1
|
He R, Li Y, Bernards MA, Wang A. Turnip mosaic virus selectively subverts a PR-5 thaumatin-like, plasmodesmal protein to promote viral infection. THE NEW PHYTOLOGIST 2025; 245:299-317. [PMID: 39532690 PMCID: PMC11617660 DOI: 10.1111/nph.20233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Pathogenesis-related (PR) proteins are induced by abiotic and biotic stresses and generally considered as part of the plant defense mechanism. However, it remains yet largely unclear if and how they are involved in virus infection. Our recent quantitative, comparative proteomic study identified three PR-5 family proteins that are significantly differentially accumulated in the plasmodesmata (PD)-enriched fraction isolated from Nicotiana benthamiana leaves infected by turnip mosaic virus (TuMV). In this study, we employed the TuMV-Arabidopsis pathosystem to characterize the involvement of two Arabidopsis orthologs, AtOSM34 and AtOLP of the three N. benthamiana PR-5-like proteins. We show that AtOSM34 and AtOLP are PD-localized proteins and their expression is up- and downregulated in response to TuMV infection, respectively. Deficiency or overexpression of AtOLP does not affect viral RNA accumulation. Knockdown of AtOSM34 inhibits TuMV infection, whereas its overexpression promotes viral infection. We further demonstrate that AtOSM34 functions as a proviral factor through diminishing PD callose deposition to promote viral intercellular movement, targeting the viral replication complex to enhance viral replication, and suppressing the ROS-mediated antiviral response. Taken together, these data suggest that TuMV has evolved the ability to selectively upregulate and subvert AtOSM34, a PR-5 family protein to assist its infection.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| | - Yinzi Li
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
| | - Mark A. Bernards
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| |
Collapse
|
2
|
Mateos B, Preedy K, Milne L, Morris J, Hedley PE, Simpson C, Hancock RD, Graham J. Altered expression of a raspberry homologue of VRN1 is associated with disruption of dormancy induction and misregulation of subsets of dormancy-associated genes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6167-6181. [PMID: 39243357 PMCID: PMC11480652 DOI: 10.1093/jxb/erae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Winter dormancy is a key process in the phenology of temperate perennials. Climate change is severely impacting its course leading to economic losses in agriculture. A better understanding of the underlying mechanisms, as well as the genetic basis of the different responses, is necessary for the development of climate-resilient cultivars. This study aims to provide an insight into winter dormancy in red raspberry (Rubus idaeus L). We report the transcriptomic profiles during dormancy in two raspberry cultivars with contrasting responses. The cultivar 'Glen Ample' showed a typical perennial phenology, whereas 'Glen Dee' registered consistent dormancy dysregulation, exhibiting active growth and flowering out of season. RNA-seq combined with weighted gene co-expression network analysis identified gene clusters in both genotypes that exhibited time-dependent expression profiles. Functional analysis of 'Glen Ample' gene clusters highlighted the significance of the cell and structural development prior to dormancy entry as well the role of genetic and epigenetic processes such as RNAi and DNA methylation in regulating gene expression. Dormancy release in 'Glen Ample' was associated with up-regulation of transcripts associated with the resumption of metabolism, nucleic acid biogenesis, and processing signal response pathways. Many of the processes occurring in 'Glen Ample' were dysregulated in 'Glen Dee' and 28 transcripts exhibiting time-dependent expression in 'Glen Ample' that also had an Arabidopsis homologue were not found in 'Glen Dee'. These included a gene with homology to Arabidopsis VRN1 (RiVRN1.1) that exhibited a sharp decline in expression following dormancy induction in 'Glen Ample'. Characterization of the gene region in the 'Glen Dee' genome revealed two large insertions upstream of the ATG start codon. We propose that expression below detection level of a specific VRN1 homologue in 'Glen Dee' causes dormancy misregulation as a result of inappropriate expression of a subset of genes that are directly or indirectly regulated by RiVRN1.1.
