1
|
Ghosh S, Dahiya M, Kumar A, Bheri M, Pandey GK. Calcium imaging: a technique to monitor calcium dynamics in biological systems. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1777-1811. [PMID: 38222278 PMCID: PMC10784449 DOI: 10.1007/s12298-023-01405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Calcium ion (Ca2+) is a multifaceted signaling molecule that acts as an important second messenger. During the course of evolution, plants and animals have developed Ca2+ signaling in order to respond against diverse stimuli, to regulate a large number of physiological and developmental pathways. Our understanding of Ca2+ signaling and its components in physiological phenomena ranging from lower to higher organisms, and from single cell to multiple tissues has grown exponentially. The generation of Ca2+ transients or signatures for various stress factor is a well-known mechanism adopted in plant and animal systems. However, the decoding of such remarkable signatures is an uphill task and is always an interesting goal for the scientific community. In the past few decades, studies on the concentration and dynamics of intracellular Ca2+ are significantly increasing and have become a trend in modern biology. The advancement in approaches from Ca2+ binding dyes to in vivo Ca2+ imaging through the use of Ca2+ biosensors to achieve spatio-temporal resolution in micro and milliseconds range, provide us phenomenal opportunities to study live cell Ca2+ imaging or dynamics. Here, we describe the usage, improvement and advancement of Ca2+ based dyes, genetically encoded probes and sensors to achieve extraordinary Ca2+ imaging in plants and animals. Graphical abstract
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Monika Dahiya
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| |
Collapse
|
2
|
Cold Tolerance of ScCBL6 Is Associated with Tonoplast Transporters and Photosynthesis in Arabidopsis. Curr Issues Mol Biol 2022; 44:5579-5592. [DOI: 10.3390/cimb44110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Plants that are adapted to harsh environments offer enormous opportunity to understand stress responses in ecological systems. Stipa capillacea is widely distributed in the frigid and arid region of the Tibetan Plateau, but its signal transduction system under cold stress has not been characterized. In this study, we isolated a cDNA encoding the signal transduction protein, ScCBL6, from S. capillacea, and evaluated its role in cold tolerance by ectopically expressing it in Arabidopsis. Full-length ScCBL6 encode 227 amino acids, and are clustered with CBL6 in Stipa purpurea and Oryza sativa in a phylogenetic analysis. Compared with tolerance in wild-type (WT) plants, ScCBL6-overexpressing plants (ScCBL6-OXP) were more tolerant to cold stress but not to drought stress, as confirmed by their high photosynthetic capacity (Fv/Fm) and survival rate under cold stress. We further compared their cold-responsive transcriptome profiles by RNA sequencing. In total, 3931 genes were differentially expressed by the introduction of ScCBL6. These gene products were involved in multiple processes such as the immune system, lipid catabolism, and secondary metabolism. A KEGG pathway analysis revealed that they were mainly enriched in plant hormone signal transduction and biomacromolecule metabolism. Proteins encoded by differentially expressed genes were predicted to be localized in chloroplasts, mitochondria, and vacuoles, suggesting that ScCBL6 exerts a wide range of functions. Based on its tonoplast subcellular location combined with integrated transcriptome and physiological analyses of ScCBL6-OXP, we inferred that ScCBL6 improves plant cold stress tolerance in Arabidopsis via the regulation of photosynthesis, redox status, and tonoplast metabolite transporters.
