC8.
Collapse
Affiliation(s)
- Ya-Jie Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Xiao-Hua Lu
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Xing-Hou Zhen
- School of Life Sciences, Hainan University, Haikou 570228, China
- San Yan Research Institute, Chinese Academy of Tropical Agricultural Sciences & Hainan Yazhou Bay Seed Lab, Sanya 572025, China
| | - Hui Yang
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Yan-Nian Che
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Jing-Yi Hou
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Meng-Ting Geng
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Xin-Wen Hu
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Rui-Mei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Jian-Chun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- San Yan Research Institute, Chinese Academy of Tropical Agricultural Sciences & Hainan Yazhou Bay Seed Lab, Sanya 572025, China
| |
Collapse
|
13
|
Thakur S, Vasudev PG. MYB transcription factors and their role in Medicinal plants. Mol Biol Rep 2022; 49:10995-11008. [PMID: 36074230 DOI: 10.1007/s11033-022-07825-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Transcription factors are multi-domain proteins that regulate gene expression in eukaryotic organisms. They are one of the largest families of proteins, which are structurally and functionally diverse. While there are transcription factors that are plant-specific, such as AP2/ERF, B3, NAC, SBP and WRKY, some transcription factors are present in both plants as well as other eukaryotic organisms. MYB transcription factors are widely distributed among all eukaryotes. In plants, the MYB transcription factors are involved in the regulation of numerous functions such as gene regulation in different metabolic pathways especially secondary metabolic pathways, regulation of different signalling pathways of plant hormones, regulation of genes involved in various developmental and morphological processes etc. Out of the thousands of MYB TFs that have been studied in plants, the majority of them have been studied in the model plants like Arabidopsis thaliana, Oryza sativa etc. The study of MYBs in other plants, especially medicinal plants, has been comparatively limited. But the increasing demand for medicinal plants for the production of biopharmaceuticals and important bioactive compounds has also increased the need to explore more number of these multifaceted transcription factors which play a significant role in the regulation of secondary metabolic pathways. These studies will ultimately contribute to medicinal plants' research and increased production of secondary metabolites, either through transgenic plants or through synthetic biology approaches. This review compiles studies on MYB transcription factors that are involved in the regulation of diverse functions in medicinal plants.
Collapse
Affiliation(s)
- Sudipa Thakur
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India.
| | - Prema G Vasudev
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India
| |
Collapse
|
14
|
Li S, Cheng Z, Li Z, Dong S, Yu X, Zhao P, Liao W, Yu X, Peng M. MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:817-832. [PMID: 34837123 DOI: 10.1007/s00122-021-04000-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Analysis of drought-related genes in cassava shows the involvement of MeSPL9 in drought stress tolerance and overexpression of a dominant-negative form of this gene demonstrates its negative roles in drought stress resistance. Drought stress severely impairs crop yield and is considered a primary threat to food security worldwide. Although the SQUAMOSA promoter binding protein-like 9 (SPL9) gene participates extensively in numerous developmental processes and in plant response to abiotic stimuli, its role and regulatory pathway in cassava (Manihot esculenta) response to the drought condition remain elusive. In the current study, we show that cassava SPL9 (MeSPL9) plays negative roles in drought stress resistance. MeSPL9 expression was strongly repressed by drought treatment. Overexpression of a dominant-negative form of miR156-resistant MeSPL9, rMeSPL9-SRDX, in which a 12-amino acid repressor sequence was fused to rMeSPL9 at the C terminus, conferred drought tolerance without penalizing overall growth. rMeSPL9-SRDX-overexpressing lines not only exhibited increased osmoprotectant metabolites including proline and anthocyanin, but also accumulated more endogenous jasmonic acid (JA) and soluble sugars. Transcriptomic and real-time PCR analysis suggested that differentially expressed genes were involved in sugar or JA biosynthesis, signaling, and metabolism in transgenic cassava under drought conditions. Exogenous application of JA further confirmed that JA conferred improved drought resistance and promoted stomatal closure in cassava leaves. Taken together, our findings suggest that MeSPL9 affects drought resistance by modulating protectant metabolite levels and JA signaling, which have substantial implications for engineering drought tolerant crops.