Collapse
Affiliation(s)
- Brezo Mateos
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
- Biomathematics and Statistics Scotland, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Katharine Preedy
- Biomathematics and Statistics Scotland, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Linda Milne
- Informational and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Craig Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Julie Graham
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
3
|
Iswanto ABB, Vu MH, Shon JC, Kumar R, Wu S, Kang H, Kim DR, Son GH, Kim WY, Kwak YS, Liu KH, Kim SH, Kim JY. α1-COP modulates plasmodesmata function through sphingolipid enzyme regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1639-1657. [PMID: 38888228 DOI: 10.1111/jipb.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Callose, a β-1,3-glucan plant cell wall polymer, regulates symplasmic channel size at plasmodesmata (PD) and plays a crucial role in a variety of plant processes. However, elucidating the molecular mechanism of PD callose homeostasis is limited. We screened and identified an Arabidopsis mutant plant with excessive callose deposition at PD and found that the mutated gene was α1-COP, a member of the coat protein I (COPI) coatomer complex. We report that loss of function of α1-COP elevates the callose accumulation at PD by affecting subcellular protein localization of callose degradation enzyme PdBG2. This process is linked to the functions of ERH1, an inositol phosphoryl ceramide synthase, and glucosylceramide synthase through physical interactions with the α1-COP protein. Additionally, the loss of function of α1-COP alters the subcellular localization of ERH1 and GCS proteins, resulting in a reduction of GlcCers and GlcHCers molecules, which are key sphingolipid (SL) species for lipid raft formation. Our findings suggest that α1-COP protein, together with SL modifiers controlling lipid raft compositions, regulates the subcellular localization of GPI-anchored PDBG2 proteins, and hence the callose turnover at PD and symplasmic movement of biomolecules. Our findings provide the first key clue to link the COPI-mediated intracellular trafficking pathway to the callose-mediated intercellular signaling pathway through PD.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Minh Huy Vu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong Cheol Shon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Ritesh Kumar
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Shuwei Wu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Da-Ran Kim
- Departement of Plant Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Woe Yoen Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Youn-Sig Kwak
- Departement of Plant Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Kwang Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
4
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
5
|
Cai L, Liu J, Wang S, Gong Z, Yang S, Xu F, Hu Z, Zhang M, Yang J. The coiled-coil protein gene WPRb confers recessive resistance to Cucumber green mottle mosaic virus. PLANT PHYSIOLOGY 2023; 191:369-381. [PMID: 36179097 PMCID: PMC9806632 DOI: 10.1093/plphys/kiac466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) is one of the major global quarantine viruses and causes severe symptoms in Cucurbit crops, particularly with regard to fruit decay. However, the genetic mechanisms that control plant resistance to CGMMV have yet to be elucidated. Here, we found that WPRb, a weak chloroplast movement under blue light 1 and plastid movement impaired 2-related protein family gene, is recessively associated with CGMMV resistance in watermelon (Citrullus lanatus). We developed a reproducible marker based on a single non-synonymous substitution (G1282A) in WPRb, which can be used for marker-assisted selection for CGMMV resistance in watermelon. Editing of WPRb conferred greater tolerance to CGMMV. We found WPRb targets to the plasmodesmata (PD) and biochemically interacts with the CGMMV movement protein, facilitating viral intercellular movement by affecting the permeability of PD. Our findings enable us to genetically control CGMMV resistance in planta by using precise genome editing techniques targeted to WPRb.
Collapse
Affiliation(s)
- Lingmin Cai
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Weimeng Seed Co. Ltd, Ningbo 315000, China
| | - Shuchang Wang
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zihui Gong
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Siyu Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Fengyuan Xu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
6
|
Reinhardt D, Gola EM. Law and order in plants - the origin and functional relevance of phyllotaxis. TRENDS IN PLANT SCIENCE 2022; 27:1017-1032. [PMID: 35643801 DOI: 10.1016/j.tplants.2022.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The regular arrangement of organs (phyllotaxis) in vegetative shoots and flowers is one of the most stunning features of plants. Spiral patterns characterized by Fibonacci numbers have attracted the particular interest of natural scientists and mathematicians. Numerous reviews have dealt with the molecular genetic mechanisms underlying phyllotaxis, and modeling studies have sought to recreate phyllotaxis according to mathematical, biochemical, or physical laws. However, what is the functional significance of regular plant architecture, and how did it evolve? We discuss the developmental constraints and selective forces that may have favored the selection of phyllotaxis, and we argue that a central driver of regular phyllotaxis may have been limitations in the allocation of founder cells and metabolic resources to the different tissues in the shoot apex.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, Route Albert Gockel 3, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Edyta M Gola
- Department of Plant Developmental Biology, Faculty of Plant Sciences, University of Wroclaw, Kanonia 6/8, 50-328, Wroclaw, Poland
| |
Collapse
|
7
|
Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2403. [PMID: 36145804 PMCID: PMC9504206 DOI: 10.3390/plants11182403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Plant viruses exploit the endomembrane system of infected cells for their replication and cell-to-cell transport. The replication of viral RNA genomes occurs in the cytoplasm in association with reorganized endomembrane compartments induced by virus-encoded proteins and is coupled with the virus intercellular transport via plasmodesmata that connect neighboring cells in plant tissues. The transport of virus genomes to and through plasmodesmata requires virus-encoded movement proteins (MPs). Distantly related plant viruses encode different MP sets, or virus transport systems, which vary in the number of MPs and their properties, suggesting their functional differences. Here, we discuss two distinct virus transport pathways based on either the modification of the endoplasmic reticulum tubules or the formation of motile vesicles detached from the endoplasmic reticulum and targeted to endosomes. The viruses with the movement proteins encoded by the triple gene block exemplify the first, and the potyviral system is the example of the second type. These transport systems use unrelated mechanisms of endomembrane reorganization. We emphasize that the mode of virus interaction with cell endomembranes determines the mechanism of plant virus cell-to-cell transport.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Anastasia K. Atabekova
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A. Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
8
|
Ma T, Fu S, Wang K, Wang Y, Wu J, Zhou X. Palmitoylation Is Indispensable for Remorin to Restrict Tobacco Mosaic Virus Cell-to-Cell Movement in Nicotiana benthamiana. Viruses 2022; 14:1324. [PMID: 35746795 PMCID: PMC9227848 DOI: 10.3390/v14061324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Remorin (REM) is a plant-specific plasma membrane-associated protein regulating plasmodesmata plasticity and restricting viral cell-to-cell movement. Here, we show that palmitoylation is broadly present in group 1 remorin proteins in Nicotiana benthamiana and is crucial for plasma membrane localization and accumulation. By screening the four members of N. benthamiana group 1 remorin proteins, we found that only NbREM1.5 could significantly hamper tobacco mosaic virus (TMV) cell-to-cell movement. We further showed that NbREM1.5 interacts with the movement protein of TMV in vivo and interferes with its function of expanding the plasmodesmata size exclusion limit. We also demonstrated that palmitoylation is indispensable for NbREM1.5 to hamper plasmodesmata permeability and inhibit TMV cell-to-cell movement.