Collapse
|
3
|
She K, Pan W, Yan Y, Shi T, Chu Y, Cheng Y, Ma B, Song W. Genome-Wide Identification, Evolution and Expressional Analysis of OSCA Gene Family in Barley ( Hordeum vulgare L.). Int J Mol Sci 2022; 23:13027. [PMID: 36361820 PMCID: PMC9653715 DOI: 10.3390/ijms232113027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 09/06/2023] Open
Abstract
The hyperosmolality-gated calcium-permeable channel gene family (OSCA) is one kind of conserved osmosensors, playing a crucial role in maintaining ion and water homeostasis and protecting cellular stability from the damage of hypertonic stress. Although it has been systematically characterized in diverse plants, it is necessary to explore the role of the OSCA family in barley, especially its importance in regulating abiotic stress response. In this study, a total of 13 OSCA genes (HvOSCAs) were identified in barley through an in silico genome search method, which were clustered into 4 clades based on phylogenetic relationships with members in the same clade showing similar protein structures and conserved motif compositions. These HvOSCAs had many cis-regulatory elements related to various abiotic stress, such as MBS and ARE, indicating their potential roles in abiotic stress regulation. Furthermore, their expression patterns were systematically detected under diverse stresses using RNA-seq data and qRT-PCR methods. All of these 13 HvOSCAs were significantly induced by drought, cold, salt and ABA treatment, demonstrating their functions in osmotic regulation. Finally, the genetic variations of the HvOSCAs were investigated using the re-sequencing data, and their nucleotide diversity in wild barley and landrace populations were 0.4966 × 10-3 and 0.391 × 10-3, respectively, indicating that a genetic bottleneck has occurred in the OSCA family during the barley evolution process. This study evaluated the genomic organization, evolutionary relationship and genetic expression of the OSCA family in barley, which not only provides potential candidates for further functional genomic study, but also contributes to genetically improving stress tolerance in barley and other crops.
Collapse
Affiliation(s)
- Kuijun She
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ying Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yingqi Chu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yue Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Bo Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
4
|
Han Y, Wang Y, Zhai Y, Wen Z, Liu J, Xi C, Zhao H, Wang Y, Han S. OsOSCA1.1 Mediates Hyperosmolality and Salt Stress Sensing in Oryza sativa. BIOLOGY 2022; 11:biology11050678. [PMID: 35625406 PMCID: PMC9138581 DOI: 10.3390/biology11050678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
OSCA (reduced hyperosmolality-induced [Ca2+]i increase) is a family of mechanosensitive calcium-permeable channels that play a role in osmosensing and stomatal immunity in plants. Oryza sativa has 11 OsOSCA genes; some of these were shown to complement hyperosmolality-induced [Ca2+]cyt increases (OICIcyt), salt stress-induced [Ca2+]cyt increases (SICIcyt), and the associated growth phenotype in the Arabidopsis thaliana mutant osca1. However, their biological functions in rice remain unclear. In this paper, we found that OsOSCA1.1 mediates OICIcyt and SICIcyt in rice roots, which are critical for stomatal closure, plant survival, and gene expression in shoots, in response to hyperosmolality and the salt stress treatment of roots. Compared with wild-type (Zhonghua11, ZH11) plants, OICIcyt and SICIcyt were abolished in the roots of 10-day-old ososca1.1 seedlings, in response to treatment with 250 mM of sorbitol and 100 mM of NaCl, respectively. Moreover, hyperosmolality- and salt stress-induced stomatal closure were also disrupted in a 30-day-old ososca1.1 mutant, resulting in lower stomatal resistance and survival rates than that in ZH11. However, overexpression of OsOSCA1.1 in ososca1.1 complemented stomatal movement and survival, in response to hyperosmolality and salt stress. The transcriptomic analysis further revealed the following three types of OsOSCA1.1-regulated genes in the shoots: 2416 sorbitol-responsive, 2349 NaCl-responsive and 1844 common osmotic stress-responsive genes after treated with 250 mM of sorbitol and 125 mM NaCl of in 30-day-old rice roots for 24 h. The Gene Ontology enrichment analysis showed that these OsOSCA1.1-regulated genes were relatively enriched in transcription regulation, hormone response, and phosphorylation terms of the biological processes category, which is consistent with the Cis-regulatory elements ABRE, ARE, MYB and MYC binding motifs that were overrepresented in 2000-bp promoter regions of these OsOSCA1.1-regulated genes. These results indicate that OsOSCA-mediated calcium signaling specifically regulates gene expression, in response to drought and salt stress in rice.