Collapse
Affiliation(s)
- Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Zhibo Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Shiman Dong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Wenbin Liao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, China.
| |
Collapse
|
15
|
Cao M, Zheng L, Li J, Mao Y, Zhang R, Niu X, Geng M, Zhang X, Huang W, Luo K, Chen Y. Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava. PLoS One 2022; 17:e0261086. [PMID: 35061680 PMCID: PMC8782352 DOI: 10.1371/journal.pone.0261086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Owing to climate change impacts, waterlogging is a serious abiotic stress that affects crops, resulting in stunted growth and loss of productivity. Cassava (Manihot esculenta Grantz) is usually grown in areas that experience high amounts of rainfall; however, little research has been done on the waterlogging tolerance mechanism of this species. Therefore, we investigated the physiological responses of cassava plants to waterlogging stress and analyzed global gene transcription responses in the leaves and roots of waterlogged cassava plants. The results showed that waterlogging stress significantly decreased the leaf chlorophyll content, caused premature senescence, and increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in the leaves and roots. In total, 2538 differentially expressed genes (DEGs) were detected in the leaves and 13364 in the roots, with 1523 genes shared between the two tissues. Comparative analysis revealed that the DEGs were related mainly to photosynthesis, amino metabolism, RNA transport and degradation. We also summarized the functions of the pathways that respond to waterlogging and are involved in photosynthesis, glycolysis and galactose metabolism. Additionally, many transcription factors (TFs), such as MYBs, AP2/ERFs, WRKYs and NACs, were identified, suggesting that they potentially function in the waterlogging response in cassava. The expression of 12 randomly selected genes evaluated via both quantitative real-time PCR (qRT-PCR) and RNA sequencing (RNA-seq) was highly correlated (R2 = 0.9077), validating the reliability of the RNA-seq results. The potential waterlogging stress-related transcripts identified in this study are representatives of candidate genes and molecular resources for further understanding the molecular mechanisms underlying the waterlogging response in cassava.
Collapse
Affiliation(s)
- Min Cao
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Linling Zheng
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Junyi Li
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Yiming Mao
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Rui Zhang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Xiaolei Niu
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Mengting Geng
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Xiaofei Zhang
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Wei Huang
- Hainan University Archives, Haikou, the People’s Republic of China
| | - Kai Luo
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Yinhua Chen
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| |
Collapse
|
16
|
Liu J, Wang J, Wang M, Zhao J, Zheng Y, Zhang T, Xue L, Lei J. Genome-Wide Analysis of the R2R3-MYB Gene Family in Fragaria × ananassa and Its Function Identification During Anthocyanins Biosynthesis in Pink-Flowered Strawberry. FRONTIERS IN PLANT SCIENCE 2021; 12:702160. [PMID: 34527006 PMCID: PMC8435842 DOI: 10.3389/fpls.2021.702160] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/29/2021] [Indexed: 05/14/2023]
Abstract
The strawberry (Fragaria × ananassa) is an economically important fruit throughout the world. The large R2R3-MYB gene family participates in a variety of plant functions, including anthocyanin biosynthesis. The present study is the first genome-wide analysis of the MYB gene family in the octoploid strawberry and describes the identification and characterization of the family members using the recently sequenced F. × ananassa genome. Specifically, we aimed to identify the key MYBs involved in petal coloration in the pink-flowered strawberry, which increases its ornamental value. A comprehensive, genome-wide analysis of F. × ananassa R2R3-FaMYBs was performed, investigating gene structures, phylogenic relationships, promoter regions, chromosomal locations, and collinearity. A total of 393 R2R3-FaMYB genes were identified in the F. × ananassa genome and divided into 36 subgroups based on phylogenetic analysis. Most genes with similar functions in the same subgroup exhibited similar exon-intron structures and motif compositions. These R2R3-FaMYBs were unevenly distributed over 28 chromosomes. The expansion of the R2R3-FaMYB gene family in the F. × ananassa genome was found to be caused mainly by segmental duplication. The Ka/Ks analysis indicated that duplicated R2R3-FaMYBs mostly experienced purifying selection and showed limited functional divergence after the duplication events. To elucidate which R2R3-FaMYB genes were associated with anthocyanin biosynthesis in the petals of the pink-flowered strawberry, we compared transcriptional changes in different flower developmental stages using RNA-seq. There were 131 differentially expressed R2R3-FaMYB genes identified in the petals, of which three genes, FaMYB28, FaMYB54, and FaMYB576, appeared likely, based on the phylogenetic analysis, to regulate anthocyanin biosynthesis. The qRT-PCR showed that these three genes were more highly expressed in petals than in other tissues (fruit, leaf, petiole and stolon) and their expressions were higher in red compared to pink and white petals. These results facilitate the clarification on the roles of the R2R3-FaMYB genes in petal coloration in the pink-flowered strawberry. This work provides useful information for further functional analysis on the R2R3-FaMYB gene family in F. × ananassa.