Collapse
Affiliation(s)
- Tingting Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Kun Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Accelerated remodeling of the mesophyll-bundle sheath interface in the maize C4 cycle mutant leaves. Sci Rep 2022; 12:5057. [PMID: 35322159 PMCID: PMC8943126 DOI: 10.1038/s41598-022-09135-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
C4 photosynthesis in the maize leaf involves the exchange of organic acids between mesophyll (M) and the bundle sheath (BS) cells. The transport is mediated by plasmodesmata embedded in the suberized cell wall. We examined the maize Kranz anatomy with a focus on the plasmodesmata and cell wall suberization with microscopy methods. In the young leaf zone where M and BS cells had indistinguishable proplastids, plasmodesmata were simple and no suberin was detected. In leaf zones where dimorphic chloroplasts were evident, the plasmodesma acquired sphincter and cytoplasmic sleeves, and suberin was discerned. These modifications were accompanied by a drop in symplastic dye mobility at the M-BS boundary. We compared the kinetics of chloroplast differentiation and the modifications in M-BS connectivity in ppdk and dct2 mutants where C4 cycle is affected. The rate of chloroplast diversification did not alter, but plasmodesma remodeling, symplastic transport inhibition, and cell wall suberization were observed from younger leaf zone in the mutants than in wild type. Our results indicate that inactivation of the C4 genes accelerated the changes in the M-BS interface, and the reduced permeability suggests that symplastic transport between M and BS could be regulated for normal operation of C4 cycle.
Collapse
|
10
|
Tomkins M, Hughes A, Morris RJ. An update on passive transport in and out of plant cells. PLANT PHYSIOLOGY 2021; 187:1973-1984. [PMID: 35235675 PMCID: PMC8644452 DOI: 10.1093/plphys/kiab406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/30/2021] [Indexed: 05/09/2023]
Abstract
Transport across membranes is critical for plant survival. Membranes are the interfaces at which plants interact with their environment. The transmission of energy and molecules into cells provides plants with the source material and power to grow, develop, defend, and move. An appreciation of the physical forces that drive transport processes is thus important for understanding the plant growth and development. We focus on the passive transport of molecules, describing the fundamental concepts and demonstrating how different levels of abstraction can lead to different interpretations of the driving forces. We summarize recent developments on quantitative frameworks for describing diffusive and bulk flow transport processes in and out of cells, with a more detailed focus on plasmodesmata, and outline open questions and challenges.