Collapse
Affiliation(s)
- Yang Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Yuanjun Zhai
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Zhaohong Wen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
- Correspondence:
| |
Collapse
|
5
|
Verma P, Sanyal SK, Pandey GK. Ca 2+-CBL-CIPK: a modulator system for efficient nutrient acquisition. PLANT CELL REPORTS 2021; 40:2111-2122. [PMID: 34415375 DOI: 10.1007/s00299-021-02772-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Calcium (Ca2+) is a universal second messenger essential for the growth and development of plants in normal and stress situations. In plants, the proteins, CBL (calcineurin B-like) and CIPK (CBL-interacting protein kinase), form one of the important Ca2+ decoding complexes to decipher Ca2+ signals elicited by environmental challenges. Multiple interactors distinguish CBL and CIPK protein family members to form a signaling network for regulated perception and transduction of environmental signals, e.g., signals generated under nutrient stress conditions. Conservation of equilibrium in response to varying soil nutrient status is an important aspect for plant vigor and yield. Signaling processes have been reported to observe nutrient fluctuations as a signal responsible for regulated nutrient transport adaptation. Recent studies have identified downstream targets of CBL-CIPK modules as ion channels or transporters and their association in signaling nutrient disposal including potassium, nitrate, ammonium, magnesium, zinc, boron, and iron. Ca2+-CBL-CIPK pathway modulates ion transporters/channels and hence maintains a homeostasis of several important plant nutrients in the cytosol and sub-cellular compartments. In this article, we summarize recent literature to discuss the role of the Ca2+-CBL-CIPK pathway in cellular osmoregulation and homeostasis on exposure to nutrient excess or deprived soils. This further establishes a link between taking up the nutrient in the roots and its distribution and homeostasis during the generation of signal for the development and survival of plants.
Collapse
Affiliation(s)
- Pooja Verma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
6
|
Portes MT, Damineli DSC, Feijó JA. Spatiotemporal Quantification of Cytosolic pH in Arabidopsis Pollen Tubes. Bio Protoc 2021; 11:e4084. [PMID: 34395723 DOI: 10.21769/bioprotoc.4084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 11/02/2022] Open
Abstract
Ion-specific probes and fluorescent indicators have been key in establishing the role of ion signaling, namely calcium, protons, and anions, in plant development, providing a robust approach for monitoring spatiotemporal changes in intracellular ion dynamics. The integration of protons/pH in signaling mechanisms is especially important as reports of their biological functions continue to expand; however, attaining quantitative estimates with high spatiotemporal resolution in single cells poses a major research challenge. Here, we detail the use of the genetically encoded pH-sensitive pHluorin reporter expressed in Arabidopsis thaliana pollen tubes to assess cytosolic measurements with calibration to provide actual pH values. This technique enabled us to identify critical phenotypes and establish the importance of tip-focused pH gradient for pollen tube growth, although it can be adapted to other experimental systems.