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Mingqian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jun Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yang Zheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Tian Zhang
- Genepioneer Biotechnologies Co. Ltd, Nanjing, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
17
|
Yan Y, Wang P, Lu Y, Bai Y, Wei Y, Liu G, Shi H. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:847-860. [PMID: 34022096 DOI: 10.1111/tpj.15350] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Cassava, an important food and energy crop, is relatively more resistant to drought stress than other crops. However, the molecular mechanism underlying this resistance remains elusive. Herein, we report that silencing a drought stress-responsive transcription factor MeRAV5 significantly reduced drought stress resistance, with higher levels of hydrogen peroxide (H2 O2 ) and less lignin during drought stress. Yeast two-hybrid, pull down and bimolecular fluorescence complementation (BiFC) showed that MeRAV5 physically interacted with peroxidase (MePOD) and lignin-related cinnamyl alcohol dehydrogenase 15 (MeCAD15) in vitro and in vivo. MeRAV5 promoted the activities of both MePOD and MeCAD15 to affect H2 O2 and endogenous lignin accumulation respectively, which are important in drought stress resistance in cassava. When either MeCAD15 or MeRAV5 was silenced, or both were co-silenced, cassava showed lower lignin content and drought-sensitive phenotype, whereas exogenous lignin alkali treatment increased drought stress resistance and alleviated the drought-sensitive phenotype of these silenced cassava plants. This study documents that the modulation of H2 O2 and lignin by MeRAV5 is essential for drought stress resistance in cassava.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| |
Collapse
|
18
|
Tuo D, Zhou P, Yan P, Cui H, Liu Y, Wang H, Yang X, Liao W, Sun D, Li X, Shen W. A cassava common mosaic virus vector for virus-induced gene silencing in cassava. PLANT METHODS 2021; 17:74. [PMID: 34247636 PMCID: PMC8273954 DOI: 10.1186/s13007-021-00775-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/01/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. RESULTS In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. CONCLUSIONS This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hongguang Cui
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Yang Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - He Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - Xiukun Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - Wenbin Liao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Di Sun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
19
|
Razi K, Muneer S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 2021; 41:669-691. [PMID: 33525946 DOI: 10.1080/07388551.2021.1874280] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Drought stress is one of the most adverse abiotic stresses that hinder plants' growth and productivity, threatening sustainable crop production. It impairs normal growth, disturbs water relations and reduces water-use efficiency in plants. However, plants have evolved many physiological and biochemical responses at the cellular and organism levels, in order to cope with drought stress. Photosynthesis, which is considered one of the most crucial biological processes for survival of plants, is greatly affected by drought stress. A gradual decrease in CO2 assimilation rates, reduced leaf size, stem extension and root proliferation under drought stress, disturbs plant water relations, reducing water-use efficiency, disrupts photosynthetic pigments and reduces the gas exchange affecting the plants adversely. In such conditions, the chloroplast, organelle responsible for photosynthesis, is found to counteract the ill effects of drought stress by its critical involvement as a sensor of changes occurring in the environment, as the first process that drought stress affects is photosynthesis. Beside photosynthesis, chloroplasts carry out primary metabolic functions such as the biosynthesis of starch, amino acids, lipids, and tetrapyroles, and play a central role in the assimilation of nitrogen and sulfur. Because the chloroplasts are central organelles where the photosynthetic reactions take place, modifications in their physiology and protein pools are expected in response to the drought stress-induced variations in leaf gas exchanges and the accumulation of ROS. Higher expression levels of various transcription factors and other proteins including heat shock-related protein, LEA proteins seem to be regulating the heat tolerance mechanisms. However, several aspects of plastid alterations, following a water deficit environment are still poorly characterized. Since plants adapt to various stress tolerance mechanisms to respond to drought stress, understanding mechanisms of drought stress tolerance in plants will lead toward the development of drought tolerance in crop plants. This review throws light on major droughts stress-induced molecular/physiological mechanisms in response to severe and prolonged drought stress and addresses the molecular response of chloroplasts in common vegetable crops. It further highlights research gaps, identifying unexplored domains and suggesting recommendations for future investigations.