Collapse
Affiliation(s)
- Melissa Tomkins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
| | - Aoife Hughes
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
- Author for communication:
| |
Collapse
|
11
|
Kurotani KI, Notaguchi M. Cell-to-Cell Connection in Plant Grafting-Molecular Insights into Symplasmic Reconstruction. PLANT & CELL PHYSIOLOGY 2021; 62:1362-1371. [PMID: 34252186 DOI: 10.1093/pcp/pcab109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 05/06/2023]
Abstract
Grafting is a means to connect tissues from two individual plants and grow a single chimeric plant through the establishment of both apoplasmic and symplasmic connections. Recent molecular studies using RNA-sequencing data have provided genetic information on the processes involved in tissue reunion, including wound response, cell division, cell-cell adhesion, cell differentiation and vascular formation. Thus, studies on grafting increase our understanding of various aspects of plant biology. Grafting has also been used to study systemic signaling and transport of micromolecules and macromolecules in the plant body. Given that graft viability and molecular transport across graft junctions largely depend on vascular formation, a major focus in grafting biology has been the mechanism of vascular development. In addition, it has been thought that symplasmic connections via plasmodesmata are fundamentally important to share cellular information among newly proliferated cells at the graft interface and to accomplish tissue differentiation correctly. Therefore, this review focuses on plasmodesmata formation during grafting. We take advantage of interfamily grafts for unambiguous identification of the graft interface and summarize morphological aspects of de novo formation of plasmodesmata. Important molecular events are addressed by re-examining the time-course transcriptome of interfamily grafts, from which we recently identified the cell-cell adhesion mechanism. Plasmodesmata-associated genes upregulated during graft healing that may provide a link to symplasm establishment are described. We also discuss future research directions.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
12
|
Kumar G, Dasgupta I. Variability, Functions and Interactions of Plant Virus Movement Proteins: What Do We Know So Far? Microorganisms 2021; 9:microorganisms9040695. [PMID: 33801711 PMCID: PMC8066623 DOI: 10.3390/microorganisms9040695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Of the various proteins encoded by plant viruses, one of the most interesting is the movement protein (MP). MPs are unique to plant viruses and show surprising structural and functional variability while maintaining their core function, which is to facilitate the intercellular transport of viruses or viral nucleoprotein complexes. MPs interact with components of the intercellular channels, the plasmodesmata (PD), modifying their size exclusion limits and thus allowing larger particles, including virions, to pass through. The interaction of MPs with the components of PD, the formation of transport complexes and the recruitment of host cellular components have all revealed different facets of their functions. Multitasking is an inherent property of most viral proteins, and MPs are no exception. Some MPs carry out multitasking, which includes gene silencing suppression, viral replication and modulation of host protein turnover machinery. This review brings together the current knowledge on MPs, focusing on their structural variability, various functions and interactions with host proteins.
Collapse
|
13
|
Maintaining the structural and functional homeostasis of the plant endoplasmic reticulum. Dev Cell 2021; 56:919-932. [PMID: 33662257 DOI: 10.1016/j.devcel.2021.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) is a ubiquitous organelle that is vital to the life of eukaryotic cells. It synthesizes essential lipids and proteins and initiates the glycosylation of intracellular and surface proteins. As such, the ER is necessary for cell growth and communication with the external environment. The ER is also a highly dynamic organelle, whose structure is continuously remodeled through an interaction with the cytoskeleton and the action of specialized ER shapers. Recent and significant advances in ER studies have brought to light conserved and unique features underlying the structure and function of this organelle in plant cells. In this review, exciting developments in the understanding of the mechanisms for plant ER structural and functional homeostasis, particularly those that underpin ER network architecture and ER degradation, are presented and discussed.
Collapse
|
14
|
Kieninger AK, Maldener I. Cell-cell communication through septal junctions in filamentous cyanobacteria. Curr Opin Microbiol 2021; 61:35-41. [PMID: 33676334 DOI: 10.1016/j.mib.2021.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Septal junctions are cell-cell connections that mediate intercellular communication in filamentous cyanobacteria. The septal peptidoglycan is perforated by dozens of 20 nm-wide nanopores, through which these proteinaceous structures traverse, physically connecting adjacent cells. On each cytoplasmic side, every septal junction contains a flexible cap structure that closes the connection in a reversible manner upon stress. This gating mechanism reminds of the gap junctions from metazoans and represents a primordial control system for cell-cell communication. In this review, we summarize the knowledge about formation of the nanopore array as the framework for incorporation of cell-cell connecting septal junctions. Furthermore, the architecture of septal junctions, proteins involved in septal junction constitution and regulation of intercellular communication will be addressed.
Collapse
Affiliation(s)
- Ann-Katrin Kieninger
- Institute of Microbiology and Infection Medicine, Organismic Interactions, Eberhard Karls University, Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iris Maldener
- Institute of Microbiology and Infection Medicine, Organismic Interactions, Eberhard Karls University, Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Peters WS, Jensen KH, Stone HA, Knoblauch M. Plasmodesmata and the problems with size: Interpreting the confusion. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153341. [PMID: 33388666 DOI: 10.1016/j.jplph.2020.153341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 05/14/2023]
Abstract
Plant tissues exhibit a symplasmic organization; the individual protoplasts are connected to their neighbors via cytoplasmic bridges that extend through pores in the cell walls. These bridges may have diameters of a micrometer or more, as in the sieve pores of the phloem, but in most cell types they are smaller. Historically, botanists referred to cytoplasmic bridges of all sizes as plasmodesmata. The meaning of the term began to shift when the transmission electron microscope (TEM) became the preferred tool for studying these structures. Today, a plasmodesma is widely understood to be a 'nano-scale' pore. Unfortunately, our understanding of these nanoscopic channels suffers from methodological limitations. This is exemplified by the fact that state-of-the-art EM techniques appear to reveal plasmodesmal pore structures that are much smaller than the tracer molecules known to diffuse through these pores. In general, transport processes in pores that have dimensions in the size range of the transported molecules are governed by different physical parameters than transport process in the macroscopic realm. This can lead to unexpected effects, as experience in nanofluidic technologies demonstrates. Our discussion of problems of size in plasmodesma research leads us to conclude that the field will benefit from technomimetic reasoning - the utilization of concepts developed in applied nanofluidics for the interpretation of biological systems.
