1
|
Vergou GA, Bajhaiya AK, Corredor L, Lema Asqui S, Timmerman E, Impens F, Funk C. In vivo proteolytic profiling of the type I and type II metacaspases in Chlamydomonas reinhardtii exposed to salt stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14401. [PMID: 38899462 DOI: 10.1111/ppl.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Metacaspases are cysteine proteases present in plants, fungi and protists. While the association of metacaspases with cell death is studied in a range of organisms, their native substrates are largely unknown. Here, we explored the in vivo proteolytic landscape of the two metacaspases, CrMCA-I and CrMCA-II, present in the green freshwater alga Chlamydomonas reinhardtii, using mass spectrometry-based degradomics approach, during control conditions and salt stress. Comparison between the cleavage events of CrMCA-I and CrMCA-II in metacaspase mutants revealed unique cleavage preferences and substrate specificity. Degradome analysis demonstrated the relevance of the predicted metacaspase substrates to the physiology of C. reinhardtii cells and its adaptation during salt stress. Functional enrichment analysis indicated an involvement of CrMCA-I in the catabolism of carboxylic acids, while CrMCA-II plays an important role in photosynthesis and translation. Altogether, our findings suggest distinct cellular functions of the two metacaspases in C. reinhardtii during salt stress response.
Collapse
Affiliation(s)
| | | | | | | | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | | |
Collapse
|
2
|
Blanco CM, de Souza HADS, Martins PDC, Fabbri C, Souza FSD, Lima-Junior JDC, Lopes SCP, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR. Profile of metacaspase gene expression in Plasmodium vivax field isolates from the Brazilian Amazon. Mol Biol Rep 2024; 51:594. [PMID: 38683374 PMCID: PMC11058907 DOI: 10.1007/s11033-024-09538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.
Collapse
Affiliation(s)
- Carolina Moreira Blanco
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Priscilla da Costa Martins
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Camila Fabbri
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brasil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brasil
| | | | | | - Stefanie Costa Pinto Lopes
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brasil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brasil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil.
| |
Collapse
|
3
|
Zou Y, Sabljić I, Horbach N, Dauphinee AN, Åsman A, Sancho Temino L, Minina EA, Drag M, Stael S, Poreba M, Ståhlberg J, Bozhkov PV. Thermoprotection by a cell membrane-localized metacaspase in a green alga. THE PLANT CELL 2024; 36:665-687. [PMID: 37971931 PMCID: PMC10896300 DOI: 10.1093/plcell/koad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Caspases are restricted to animals, while other organisms, including plants, possess metacaspases (MCAs), a more ancient and broader class of structurally related yet biochemically distinct proteases. Our current understanding of plant MCAs is derived from studies in streptophytes, and mostly in Arabidopsis (Arabidopsis thaliana) with 9 MCAs with partially redundant activities. In contrast to streptophytes, most chlorophytes contain only 1 or 2 uncharacterized MCAs, providing an excellent platform for MCA research. Here we investigated CrMCA-II, the single type-II MCA from the model chlorophyte Chlamydomonas (Chlamydomonas reinhardtii). Surprisingly, unlike other studied MCAs and similar to caspases, CrMCA-II dimerizes both in vitro and in vivo. Furthermore, activation of CrMCA-II in vivo correlated with its dimerization. Most of CrMCA-II in the cell was present as a proenzyme (zymogen) attached to the plasma membrane (PM). Deletion of CrMCA-II by genome editing compromised thermotolerance, leading to increased cell death under heat stress. Adding back either wild-type or catalytically dead CrMCA-II restored thermoprotection, suggesting that its proteolytic activity is dispensable for this effect. Finally, we connected the non-proteolytic role of CrMCA-II in thermotolerance to the ability to modulate PM fluidity. Our study reveals an ancient, MCA-dependent thermotolerance mechanism retained by Chlamydomonas and probably lost during the evolution of multicellularity.
