1
|
Joffe R, Tosens T, Berthe A, Jolivet Y, Niinemets Ü, Gandin A. Reduced mesophyll conductance under chronic O 3 exposure in poplar reflects thicker cell walls and increased subcellular diffusion pathway lengths according to the anatomical model. PLANT, CELL & ENVIRONMENT 2024; 47:4815-4832. [PMID: 39101376 DOI: 10.1111/pce.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Ozone (O3) is one of the most harmful and widespread air pollutants, affecting crop yield and plant health worldwide. There is evidence that O3 reduces the major limiting factor of photosynthesis, namely CO2 mesophyll conductance (gm), but there is little quantitative information of O3-caused changes in key leaf anatomical traits and their impact on gm. We exposed two O3-responsive clones of the economically important tree species Populus × canadensis Moench to 120 ppb O3 for 21 days. An anatomical diffusion model within the leaf was used to analyse the entire CO2 diffusion pathway from substomatal cavities to carboxylation sites and determine the importance of each structural and subcellular component as a limiting factor. gm decreased substantially under O3 and was found to be the most important limitation of photosynthesis. This decrease was mostly driven by an increased cell wall thickness and length of subcellular diffusion pathway caused by altered interchloroplast spacing and chloroplast positioning. By contrast, the prominent leaf integrative trait leaf dry mass per area was neither affected nor related to gm under O3. The observed relationship between gm and anatomy, however, was clone-dependent, suggesting that mechanisms regulating gm may differ considerably between closely related plant lines. Our results confirm the need for further studies on factors constraining gm under stress conditions.
Collapse
Affiliation(s)
- Ricardo Joffe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Tiina Tosens
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Audrey Berthe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Yves Jolivet
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Ülo Niinemets
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Anthony Gandin
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| |
Collapse
|
2
|
Pang Y, Liao Q, Peng H, Qian C, Wang F. CO 2 mesophyll conductance regulated by light: a review. PLANTA 2023; 258:11. [PMID: 37289402 DOI: 10.1007/s00425-023-04157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Light quality and intensity regulate plant mesophyll conductance, which has played an essential role in photosynthesis by controlling leaf structural and biochemical properties. Mesophyll conductance (gm), a crucial physiological factor influencing the photosynthetic rate of leaves, is used to describe the resistance of CO2 from the sub-stomatal cavity into the chloroplast up to the carboxylation site. Leaf structural and biochemical components, as well as external environmental factors such as light, temperature, and water, all impact gm. As an essential factor of plant photosynthesis, light affects plant growth and development and plays a vital role in regulating gm as well as determining photosynthesis and yield. This review aimed to summarize the mechanisms of gm response to light. Both structural and biochemical perspectives were combined to reveal the effects of light quality and intensity on the gm, providing a guide for selecting the optimal conditions for intensifying photosynthesis in plants.
Collapse
Affiliation(s)
- Yadan Pang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China
| | - Honggui Peng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Chun Qian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Fang Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China.
| |
Collapse
|
3
|
Xu Y, Feng Z, Peng J, Uddling J. Variations in leaf anatomical characteristics drive the decrease of mesophyll conductance in poplar under elevated ozone. GLOBAL CHANGE BIOLOGY 2023; 29:2804-2823. [PMID: 36718962 DOI: 10.1111/gcb.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Decline in mesophyll conductance (gm ) plays a key role in limiting photosynthesis in plants exposed to elevated ozone (O3 ). Leaf anatomical traits are known to influence gm , but the potential effects of O3 -induced changes in leaf anatomy on gm have not yet been clarified. Here, two poplar clones were exposed to elevated O3 . The effects of O3 on the photosynthetic capacity and anatomical characteristics were assessed to investigate the leaf anatomical properties that potentially affect gm . We also conducted global meta-analysis to explore the general response patterns of gm and leaf anatomy to O3 exposure. We found that the O3 -induced reduction in gm was critical in limiting leaf photosynthesis. Changes in liquid-phase conductance rather than gas-phase conductance drive the decline in gm under elevated O3, and this effect was associated with thicker cell walls and smaller chloroplast sizes. The effects of O3 on palisade and spongy mesophyll cell traits and their contributions to gm were highly genotype-dependent. Our results suggest that, while anatomical adjustments under elevated O3 may contribute to defense against O3 stress, they also cause declines in gm and photosynthesis. These results provide the first evidence of anatomical constraints on gm under elevated O3 .