Collapse
Affiliation(s)
- Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA; Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA.
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
16
|
Li Z, Variz H, Chen Y, Liu SL, Aung K. Plasmodesmata-Dependent Intercellular Movement of Bacterial Effectors. FRONTIERS IN PLANT SCIENCE 2021. [PMID: 33959138 DOI: 10.1101/2020.12.10.420240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pathogenic microorganisms deliver protein effectors into host cells to suppress host immune responses. Recent findings reveal that phytopathogens manipulate the function of plant cell-to-cell communication channels known as plasmodesmata (PD) to promote diseases. Several bacterial and filamentous pathogen effectors have been shown to regulate PD in their host cells. A few effectors of filamentous pathogens have been reported to move from the infected cells to neighboring plant cells through PD; however, it is unclear whether bacterial effectors can traffic through PD in plants. In this study, we determined the intercellular movement of Pseudomonas syringae pv. tomato (Pst) DC3000 effectors between adjoining plant cells in Nicotiana benthamiana. We observed that at least 16 Pst DC3000 effectors have the capacity to move from transformed cells to the surrounding plant cells. The movement of the effectors is largely dependent on their molecular weights. The expression of PD regulators, Arabidopsis PD-located protein PDLP5 and PDLP7, leads to PD closure and inhibits the PD-dependent movement of a bacterial effector in N. benthamiana. Similarly, a 22-amino acid peptide of bacterial flagellin (flg22) treatment induces PD closure and suppresses the movement of a bacterial effector in N. benthamiana. Among the mobile effectors, HopAF1 and HopA1 are localized to the plasma membrane (PM) in plant cells. Interestingly, the PM association of HopAF1 does not negatively affect the PD-dependent movement. Together, our findings demonstrate that bacterial effectors are able to move intercellularly through PD in plants.
Collapse
Affiliation(s)
- Zhongpeng Li
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Haris Variz
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Yani Chen
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Su-Ling Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kyaw Aung
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Li Z, Variz H, Chen Y, Liu SL, Aung K. Plasmodesmata-Dependent Intercellular Movement of Bacterial Effectors. FRONTIERS IN PLANT SCIENCE 2021; 12:640277. [PMID: 33959138 PMCID: PMC8095247 DOI: 10.3389/fpls.2021.640277] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Pathogenic microorganisms deliver protein effectors into host cells to suppress host immune responses. Recent findings reveal that phytopathogens manipulate the function of plant cell-to-cell communication channels known as plasmodesmata (PD) to promote diseases. Several bacterial and filamentous pathogen effectors have been shown to regulate PD in their host cells. A few effectors of filamentous pathogens have been reported to move from the infected cells to neighboring plant cells through PD; however, it is unclear whether bacterial effectors can traffic through PD in plants. In this study, we determined the intercellular movement of Pseudomonas syringae pv. tomato (Pst) DC3000 effectors between adjoining plant cells in Nicotiana benthamiana. We observed that at least 16 Pst DC3000 effectors have the capacity to move from transformed cells to the surrounding plant cells. The movement of the effectors is largely dependent on their molecular weights. The expression of PD regulators, Arabidopsis PD-located protein PDLP5 and PDLP7, leads to PD closure and inhibits the PD-dependent movement of a bacterial effector in N. benthamiana. Similarly, a 22-amino acid peptide of bacterial flagellin (flg22) treatment induces PD closure and suppresses the movement of a bacterial effector in N. benthamiana. Among the mobile effectors, HopAF1 and HopA1 are localized to the plasma membrane (PM) in plant cells. Interestingly, the PM association of HopAF1 does not negatively affect the PD-dependent movement. Together, our findings demonstrate that bacterial effectors are able to move intercellularly through PD in plants.