Collapse
Affiliation(s)
- Yong Zou
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Igor Sabljić
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Natalia Horbach
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Anna Åsman
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Lucia Sancho Temino
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Simon Stael
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| |
Collapse
|
4
|
Dalzoto LDAM, Trujilho MNR, Santos TDR, Costa JPMS, Duarte ACM, Judice WADS, Marcondes MF, Machado MFM. Metacaspase of Saccharomyces cerevisiae (ScMCA-Ia) presents different catalytic cysteine in a processed and non-processed form. Biochem Biophys Res Commun 2023; 687:149185. [PMID: 37951047 DOI: 10.1016/j.bbrc.2023.149185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Metacaspases are cysteine proteases belonging to the CD clan of the C14 family. They possess important characteristics, such as specificity for cleavage after basic residues (Arg/Lys) and dependence on calcium ions to exert their catalytic activity. They are defined by the presence of a large subunit (p20) and a small subunit (p10) and are classified into types I, II, and III. Type I metacaspases have a characteristic pro-domain at the N-terminal of the enzyme, preceding a region rich in glutamine and asparagine. In the yeast Saccharomyces cerevisiae, a type I metacaspase is found. This organism encodes a single metacaspase that participates in the process of programmed cell death by apoptosis. The study focuses on cloning, expressing, and mutating Saccharomyces cerevisiae metacaspase (ScMCA-Ia). Mutations in Cys155 and Cys276 were introduced to investigate autoprocessing mechanisms. Results revealed that Cys155 plays a crucial role in autoprocessing, initiating a conformational change that activates ScMCA-Ia. Comparative analysis with TbMCA-IIa highlighted the significance of the N-terminal region in substrate access to the active site. The study proposes a two-step processing mechanism for type I metacaspases, where an initial processing step generates the active form, followed by a distinct intermolecular processing step. This provides new insights into ScMCA-Ia's activation and function. The findings hold potential implications for understanding cellular processes regulated by metacaspases. Overall, this research significantly advances knowledge in metacaspase biology.
Collapse
Affiliation(s)
- Laura de Azevedo Maffeis Dalzoto
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Mariana Nascimento Romero Trujilho
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Taiz Dos Reis Santos
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - João Pedro Martins Silva Costa
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Ane Caroline Moreira Duarte
- Technological Research Center, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Wagner Alves de Souza Judice
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Marcelo Ferreira Marcondes
- Department of Biophysics, São Paulo Federal University, Rua Pedro de Toledo, 669, 7° floor, 04039-032, São Paulo, Brazil
| | - Maurício Ferreira Marcondes Machado
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil; Technological Research Center, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil.
| |
Collapse
|
5
|
Ruiz-Solaní N, Salguero-Linares J, Armengot L, Santos J, Pallarès I, van Midden KP, Phukkan UJ, Koyuncu S, Borràs-Bisa J, Li L, Popa C, Eisele F, Eisele-Bürger AM, Hill SM, Gutiérrez-Beltrán E, Nyström T, Valls M, Llamas E, Vilchez D, Klemenčič M, Ventura S, Coll NS. Arabidopsis metacaspase MC1 localizes in stress granules, clears protein aggregates, and delays senescence. THE PLANT CELL 2023; 35:3325-3344. [PMID: 37401663 PMCID: PMC10473220 DOI: 10.1093/plcell/koad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Stress granules (SGs) are highly conserved cytoplasmic condensates that assemble in response to stress and contribute to maintaining protein homeostasis. These membraneless organelles are dynamic, disassembling once the stress is no longer present. Persistence of SGs due to mutations or chronic stress has been often related to age-dependent protein-misfolding diseases in animals. Here, we find that the metacaspase MC1 is dynamically recruited into SGs upon proteotoxic stress in Arabidopsis (Arabidopsis thaliana). Two predicted disordered regions, the prodomain and the 360 loop, mediate MC1 recruitment to and release from SGs. Importantly, we show that MC1 has the capacity to clear toxic protein aggregates in vivo and in vitro, acting as a disaggregase. Finally, we demonstrate that overexpressing MC1 delays senescence and this phenotype is dependent on the presence of the 360 loop and an intact catalytic domain. Together, our data indicate that MC1 regulates senescence through its recruitment into SGs and this function could potentially be linked to its remarkable protein aggregate-clearing activity.