Collapse
Affiliation(s)
- Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Lei Z, Westerband AC, Wright IJ, He Y, Zhang W, Cai X, Zhou Z, Liu F, Zhang Y. Leaf trait covariation and controls on leaf mass per area (LMA) following cotton domestication. ANNALS OF BOTANY 2022; 130:231-243. [PMID: 35849070 PMCID: PMC9445596 DOI: 10.1093/aob/mcac086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/05/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS The process of domestication has driven dramatic shifts in plant functional traits, including leaf mass per area (LMA). It remains unclear whether domestication has produced concerted shifts in the lower-level anatomical traits that underpin LMA and how these traits in turn affect photosynthesis. METHODS In this study we investigated controls of LMA and leaf gas exchange by leaf anatomical properties at the cellular, tissue and whole-leaf levels, comparing 26 wild and 31 domesticated genotypes of cotton (Gossypium). KEY RESULTS As expected, domesticated plants expressed lower LMA, higher photosynthesis and higher stomatal conductance, suggesting a shift towards the 'faster' end of the leaf economics spectrum. At whole-leaf level, variation in LMA was predominantly determined by leaf density (LD) both in wild and domesticated genotypes. At tissue level, higher leaf volume per area (Vleaf) in domesticated genotypes was driven by a simultaneous increase in the volume of epidermal, mesophyll and vascular bundle tissue and airspace, while lower LD resulted from a lower volume of palisade tissue and vascular bundles (which are of high density), paired with a greater volume of epidermis and airspace, which are of low density. The volume of spongy mesophyll exerted direct control on photosynthesis in domesticated genotypes but only indirect control in wild genotypes. At cellular level, a shift to larger but less numerous cells with thinner cell walls underpinned a lower proportion of cell wall mass, and thus a reduction in LD. CONCLUSIONS Taken together, cotton domestication has triggered synergistic shifts in the underlying determinants of LMA but also photosynthesis, at cell, tissue and whole-leaf levels, resulting in a marked shift in plant ecological strategy.
Collapse
Affiliation(s)
- Zhangying Lei
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, P.R. China
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
| | - Andrea C Westerband
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
| | - Ian J Wright
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, NSW 2751, Australia
| | - Yang He
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, P.R. China
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, P.R. China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, P.R. China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, P.R. China
| | | | | |
Collapse
|
5
|
Zeng F, Zhu L, Wang G, Liang Y, Ma D, Wang J. Higher CO 2 Assimilation in Selected Rice Recombinant Inbred Lines Is Driven by Higher CO 2 Diffusion and Light Use Efficiency Related to Leaf Anatomy and Mesophyll Cell Density. FRONTIERS IN PLANT SCIENCE 2022; 13:915050. [PMID: 35812953 PMCID: PMC9261980 DOI: 10.3389/fpls.2022.915050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Leaf anatomy determining the light distribution within the leaf and exerting influence on CO2 diffusion is considered to have dramatic potential for photosynthesis performance increase. In this study, we observed that two rice recombinant inbred lines, H138 and H217 (RILF11 plants from Sasanishiki × IRAT10), have higher net CO2 assimilation (An) than their parent Sasanishiki due mainly to the improvement of leaf anatomy. Our results showed that An positively correlated with anatomy traits' mesophyll cell number per cross-sectional area (NO.mescell/Acros) and mesophyll area (Ames). NO.mescell/Acros exert direct and indirect effects on An. Compared to Sasanishiki flag leaves, IRAT10, H138, and H217 have higher mesophyll cell numbers. Simultaneously, higher chlorophyll content and expression of genes encoding the light-harvesting protein of PSII and PSI (Lhcb1, 2, 3 and Lhca1, 2, 3) were recorded in IRAT10, H138, and H217, which facilitates light use efficiency. Higher electron transport rate and RuBP concentration were recorded in IRAT10, H138, and H217 flag leaves. Retinoblastoma-related gene (OsRBR1), exerting effects on mesophyll cell density, can be used to modify leaf anatomy for improving leaf photosynthesis. Additionally, higher stomatal conductance and mesophyll conductance were also recorded in H138 and H217 than in Sasanishiki. Furthermore, we modeled mesophyll conductance through anatomical traits, and the results revealed that chloroplast thickness was the dominant factor restricting CO2 diffusion within mesophyll cells rather than cell wall thickness. Higher RuBP content accompanied by higher CO2 concentration within the carboxylation set in H138 and H217 flag leaves contributed to higher CO2 assimilation.