Collapse
|
18
|
Abstract
Auxin is an endogenous small molecule with an incredibly large impact on growth and development in plants. Movement of auxin between cells, due to its negative charge at most physiological pHs, strongly relies on families of active transporters. These proteins import auxin from the extracellular space or export it into the same. Mutations in these components have profound impacts on biological processes. Another transport route available to auxin, once the substance is inside the cell, are plasmodesmata connections. These small channels connect the cytoplasms of neighbouring plant cells and enable flow between them. Interestingly, the biological significance of this latter mode of transport is only recently starting to emerge with examples from roots, hypocotyls and leaves. The existence of two transport systems provides opportunities for reciprocal cross-regulation. Indeed, auxin levels influence proteins controlling plasmodesmata permeability, while cell-cell communication affects auxin biosynthesis and transport. In an evolutionary context, transporter driven cell-cell auxin movement and plasmodesmata seem to have evolved around the same time in the green lineage. This highlights a co-existence from early on and a likely functional specificity of the systems. Exploring more situations where auxin movement via plasmodesmata has relevance for plant growth and development, and clarifying the regulation of such transport, will be key aspects in coming years.This article has an associated Future Leader to Watch interview with the author of the paper.
Collapse
Affiliation(s)
- Andrea Paterlini
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1 LR, UK
| |
Collapse
|
19
|
Intercellular trafficking via plasmodesmata: molecular layers of complexity. Cell Mol Life Sci 2020; 78:799-816. [PMID: 32920696 PMCID: PMC7897608 DOI: 10.1007/s00018-020-03622-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events. Movement across plasmodesmata is finely controlled in order to balance processes requiring communication with those necessitating symplastic isolation. Here, we describe the identities and roles of the molecular components (specific sets of lipids, proteins and wall polysaccharides) that shape and define plasmodesmata structural and functional domains. We highlight the extensive and dynamic interactions that exist between the plasma/endoplasmic reticulum membranes, cytoplasm and cell wall domains, binding them together to effectively define plasmodesmata shapes and purposes.
Collapse
|
20
|
Wang X, Sager R, Lee JY. Evaluating molecular movement through plasmodesmata. Methods Cell Biol 2020; 160:99-117. [PMID: 32896335 DOI: 10.1016/bs.mcb.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Plasmodesmata are membrane-lined cytoplasmic passageways that facilitate the movement of nutrients and various types of molecules between cells in the plant. They are highly dynamic channels, opening or closing in response to physiological and developmental stimuli or environmental challenges such as biotic and abiotic stresses. Accumulating evidence supports the idea that such dynamic controls occur through integrative cellular mechanisms. Currently, a few fluorescence-based methods are available that allow monitoring changes in molecular movement through plasmodesmata. In this chapter, following a brief introduction to those methods, we provide a detailed step-by-step protocol for the Drop-ANd-See (DANS) assay, which is advantageous when it is desirable to measure plasmodesmal permeability non-invasively, in situ and in real-time. We discuss the experimental conditions one should consider to produce reliable and reproducible DANS results along with troubleshooting ideas.
Collapse
Affiliation(s)
- Xu Wang
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Ross Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States.
| |
Collapse
|
21
|
Plasmodesmata Conductivity Regulation: A Mechanistic Model. PLANTS 2019; 8:plants8120595. [PMID: 31842374 PMCID: PMC6963776 DOI: 10.3390/plants8120595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
Plant cells form a multicellular symplast via cytoplasmic bridges called plasmodesmata (Pd) and the endoplasmic reticulum (ER) that crosses almost all plant tissues. The Pd proteome is mainly represented by secreted Pd-associated proteins (PdAPs), the repertoire of which quickly adapts to environmental conditions and responds to biotic and abiotic stresses. Although the important role of Pd in stress-induced reactions is universally recognized, the mechanisms of Pd control are still not fully understood. The negative role of callose in Pd permeability has been convincingly confirmed experimentally, yet the roles of cytoskeletal elements and many PdAPs remain unclear. Here, we discuss the contribution of each protein component to Pd control. Based on known data, we offer mechanistic models of mature leaf Pd regulation in response to stressful effects.