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Qiao Y, Wang Y, Li X, Nisa Z, Jin X, Jing L, Yu L, Chen C. Transcriptional profiling of alkaline stress-induced defense responses in soybean ( Glycine max). BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1976078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Yanhua Qiao
- Department of Chemistry and Molecular Biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Yining Wang
- Department of Chemistry and Molecular Biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Xiaoming Li
- Department of Chemistry and Molecular Biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Zaib_un Nisa
- General Botany Lab, Institute of Molecular Biology and Biotechnology, University of Lahore, Defence road campus, Lahore, Pakistan
| | - Xiaoxia Jin
- Department of Chemistry and Molecular Biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Legang Jing
- Department of Chemistry and Molecular Biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Lijie Yu
- Department of Chemistry and Molecular Biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Chao Chen
- Department of Chemistry and Molecular Biology, School of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| |
Collapse
|
21
|
Wei Y, Liu W, Hu W, Yan Y, Shi H. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. THE NEW PHYTOLOGIST 2020; 226:476-491. [PMID: 31782811 DOI: 10.1111/nph.16346] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/23/2019] [Indexed: 05/25/2023]
Abstract
The 90 kDa heat shock protein (HSP90) is widely involved in various developmental processes and stress responses in plants. However, the molecular chaperone HSP90-constructed protein complex and its function in cassava remain elusive. In this study, we report that HSP90 is essential for drought stress resistance in cassava by regulating abscisic acid (ABA) and hydrogen peroxide (H2 O2 ) using two specific protein inhibitors of HSP90 (geldanamycin (GDA) and radicicol (RAD)). Among 10 MeHSP90s, the transcript of MeHSP90.9 is largely induced during drought stress. Further investigation identifies MeWRKY20 and MeCatalase1 as MeHSP90.9-interacting proteins. MeHSP90.9-, MeWRKY20-, or MeCatalase1-silenced plants through virus-induced gene silencing display drought sensitivity in cassava, indicating that they are important to drought stress response. MeHSP90.9 can promote the direct transcriptional activation of MeWRKY20 on the W-box element of MeNCED5 promoter, encoding a key enzyme in ABA biosynthesis. Moreover, MeHSP90.9 positively regulates the activity of MeCatalase1, and MeHSP90.9-silenced cassava leaves accumulate more H2 O2 under drought stress. Taken together, we demonstrate that the MeHSP90.9 chaperone complex is a regulator of drought stress resistance in cassava.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
22
|
Li MH, Liu DK, Zhang GQ, Deng H, Tu XD, Wang Y, Lan SR, Liu ZJ. A perspective on crassulacean acid metabolism photosynthesis evolution of orchids on different continents: Dendrobium as a case study. JOURNAL OF EXPERIMENTAL BOTANY 2019; 71:422-434. [PMID: 31625570 DOI: 10.1093/jxb/erz444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/24/2019] [Indexed: 05/24/2023]
Abstract
Members of the Orchidaceae, one of the largest families of flowering plants, evolved the crassulacean acid metabolism (CAM) photosynthesis strategy. It is thought that CAM triggers adaptive radiation into new niche spaces, yet very little is known about its origin and diversification on different continents. Here, we assess the prevalence of CAM in Dendrobium, which is one of the largest genera of flowering plants and found in a wide range of environments, from the high altitudes of the Himalayas to relatively arid habitats in Australia. Based on phylogenetic time trees, we estimated that CAM, as determined by δ 13C values less negative than -20.0‰, evolved independently at least eight times in Dendrobium. The oldest lineage appeared in the Asian clade during the middle Miocene, indicating the origin of CAM was associated with a pronounced climatic cooling that followed a period of aridity. Divergence of the four CAM lineages in the Asian clade appeared to be earlier than divergence of those in the Australasian clade. However, CAM species in the Asian clade are much less diverse (25.6%) than those in the Australasian clade (57.9%). These findings shed new light on CAM evolutionary history and the aridity levels of the paleoclimate on different continents.