Collapse
|
6
|
Perera‐Castro AV, Flexas J. Desiccation tolerance in bryophytes relates to elasticity but is independent of cell wall thickness and photosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13661. [PMID: 35249226 PMCID: PMC9314017 DOI: 10.1111/ppl.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Mosses have been found outliers of the trade-off between photosynthesis and bulk elastic modulus described for vascular plants. Hence, potential trade-offs among physical features of cell walls and desiccation tolerance, water relations, and photosynthesis were assessed in bryophytes and other poikilohydric species. Long-term desiccation tolerance was quantified after variable periods of desiccation/rehydration cycles. Water relations were analyzed by pressure-volume curves. Mesophyll conductance was estimated using both CO2 curve-fitting and anatomical methods. Cell wall elasticity was the parameter that better correlated with the desiccation tolerance index for desiccation tolerant species and was antagonistic to higher absolute values of osmotic potential. Although high values of cell wall effective porosity were estimated compared with the values assumed for vascular plants, the desiccation tolerance index negatively correlated with the porosity in desiccation tolerant bryophytes. Neither cell wall thickness nor photosynthetic capacity were correlated with the desiccation tolerance index of the studied species. The existence of a potential evolutionary trade-off between cell wall thickness and desiccation tolerance is rejected. The photosynthetic capacity reported for bryophytes is independent of elasticity and desiccation tolerance. Furthermore, the role of cell wall thickness in limiting CO2 conductance would be overestimated under a scenario of high cell wall porosity for most bryophytes.
Collapse
Affiliation(s)
- Alicia V. Perera‐Castro
- Department of BiologyUniversitat de les Illes Balears, INAGEAPalma de MallorcaSpain
- Department of Botany, Ecology and Plant PhysiologyUniversidad de La Laguna, Av. Astrofísico Francisco SánchezLa LagunaSpain
| | - Jaume Flexas
- Department of BiologyUniversitat de les Illes Balears, INAGEAPalma de MallorcaSpain
- King Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
7
|
Chen M, Liang F, Yan Y, Wang Y, Zhang Y, Tian J, Jiang C, Zhang W. Boll-leaf system gas exchange and its application in the analysis of cotton photosynthetic function. PHOTOSYNTHESIS RESEARCH 2021; 150:251-262. [PMID: 34165685 DOI: 10.1007/s11120-021-00856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Estimating the boll development and boll yield from single-leaf photosynthesis is difficult as the source-sink relationship of cotton (Gossypium hirsutum L.) is complicated. As the boll-leaf system (BLS), which includes the main-stem leaf, sympodial leaf, and non-leaf organs, is the basic unit of the cotton source-sink relationship and yield formation, the concept of "BLS photosynthesis" is introduced in this study. We speculate that the characteristics of BLS gas exchange can more accurately reflect the photosynthetic function of the system, thus revealing the law of photosynthesis in the process of boll development. The results showed that the photosynthetic rate of single leaves measured by a BLS chamber was consistent with that measured by a standard single-leaf chamber. BLSs exhibited typical light response curves, and the shape of the curves was similar to those of single leaves. The light compensation point and respiration rate of BLSs were higher than those of single leaves, while the apparent quantum efficiency of BLSs was lower. Compared with single leaves, the duration of the photosynthetic function of BLSs was longer. Increasing plant density decreased the gas exchange rate per unit BLS more significantly under field conditions. There was a better linear correlation between the net CO2 assimilation rate, respiration rate of BLSs and boll biomass. Therefore, we think that the gas exchange of BLSs can better reveal the changes in photosynthetic function of BLSs and boll development. This provides a new basis for analyzing the mechanism and regulation of cotton yield formation.