Collapse
Affiliation(s)
- Maria Teresa Portes
- Cell Biology and Molecular Genetics Department, University of Maryland, College Park, USA.,Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel S C Damineli
- Cell Biology and Molecular Genetics Department, University of Maryland, College Park, USA
| | - José A Feijó
- Cell Biology and Molecular Genetics Department, University of Maryland, College Park, USA
| |
Collapse
|
7
|
Functional analysis of rice OSCA genes overexpressed in the arabidopsis osca1 mutant due to drought and salt stresses. Transgenic Res 2021; 30:811-820. [PMID: 34146237 DOI: 10.1007/s11248-021-00270-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Drought and salt are two major abiotic stresses that severely impact plant growth and development, as well as crop production. A previous study showed that OsOSCA1.4, one of eleven rice OSCAs (OsOSCAs), complements hyperosmolality-induced [Ca2+]cyt increases (OICIcyt), salt stress-induced [Ca2+]cyt increases (SICIcyt) and the associated growth phenotype in Arabidopsis osca1 (reduced hyperosmolality-induced [Ca2+]cyt increase 1). In this study, Except for OsOSCA2.3 and OsOSCA4.1, we generated independent transgenic lines overexpressing eight other OsOSCAs in the osca1 to explore their functions in osmotic Ca2+ signalling, stomatal movement, leaf water loss, and root growth in response to hyperosmolality and salt stress. Similar to OsOSCA1.4, overexpression of OsOSCA1.1 or OsOSCA2.2 in osca1 complemented OICIcyt and SICIcyt, as well as stomatal closure and root growth in response to hyperosmolality and salt stress treatments, and drought-related leaf water loss. In addition, overexpression of OsOSCA1.2, OsOSCA1.3 or OsOSCA2.1 in osca1 restored OICIcyt and SICIcyt, whereas overexpression of OsOSCA2.5 or OsOSCA3.1 did not. Moreover, osca1 overexpressing these five OsOSCAs exhibited various abiotic stress-associated growth phenotypes. However, overexpression of OsOSCA2.4 did not have any of these effects. These results indicated that multiple members of the OsOSCA family have redundant functions in osmotic sensing and diverse roles in stress adaption.
Collapse
|
8
|
Podolyan A, Luneva O, Klimenko E, Breygina M. Oxygen radicals and cytoplasm zoning in growing lily pollen tubes. PLANT REPRODUCTION 2021; 34:103-115. [PMID: 33492520 DOI: 10.1007/s00497-021-00403-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Differential modulation of ROS content of the microenvironment (O ¯/MnTMPP/OH·) affects growth speed and morphology in lily pollen tubes. Oxygen radicals influence ionic zoning: membrane potential and pH gradients. Recently, redox-regulation of tip growth has been extensively studied, but differential sensitivity of growing cells to particular ROS and their subcellular localization is still unclear. Here, we used specific dyes to provide mapping of H2O2 and O·2¯ in short and long pollen tubes. We found apical accumulation of H2O2 and H2O2-producing organelles in the shank that were not colocalized with O·2¯-producing mitochondria. Differential modulation of ROS content of the germination medium affected both growth speed and pollen tube morphology. Oxygen radicals affected ionic zoning: membrane potential and pH gradients. OH· caused depolarization all along the tube while O·2¯ provoked hyperpolarization and cytoplasm alkalinization. O·2¯accelerated growth and reduced tube diameter, indicating that this ROS can be considered as pollen tube growth stimulator. Serious structural disturbances were observed upon exposure to OH· and ROS quencher MnTMPP: pollen tube growth slowed down and ballooned tips formed in both cases, but OH· affected membrane transport and organelle distribution as well. OH·, thus, can be considered as a negative regulator of pollen tube growth. Pollen tubes, in turn, are able to reduce OH· concentration, which was assessed by electron paramagnetic resonance spectroscopy (EPR).
Collapse
Affiliation(s)
- Alexandra Podolyan
- Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, Russia, 119991
| | - Oksana Luneva
- Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, Russia, 119991
| | - Ekaterina Klimenko
- Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, Russia, 119991
| | - Maria Breygina
- Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, Russia, 119991.