Collapse
Affiliation(s)
- Nerea Ruiz-Solaní
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Laia Armengot
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Katarina P van Midden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ujjal J Phukkan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Júlia Borràs-Bisa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Liang Li
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Crina Popa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
| | - Frederik Eisele
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Anna Maria Eisele-Bürger
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Sandra Malgrem Hill
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Emilio Gutiérrez-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla and Consejo Superior de Investigaciones Científicas), 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| | - Thomas Nyström
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Ernesto Llamas
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, Cologne D-50674, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08001, Spain
| |
Collapse
|
6
|
Chen YL, Lin FW, Cheng KT, Chang CH, Hung SC, Efferth T, Chen YR. XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis. Nat Commun 2023; 14:4697. [PMID: 37542077 PMCID: PMC10403534 DOI: 10.1038/s41467-023-40406-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Proteolytic activation of cytokines regulates immunity in diverse organisms. In animals, cysteine-dependent aspartate-specific proteases (caspases) play central roles in cytokine maturation. Although the proteolytic production of peptide cytokines is also essential for plant immunity, evidence for cysteine-dependent aspartate-specific proteases in regulating plant immunity is still limited. In this study, we found that the C-terminal proteolytic processing of a caspase-like substrate motif "CNYD" within Pathogenesis-related protein 1 (PR1) generates an immunomodulatory cytokine (CAPE9) in Arabidopsis. Salicylic acid enhances CNYD-targeted protease activity and the proteolytic release of CAPE9 from PR1 in Arabidopsis. This process involves a protease exhibiting caspase-like enzyme activity, identified as Xylem cysteine peptidase 1 (XCP1). XCP1 exhibits a calcium-modulated pH-activity profile and a comparable activity to human caspases. XCP1 is required to induce systemic immunity triggered by pathogen-associated molecular patterns. This work reveals XCP1 as a key protease for plant immunity, which produces the cytokine CAPE9 from the canonical salicylic acid signaling marker PR1 to activate systemic immunity.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Fan-Wei Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Kai-Tan Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Hsin Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Taiwan Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Sheng-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
- Taiwan Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
7
|
Stael S, Sabljić I, Audenaert D, Andersson T, Tsiatsiani L, Kumpf RP, Vidal-Albalat A, Lindgren C, Vercammen D, Jacques S, Nguyen L, Njo M, Fernández-Fernández ÁD, Beunens T, Timmerman E, Gevaert K, Van Montagu M, Ståhlberg J, Bozhkov PV, Linusson A, Beeckman T, Van Breusegem F. Structure-function study of a Ca 2+-independent metacaspase involved in lateral root emergence. Proc Natl Acad Sci U S A 2023; 120:e2303480120. [PMID: 37216519 PMCID: PMC10235996 DOI: 10.1073/pnas.2303480120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.
Collapse
Affiliation(s)
- Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007Uppsala, Sweden
| | - Igor Sabljić
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007Uppsala, Sweden
| | - Dominique Audenaert
- VIB Screening Core, VIB,9052Ghent, Belgium
- Centre for Bioassay Development and Screening, Ghent University,9000Ghent, Belgium
| | | | - Liana Tsiatsiani
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | | | | | | | - Dominique Vercammen
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Silke Jacques
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Long Nguyen
- VIB Screening Core, VIB,9052Ghent, Belgium
- Centre for Bioassay Development and Screening, Ghent University,9000Ghent, Belgium
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Álvaro D. Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Tine Beunens
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Evy Timmerman
- Department of Biomolecular Medicine, Ghent University,9052Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9052Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University,9052Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9052Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007Uppsala, Sweden
| | - Peter V. Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007Uppsala, Sweden
| | - Anna Linusson
- Department of Chemistry, Umeå University,90187Umeå, Sweden
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| |
Collapse
|
8
|
Fernández-Fernández ÁD, Stael S, Van Breusegem F. Mechanisms controlling plant proteases and their substrates. Cell Death Differ 2023; 30:1047-1058. [PMID: 36755073 PMCID: PMC10070405 DOI: 10.1038/s41418-023-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In plants, proteolysis is emerging as an important field of study due to a growing understanding of the critical involvement of proteases in plant cell death, disease and development. Because proteases irreversibly modify the structure and function of their target substrates, proteolytic activities are stringently regulated at multiple levels. Most proteases are produced as dormant isoforms and only activated in specific conditions such as altered ion fluxes or by post-translational modifications. Some of the regulatory mechanisms initiating and modulating proteolytic activities are restricted in time and space, thereby ensuring precision activity, and minimizing unwanted side effects. Currently, the activation mechanisms and the substrates of only a few plant proteases have been studied in detail. Most studies focus on the role of proteases in pathogen perception and subsequent modulation of the plant reactions, including the hypersensitive response (HR). Proteases are also required for the maturation of coexpressed peptide hormones that lead essential processes within the immune response and development. Here, we review the known mechanisms for the activation of plant proteases, including post-translational modifications, together with the effects of proteinaceous inhibitors.