Collapse
Affiliation(s)
- Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Hua Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiong-De Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Sun W, Ma Z, Chen H, Liu M. MYB Gene Family in Potato ( Solanum tuberosum L.): Genome-Wide Identification of Hormone-Responsive Reveals Their Potential Functions in Growth and Development. Int J Mol Sci 2019; 20:ijms20194847. [PMID: 31569557 PMCID: PMC6801432 DOI: 10.3390/ijms20194847] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
As an important nongrain crop, the growth and yield of potato (Solanum tuberosum L.) is often affected by an unfavorable external environment in the process of cultivation. The MYB family is one of the largest and most important gene families, participating in the regulation of plant growth and development and response to abiotic stresses. Several MYB genes in potato that regulate anthocyanin synthesis and participate in abiotic stress responses have been identified. To identify all Solanum tuberosum L. MYB (StMYB) genes involved in hormone or stress responses to potentially regulate potato growth and development, we identified the MYB gene family at the genome-wide level. In this work, 158 StMYB genes were found in the potato genome. According to the amino acid sequence of the MYB domain and gene structure, the StMYB genes were divided into R2R3-MYB and R1R2R3-MYB families, and the R2R3-MYB family was divided into 20 subgroups (SGs). The expression of 21 StMYB genes from different SGs in roots, stems, leaves, flowers, shoots, stolons, young tubers, and mature tubers was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression patterns of StMYB genes in potatoes treated with abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin acid 3 (GA3), NaCl, mannitol, and heat were also measured. We have identified several potential candidate genes that regulate the synthesis of potato flavonoids or participate in hormone or stress responses. This work provides a comprehensive understanding of the MYB family in potato and will lay a foundation for the future investigation of the potential functions of StMYB genes in the growth and development of potato.
Collapse
Affiliation(s)
- Wenjun Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zhaotang Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Moyang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Chang L, Wang L, Peng C, Tong Z, Wang D, Ding G, Xiao J, Guo A, Wang X. The chloroplast proteome response to drought stress in cassava leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:351-362. [PMID: 31422174 DOI: 10.1016/j.plaphy.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Cassava is an important tropical crop with strong resistance to drought stress. The chloroplast, the site of photosynthesis, is sensitive to stress, and the drought-response proteins in cassava chloroplasts are worthy of investigation. In this study, cassava leaves were collected for ultra-structure observation from plants subjected to different drought stress conditions. Our results showed that drought stress can promote starch accumulation in cassava chloroplasts. To evaluate changes in chloroplast proteins under different drought conditions, two-dimensional electrophoresis was performed using purified chloroplasts, which resulted in the identification of 26 unique chloroplast proteins responsive to drought stress. These drought-responsive proteins are predominantly related to photosynthesis, carbon and nitrogen metabolism, and amino acid metabolism. Among them, most photosynthesis-related proteins are downregulated, with decreases in photosynthetic parameters upon drought stress. Several proteins associated with carbon and nitrogen metabolism, including rubisco and carbonic anhydrase, were upregulated, which might promote drought tolerance in cassava by enhancing the carbohydrate conversion efficiency and protecting the plant from oxidative stress. Our proteomic data not only provide insight into the complement of proteins in cassava chloroplasts but also further our overall understanding of drought-responsive proteins in cassava chloroplasts.
Collapse
Affiliation(s)
- Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Limin Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; College of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Guohua Ding
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Junhan Xiao
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
25
|
Cheng Z, Lei N, Li S, Liao W, Shen J, Peng M. The regulatory effects of MeTCP4 on cold stress tolerance in Arabidopsis thaliana: A transcriptome analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:9-16. [PMID: 30825725 DOI: 10.1016/j.plaphy.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 05/01/2023]
Abstract
Cassava (Manihot esculenta), an important food crop in tropical areas, is well-adapted to drought conditions, but is sensitive to cold. The expression of MeTCP4, a transcription factor involved in the regulation of plant development and abiotic stresses responses, was altered under cold stress. However, its biological function under abiotic stress responses is still unclear. Here, we show that increased MeTCP4 expression enhances cold stress tolerance in Arabidopsis (Arabidopsis thaliana). To better understand the biological role of MeTCP4, the mRNA from overexpression and wild-type (WT) plants was isolated for whole genome sequencing to identify MeTCP4-mediated cold-responsive genes. Our results identify 1341 and 797 differentially expressed genes (DEGs) affected by MeTCP4 overexpression under normal and cold conditions, respectively. Gene ontology analysis revealed that a portion of the DEGs were involved in reactive oxygen species (ROS) metabolism process after cold treatment. qRT-PCR analysis revealed that the expression of cold-responsive genes and ROS-scavenging-related genes were increased in MeTCP4 overexpression plant, which could be responsible for the reduced ROS levels and enhanced cold resistance observed in transgenic plant. The findings provide insight into mechanisms of MeTCP4-mediated cold stress response, and provide clues for development of low temperature-tolerant cassava cultivars.