| |
Collapse
|
9
|
Noman M, Aysha J, Ketehouli T, Yang J, Du L, Wang F, Li H. Calmodulin binding transcription activators: An interplay between calcium signalling and plant stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153327. [PMID: 33302232 DOI: 10.1016/j.jplph.2020.153327] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 05/18/2023]
Abstract
In plants, next to the secondary messengers lies an array of signal relaying molecules among which Calmodulins convey the unequivocal alarms of calcium influxes to Calmodulin-Binding Transcription Activators (CAMTA). Upon reception, CAMTA transcription factors decode the calcium signatures by transcribing the genes corresponding to the specific stimulus, thus have direct/indirect engagement in the complex signalling crosstalk. CAMTA transcription factors make an important contribution to the genome of all eukaryotes, including plants, from Brassica napus (18) to Carica papaya (2), the number of CAMTA genes varies across the plant species, however they exhibit a similar evolutionarily conserved domain organization including a DNA-Binding Domain (CG-1), a Transcription Factor Immunoglobulin Binding Domain (TIG), a Calmodulin-Binding Domain (CaMBD/IQ) and several Ankyrin repeats. The regulatory region of CAMTA genes possess multiple stress-responsive cis motifs including ABRE, SARE, G-box, W-box, AuXRE, DRE and others. CAMTA TFs in Arabidopsis have been studied extensively, however in other plants (with a few exceptions), the evidence merely bases upon expression analyses. CAMTAs are reported to orchestrate biotic as well as abiotic stresses including those occurring due to water and temperature fluctuations as well as heavy metals, light and salinity. Through CG-1 domain, CAMTA TFs bind the CG-box in the promoter of their target genes and modulate their expression under adverse conditions. Here we present a glimpse of how calcium signatures are coded and decoded and translated into necessary responses. In addition, we have emphasized on exploitation of the multiple-stress responsive nature of CAMTAs in engineering plants with desired traits.
Collapse
Affiliation(s)
- Muhammad Noman
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China.
| | - Jameel Aysha
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Toi Ketehouli
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Jing Yang
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Linna Du
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, 570228, Haikou, China.
| |
Collapse
|
10
|
Breygina M, Klimenko E. ROS and Ions in Cell Signaling during Sexual Plant Reproduction. Int J Mol Sci 2020; 21:E9476. [PMID: 33322128 PMCID: PMC7764562 DOI: 10.3390/ijms21249476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Pollen grain is a unique haploid organism characterized by two key physiological processes: activation of metabolism upon exiting dormancy and polar tube growth. In gymnosperms and flowering plants, these processes occur in different time frames and exhibit important features; identification of similarities and differences is still in the active phase. In angiosperms, the growth of male gametophyte is directed and controlled by its microenvironment, while in gymnosperms it is relatively autonomous. Recent reviews have detailed aspects of interaction between angiosperm female tissues and pollen such as interactions between peptides and their receptors; however, accumulated evidence suggests low-molecular communication, in particular, through ion exchange and ROS production, equally important for polar growth as well as for pollen germination. Recently, it became clear that ROS and ionic currents form a single regulatory module, since ROS production and the activity of ion transport systems are closely interrelated and form a feedback loop.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|
11
|
Harris BJ, Harrison CJ, Hetherington AM, Williams TA. Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata. Curr Biol 2020; 30:2001-2012.e2. [PMID: 32302587 DOI: 10.1016/j.cub.2020.03.048] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
The origin of land plants was accompanied by new adaptations to life on land, including the evolution of stomata-pores on the surface of plants that regulate gas exchange. The genes that underpin the development and function of stomata have been extensively studied in model angiosperms, such as Arabidopsis. However, little is known about stomata in bryophytes, and their evolutionary origins and ancestral function remain poorly understood. Here, we resolve the position of bryophytes in the land plant tree and investigate the evolutionary origins of genes that specify stomatal development and function. Our analyses recover bryophyte monophyly and demonstrate that the guard cell toolkit is more ancient than has been appreciated previously. We show that a range of core guard cell genes, including SPCH/MUTE, SMF, and FAMA, map back to the common ancestor of embryophytes or even earlier. These analyses suggest that the first embryophytes possessed stomata that were more sophisticated than previously envisioned and that the stomata of bryophytes have undergone reductive evolution, including their complete loss from liverworts.