Collapse
|
22
|
Kieninger AK, Forchhammer K, Maldener I. A nanopore array in the septal peptidoglycan hosts gated septal junctions for cell-cell communication in multicellular cyanobacteria. Int J Med Microbiol 2019; 309:151303. [DOI: 10.1016/j.ijmm.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/16/2023] Open
|
23
|
Deinum EE, Mulder BM, Benitez-Alfonso Y. From plasmodesma geometry to effective symplasmic permeability through biophysical modelling. eLife 2019; 8:49000. [PMID: 31755863 PMCID: PMC6994222 DOI: 10.7554/elife.49000] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of molecular transport via intercellular channels called plasmodesmata (PDs) is important for both coordinating developmental and environmental responses among neighbouring cells, and isolating (groups of) cells to execute distinct programs. Cell-to-cell mobility of fluorescent molecules and PD dimensions (measured from electron micrographs) are both used as methods to predict PD transport capacity (i.e., effective symplasmic permeability), but often yield very different values. Here, we build a theoretical bridge between both experimental approaches by calculating the effective symplasmic permeability from a geometrical description of individual PDs and considering the flow towards them. We find that a dilated central region has the strongest impact in thick cell walls and that clustering of PDs into pit fields strongly reduces predicted permeabilities. Moreover, our open source multi-level model allows to predict PD dimensions matching measured permeabilities and add a functional interpretation to structural differences observed between PDs in different cell walls.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and statistical methods (Biometris), Wageningen University, Wageningen, Netherlands
| | - Bela M Mulder
- Living Matter Department, Institute AMOLF, Amsterdam, Netherlands.,Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
24
|
Wu W, Zheng B. Intercellular delivery of small RNAs in plant gametes. THE NEW PHYTOLOGIST 2019; 224:86-90. [PMID: 30993716 DOI: 10.1111/nph.15854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/02/2019] [Indexed: 05/11/2023]
Abstract
Small RNAs are 20-24 nucleotides in length. In plants, small RNAs are classified into microRNAs (miRNAs) and small interfering RNAs (siRNAs), based on their biogenesis and molecular features. In contrast to the extensive knowledge of the roles of small RNAs in sporophytic tissues, the distribution and function of small RNAs in gametophytic cells have been less well studied. However, with the improvement of single-cell sorting and RNA sequencing technologies, the distribution of small RNAs, especially siRNAs, between sperm cells and the vegetative cell, as well as the function of sperm-delivered small RNAs during early seed development have been elucidated. This review summarizes work from the past 5 years regarding small RNAs in male gametes, emphasizing the intercellular communication and biological significance of small RNAs in Arabidopsis.
Collapse
Affiliation(s)
- Wenye Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
25
|
Brault ML, Petit JD, Immel F, Nicolas WJ, Glavier M, Brocard L, Gaston A, Fouché M, Hawkins TJ, Crowet J, Grison MS, Germain V, Rocher M, Kraner M, Alva V, Claverol S, Paterlini A, Helariutta Y, Deleu M, Lins L, Tilsner J, Bayer EM. Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata. EMBO Rep 2019; 20:e47182. [PMID: 31286648 PMCID: PMC6680132 DOI: 10.15252/embr.201847182] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.
Collapse
Affiliation(s)
- Marie L Brault
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Jules D Petit
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
- Laboratoire de Biophysique Moléculaire aux InterfacesTERRA Research Centre, GX ABTUniversité de LiègeGemblouxBelgium
| | - Françoise Immel
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - William J Nicolas
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Marie Glavier
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Lysiane Brocard
- Bordeaux Imaging CentrePlant Imaging PlatformUMS 3420, INRA‐CNRS‐INSERM‐University of BordeauxVillenave‐d'OrnonFrance
| | - Amèlia Gaston
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
- Present address:
UMR 1332 BFPINRAUniversity of BordeauxBordeauxFrance
| | - Mathieu Fouché
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
- Present address:
UMR 1332 BFPINRAUniversity of BordeauxBordeauxFrance
| | | | - Jean‐Marc Crowet
- Laboratoire de Biophysique Moléculaire aux InterfacesTERRA Research Centre, GX ABTUniversité de LiègeGemblouxBelgium
- Present address:
Matrice Extracellulaire et Dynamique Cellulaire MEDyCUMR7369, CNRSUniversité de Reims‐Champagne‐ArdenneReimsFrance
| | - Magali S Grison
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Véronique Germain
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Marion Rocher
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| | - Max Kraner
- Division of BiochemistryDepartment of BiologyFriedrich‐Alexander University Erlangen‐NurembergErlangenGermany
| | - Vikram Alva
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Stéphane Claverol
- Proteome PlatformFunctional Genomic Center of BordeauxUniversity of BordeauxBordeaux CedexFrance
| | | | - Ykä Helariutta
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux InterfacesTERRA Research Centre, GX ABTUniversité de LiègeGemblouxBelgium
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux InterfacesTERRA Research Centre, GX ABTUniversité de LiègeGemblouxBelgium
| | - Jens Tilsner
- Biomedical Sciences Research ComplexUniversity of St AndrewsFifeUK
- Cell and Molecular SciencesThe James Hutton InstituteDundeeUK
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse MembranaireUMR5200, CNRSUniversité de BordeauxVillenave d'OrnonFrance
| |
Collapse
|
26
|
Kitagawa M, Tomoi T, Fukushima T, Sakata Y, Sato M, Toyooka K, Fujita T, Sakakibara H. Abscisic Acid Acts as a Regulator of Molecular Trafficking through Plasmodesmata in the Moss Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2019; 60:738-751. [PMID: 30597108 DOI: 10.1093/pcp/pcy249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/26/2018] [Indexed: 05/12/2023]
Abstract
In multi-cellular organisms, cell-to-cell communication is crucial for adapting to changes in the surrounding environment. In plants, plasmodesmata (PD) provide a unique pathway for cell-to-cell communication. PD interconnect most cells and generate a cytoplasmic continuum, allowing the trafficking of various micro- and macromolecules between cells. This molecular trafficking through PD is dynamically regulated by altering PD permeability dependent on environmental changes, thereby leading to an appropriate response to various stresses; however, how PD permeability is dynamically regulated is still largely unknown. Moreover, studies on the regulation of PD permeability have been conducted primarily in a limited number of angiosperms. Here, we studied the regulation of PD permeability in the moss Physcomitrella patens and report that molecular trafficking through PD is rapidly and reversibly restricted by abscisic acid (ABA). Since ABA plays a key role in various stress responses in the moss, PD permeability can be controlled by ABA to adapt to surrounding environmental changes. This ABA-dependent restriction of PD trafficking correlates with a reduction in PD pore size. Furthermore, we also found that the rate of macromolecular trafficking is higher in an ABA-synthesis defective mutant, suggesting that the endogenous level of ABA is also important for PD-mediated macromolecular trafficking. Thus, our study provides compelling evidence that P. patens exploits ABA as one of the key regulators of PD function.