Collapse
Affiliation(s)
- Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, China
| | - Ning Lei
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jie Shen
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
26
|
Ding Z, Tie W, Fu L, Yan Y, Liu G, Yan W, Li Y, Wu C, Zhang J, Hu W. Strand-specific RNA-seq based identification and functional prediction of drought-responsive lncRNAs in cassava. BMC Genomics 2019; 20:214. [PMID: 30866814 PMCID: PMC6417064 DOI: 10.1186/s12864-019-5585-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as playing crucial roles in abiotic stress responsive regulation, however, the mechanism of lncRNAs underlying drought-tolerance remains largely unknown in cassava, an important tropical and sub-tropical root crop of remarkable drought tolerance. Results In this study, a total of 833 high-confidence lncRNAs, including 652 intergenic and 181 anti-sense lncRNAs, were identified in cassava leaves and root using strand-specific RNA-seq technology, of which 124 were drought-responsive. Trans-regulatory co-expression network revealed that lncRNAs exhibited tissue-specific expression patterns and they preferred to function differently in distinct tissues: e.g., cell-related metabolism, cell wall, and RNA regulation of transcription in folded leaf (FL); degradation of major carbohydrate (CHO) metabolism, calvin cycle and light reaction, light signaling, and tetrapyrrole synthesis in full expanded leaf (FEL); synthesis of major CHO metabolism, nitrogen-metabolism, photosynthesis, and redox in bottom leaf (BL); and hormone metabolism, secondary metabolism, calcium signaling, and abiotic stress in root (RT). In addition, 27 lncRNA-mRNA pairs referred to cis-acting regulation were identified, and these lncRNAs regulated the expression of their neighboring genes mainly through hormone metabolism, RNA regulation of transcription, and signaling of receptor kinase. Besides, 11 lncRNAs were identified acting as putative target mimics of known miRNAs in cassava. Finally, five drought-responsive lncRNAs and 13 co-expressed genes involved in trans-acting, cis-acting, or target mimic regulation were selected and confirmed by qRT-PCR. Conclusions These findings provide a comprehensive view of cassava lncRNAs in response to drought stress, which will enable in-depth functional analysis in the future. Electronic supplementary material The online version of this article (10.1186/s12864-019-5585-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Lili Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Guanghua Liu
- Institute of Tropical and Sub-tropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Wei Yan
- Institute of Tropical and Sub-tropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Yanan Li
- Institute of Tropical and Sub-tropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Chunlai Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.,Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaming Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China.
| |
Collapse
|
27
|
Huang J, Guo Y, Sun Q, Zeng W, Li J, Li X, Xu W. Genome-Wide Identification of R2R3-MYB Transcription Factors Regulating Secondary Cell Wall Thickening in Cotton Fiber Development. PLANT & CELL PHYSIOLOGY 2019; 60:687-701. [PMID: 30576529 DOI: 10.1093/pcp/pcy238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/14/2018] [Indexed: 05/02/2023]
Abstract
MYB proteins represent one of the largest transcription factor (TF) families in plants, some of which act as key transcriptional regulators of secondary cell wall (SCW) biosynthesis. Cotton (Gossypium hirsutum) fiber is thought to be an ideal single-cell model to study cell elongation and SCW biosynthesis. However, little knowledge regarding the TFs controlling fiber SCW biosynthesis, particularly for R2R3-MYBs is known. By far, no comprehensive genome-wide analysis of the secondary wall-associated R2R3-MYBs has been reported in cultivated tetraploid upland cotton. In this study, we identified 419 R2R3-MYB genes by systematically examining the cotton genome. A combination of phylogenetic, RNA-seq and co-expression analyses indicated that 36 R2R3-MYBs were either preferentially or highly expressed in 20 day post anthesis (dpa) fibers and are putative SCW regulators. Among these MYB genes, 22 MYBs are homologs of known SCW MYB proteins and the other 14 MYBs are novel proteins without prior reported SCW biosynthesis-related functions. Finally, we highlighted on the roles of two MYBs named GhMYB46_D13 and GhMYB46_D9, both of which displayed the highest expression in 20 dpa fibers. Expression of GhMYB46_D13 or GhMYB46_D9 individually in Arabidopsis resulted in ectopic SCW deposition in transgenic plants. Furthermore, both GhMYB46_D13 and GhMYB46_D9 were able to activate the cotton fiber SCW cellulose synthase gene promoters. Thus, we have identified 36 R2R3-MYBs as potential SCW regulators in cotton fibers that represent strong candidates for further functional studies during fiber development and SCW thickening.
Collapse
Affiliation(s)
- Junfeng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yanjun Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qianwen Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xuebao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|