Collapse
Affiliation(s)
- Brogan J Harris
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
12
|
Podolyan A, Maksimov N, Breygina M. Redox-regulation of ion homeostasis in growing lily pollen tubes. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153050. [PMID: 31639533 DOI: 10.1016/j.jplph.2019.153050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 05/13/2023]
Abstract
The pollen tube is characterized by cytoplasm compartmentalization typical for cells with polar growth. This concept includes "ion zoning", i.e. gradient distribution of ionic currents across the plasma membrane and free inorganic ions in the cytoplasm. One of the putative mechanisms for maintaining "ion zoning" is indicated by the sensitivity of the ion transport systems to reactive oxygen species (ROS). Here we test the possibility of redox regulation of ionic gradients and membrane potential (MP) gradient in growing pollen tubes using quantitative fluorescence microscopy. ROS quencher MnTMPP and exogenic H2O2 cause different alterations of intracellular Ca2+ gradient, pH gradient and MP gradient during short-term exposure. MnTMPP significantly shifts the gradients of Ca2+ and MP at low concentrations while high concentration cause growth alterations (ballooned tips) and cytoplasm acidification. H2O2 at 0,5 and 1 mM affects ion homeostasis as well (MP, Ca2+, pH) but doesn't decrease viability or alter shape of the tubes. Here we present original quantitative data on the interconnection between ROS and ion transport during tip growth.
Collapse
Affiliation(s)
- Alexandra Podolyan
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia
| | - Nikita Maksimov
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia
| | - Maria Breygina
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia; Pirogov Russian National Research Medical University, Ostrovitjanova Street 1, Moscow, 117997, Russia.
| |
Collapse
|
13
|
Scheible N, McCubbin A. Signaling in Pollen Tube Growth: Beyond the Tip of the Polarity Iceberg. PLANTS (BASEL, SWITZERLAND) 2019; 8:E156. [PMID: 31181594 PMCID: PMC6630365 DOI: 10.3390/plants8060156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
The coordinated growth of pollen tubes through floral tissues to deliver the sperm cells to the egg and facilitate fertilization is a highly regulated process critical to the Angiosperm life cycle. Studies suggest that the concerted action of a variety of signaling pathways underlies the rapid polarized tip growth exhibited by pollen tubes. Ca2+ and small GTPase-mediated pathways have emerged as major players in the regulation of pollen tube growth. Evidence suggests that these two signaling pathways not only integrate with one another but also with a variety of other important signaling events. As we continue to elucidate the mechanisms involved in pollen tube growth, there is a growing importance in taking a holistic approach to studying these pathways in order to truly understand how tip growth in pollen tubes is orchestrated and maintained. This review considers our current state of knowledge of Ca2+-mediated and GTPase signaling pathways in pollen tubes, how they may intersect with one another, and other signaling pathways involved. There will be a particular focus on recent reports that have extended our understanding in these areas.
Collapse
Affiliation(s)
- Nolan Scheible
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | - Andrew McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
- Center for Reproductive Biology, Pullman, WA, 99164, USA.
| |
Collapse
|
14
|
Zheng RH, Su SD, Xiao H, Tian HQ. Calcium: A Critical Factor in Pollen Germination and Tube Elongation. Int J Mol Sci 2019; 20:E420. [PMID: 30669423 PMCID: PMC6358865 DOI: 10.3390/ijms20020420] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023] Open
Abstract
Pollen is the male gametophyte of higher plants. Its major function is to deliver sperm cells to the ovule to ensure successful fertilization. During this process, many interactions occur among pollen tubes and pistil cells and tissues, and calcium ion (Ca2+) dynamics mediate these interactions among cells to ensure that pollen reaches the embryo sac. Although the precise functions of Ca2+ dynamics in the cells are unknown, we can speculate about its roles on the basis of its spatial and temporal characteristics during these interactions. The results of many studies indicate that calcium is a critical element that is strongly related to pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Ren Hua Zheng
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou 350012, China.
| | - Shun De Su
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou 350012, China.
| | - Hui Xiao
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou 350012, China.
| | - Hui Qiao Tian
- School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|