Collapse
Affiliation(s)
- Munenori Kitagawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Takumi Tomoi
- Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Tomoki Fukushima
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Yoichi Sakata
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
27
|
Tanaka M, Suwatthanarak T, Arakaki A, Johnson BRG, Evans SD, Okochi M, Staniland SS, Matsunaga T. Enhanced Tubulation of Liposome Containing Cardiolipin by MamY Protein from Magnetotactic Bacteria. Biotechnol J 2018; 13:e1800087. [DOI: 10.1002/biot.201800087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/18/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1, O‐okayama, Meguro‐kuTokyo 152‐8552Japan
| | - Thanawat Suwatthanarak
- Department of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1, O‐okayama, Meguro‐kuTokyo 152‐8552Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and Technology2‐24‐16 Naka‐cho, KoganeiTokyo 184‐8588Japan
| | | | - Stephen D. Evans
- School of Physics and AstronomyUniversity of LeedsLeeds LS2 9JTUK
| | - Mina Okochi
- Department of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1, O‐okayama, Meguro‐kuTokyo 152‐8552Japan
| | | | - Tadashi Matsunaga
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and Technology2‐24‐16 Naka‐cho, KoganeiTokyo 184‐8588Japan
- Faculty of Science and EngineeringWaseda University3‐4‐1, Okubo, Shinjuku‐kuTokyo 169‐8555Japan
| |
Collapse
|
28
|
Nicolas WJ, Bayer E, Brocard L. Electron Tomography to Study the Three-dimensional Structure of Plasmodesmata in Plant Tissues-from High Pressure Freezing Preparation to Ultrathin Section Collection. Bio Protoc 2018; 8:e2681. [PMID: 34179233 PMCID: PMC8203878 DOI: 10.21769/bioprotoc.2681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/02/2022] Open
Abstract
Plasmodesmata (PD) are nanometric (~20 nm wide) membrane lined pores encased in the cell walls of the adjacent plant cells. They allow the cells to exchange all types of molecules ranging from nutrients like sugar, hormones, to RNAs and various proteins. Unfortunately, they are also hijacked by phyto-viruses, enabling them to spread from cell-to-cell and then systematically throughout the whole plant. Their central position in plant biology makes it crucial to understand their physiology and especially link their function to their structure. Over the past 50 years, electron microscopists have observed them and attempted to ultrastructurally characterize them. They laid the foundation of what is known about these pores (Tilney et al., 1991; Ding et al., 1992; Oparka and Roberts, 2001; Nicolas et al., 2017a). Despite the explosion of three-dimensional electron microscopy (3D-EM), PD ultrastructure remained recalcitrant to such technique. The first technical difficulty is to process them in such a way where they are as close to their native state as possible. Secondly, plant samples reveal themselves as being difficult to process due to the poor staining/fixating reagents penetration rates, their increased size, their high water content and the presence of an acidic vacuole. On top of this, their very unique position in the cell wall and their nanometric size make them difficult to conveniently stain in order to see the inner-workings of these pores. Here we describe in detail the protocol used in Nicolas et al. (2017b) to image PD in fine detail and produce high-resolution tomograms.
Collapse
Affiliation(s)
- William J. Nicolas
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, University of Bordeaux, Villenave d’Ornon, France
| | - Emmanuelle Bayer
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, University of Bordeaux, Villenave d’Ornon, France
| | - Lysiane Brocard
- Bordeaux Imaging Centre, Plant Imaging Platform, UMS 3420, INRA-CNRS-INSERM University of Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
29
|
Goring DR, Di Sansebastiano GP. Protein and membrane trafficking routes in plants: conventional or unconventional? JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:1-5. [PMID: 29267941 PMCID: PMC5853521 DOI: 10.1093/jxb/erx435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Canada
- Correspondence: ;
| | - Gian Pietro Di Sansebastiano
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Italy
- Correspondence: ;
| |
Collapse
|