Collapse
Affiliation(s)
- Minzhi Chen
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi, 832003, China
| | - Fubin Liang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi, 832003, China
| | - Yinhua Yan
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi, 832003, China
| | - Yuxuan Wang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi, 832003, China
| | - Yali Zhang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi, 832003, China
| | - Jingshan Tian
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi, 832003, China
| | - Chuangdao Jiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
8
|
Zhang D, Du Q, Sun P, Lou J, Li X, Li Q, Wei M. Physiological and Transcriptomic Analyses Revealed the Implications of Abscisic Acid in Mediating the Rate-Limiting Step for Photosynthetic Carbon Dioxide Utilisation in Response to Vapour Pressure Deficit in Solanum Lycopersicum (Tomato). FRONTIERS IN PLANT SCIENCE 2021; 12:745110. [PMID: 34858453 PMCID: PMC8631768 DOI: 10.3389/fpls.2021.745110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The atmospheric vapour pressure deficit (VPD) has been demonstrated to be a significant environmental factor inducing plant water stress and affecting plant photosynthetic productivity. Despite this, the rate-limiting step for photosynthesis under varying VPD is still unclear. In the present study, tomato plants were cultivated under two contrasting VPD levels: high VPD (3-5 kPa) and low VPD (0.5-1.5 kPa). The effect of long-term acclimation on the short-term rapid VPD response was examined across VPD ranging from 0.5 to 4.5 kPa. Quantitative photosynthetic limitation analysis across the VPD range was performed by combining gas exchange and chlorophyll fluorescence. The potential role of abscisic acid (ABA) in mediating photosynthetic carbon dioxide (CO2) uptake across a series of VPD was evaluated by physiological and transcriptomic analyses. The rate-limiting step for photosynthetic CO2 utilisation varied with VPD elevation in tomato plants. Under low VPD conditions, stomatal and mesophyll conductance was sufficiently high for CO2 transport. With VPD elevation, plant water stress was gradually pronounced and triggered rapid ABA biosynthesis. The contribution of stomatal and mesophyll limitation to photosynthesis gradually increased with an increase in the VPD. Consequently, the low CO2 availability inside chloroplasts substantially constrained photosynthesis under high VPD conditions. The foliar ABA content was negatively correlated with stomatal and mesophyll conductance for CO2 diffusion. Transcriptomic and physiological analyses revealed that ABA was potentially involved in mediating water transport and photosynthetic CO2 uptake in response to VPD variation. The present study provided new insights into the underlying mechanism of photosynthetic depression under high VPD stress.
Collapse
Affiliation(s)
- Dalong Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Beijing, China
| | - Qingjie Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Po Sun
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jie Lou
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaotian Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Qingming Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Beijing, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Beijing, China
| |
Collapse
|
9
|
Zhu K, Wang A, Wu J, Yuan F, Guan D, Jin C, Zhang Y, Gong C. Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Sci Rep 2020; 10:10038. [PMID: 32572068 PMCID: PMC7308411 DOI: 10.1038/s41598-020-66886-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
The response of plant CO2 diffusion conductances (mesophyll and stomatal conductances, gm and gsc) to soil drought has been widely studied, but few studies have investigated the effects of soil nitrogen addition levels on gm and gsc. In this study, we investigated the responses of gm and gsc of Manchurian ash and Mongolian oak to four soil nitrogen addition levels (control, low nitrogen, medium nitrogen and high nitrogen) and the changes in leaf anatomy and associated enzyme activities (aquaporin (AQP) and carbonic anhydrase (CA)). Both gm and gsc increased with the soil nitrogen addition levels for both species, but then decreased under the high nitrogen addition level, which primarily resulted from the enlargements in leaf and mesophyll cell thicknesses, mesophyll surface area exposed to intercellular space per unit leaf area and stomatal opening status with soil nitrogen addition. Additionally, the improvements in leaf N content and AQP and CA activities also significantly promoted gm and gsc increases. The addition of moderate levels of soil nitrogen had notably positive effects on CO2 diffusion conductance in leaf anatomy and physiology in Manchurian ash and Mongolian oak, but these positive effects were weakened with the addition of high levels of soil nitrogen.
Collapse
Affiliation(s)
- Kai Zhu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yushu Zhang
- The Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, 110166, China
| | - Chunjuan Gong
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Lundgren MR, Fleming AJ. Cellular perspectives for improving mesophyll conductance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:845-857. [PMID: 31854030 PMCID: PMC7065256 DOI: 10.1111/tpj.14656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/11/2019] [Indexed: 05/04/2023]
Abstract
After entering the leaf, CO2 faces an intricate pathway to the site of photosynthetic fixation embedded within the chloroplasts. The efficiency of CO2 flux is hindered by a number of structural and biochemical barriers which, together, define the ease of flow of the gas within the leaf, termed mesophyll conductance. Previous authors have identified the key elements of this pathway, raising the prospect of engineering the system to improve CO2 flux and, thus, to increase leaf photosynthetic efficiency. In this review, we provide a perspective on the potential for improving the individual elements that contribute to this complex parameter. We lay particular emphasis on generation of the cellular architecture of the leaf which sets the initial boundaries of a number of mesophyll conductance parameters, incorporating an overview of the molecular transport processes which have been proposed as major facilitators of CO2 flux across structural boundaries along the pathway. The review highlights the research areas where future effort might be invested to increase our fundamental understanding of mesophyll conductance and leaf function and, consequently, to enable translation of these findings to improve the efficiency of crop photosynthesis.
Collapse
Affiliation(s)
| | - Andrew J. Fleming
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|