Collapse
Affiliation(s)
- Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zürich, Switzerland
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
9
|
Kumari V, Prasad KM, Kalia I, Sindhu G, Dixit R, Rawat DS, Singh OP, Singh AP, Pandey KC. Dissecting The role of Plasmodium metacaspase-2 in malaria gametogenesis and sporogony. Emerg Microbes Infect 2022; 11:938-955. [PMID: 35264080 PMCID: PMC8973346 DOI: 10.1080/22221751.2022.2052357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The family of apicomplexan specific proteins contains caspases–like proteins called “metacaspases”. These enzymes are present in the malaria parasite but absent in human; therefore, these can be explored as potential drug targets. We deleted the MCA-2 gene from Plasmodium berghei genome using a gene knockout strategy to decipher its precise function. This study has identified that MCA-2 plays an important role in parasite transmission since it is critical for the formation of gametocytes and for maintaining an appropriate number of infectious sporozoites required for sporogony. It is noticeable that a significant reduction in gametocyte, oocysts, ookinete and sporozoites load along with a delay in hepatocytes invasion were observed in the MCA-2 knockout parasite. Furthermore, a study found the two MCA-2 inhibitory molecules known as C-532 and C-533, which remarkably inhibited the MCA-2 activity, abolished the in vitro parasite growth, and also impaired the transmission cycle of P. falciparum and P. berghei in An. stephensi. Our findings indicate that the deletion of MCA-2 hampers the Plasmodium development during erythrocytic and exo-erythrocytic stages, and its inhibition by C-532 and C-533 critically affects the malaria transmission biology.
Collapse
Affiliation(s)
- Vandana Kumari
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | | | | | - Rajnikant Dixit
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Diwan S Rawat
- Depatment of Chemistry, University of Delhi, New Delhi, India
| | - O P Singh
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Agam P Singh
- National Institute of Immunology, New Delhi, India
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad Uttar Pradesh, UP, India
| |
Collapse
|
10
|
Dziduch K, Greniuk D, Wujec M. The Current Directions of Searching for Antiparasitic Drugs. Molecules 2022; 27:1534. [PMID: 35268635 PMCID: PMC8912034 DOI: 10.3390/molecules27051534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parasitic diseases are still a huge problem for mankind. They are becoming the main cause of chronic diseases in the world. Migration of the population, pollution of the natural environment, and climate changes cause the rapid spread of diseases. Additionally, a growing resistance of parasites to drugs is observed. Many research groups are looking for effective antiparasitic drugs with low side effects. In this work, we present the current trends in the search for antiparasitic drugs. We report known drugs used in other disease entities with proven antiparasitic activity and research on new chemical structures that may be potential drugs in parasitic diseases. The described investigations of antiparasitic compounds can be helpful for further drug development.
Collapse
Affiliation(s)
| | | | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (K.D.); (D.G.)
| |
Collapse
|
11
|
Sabljić I, Zou Y, Klemenčič M, Funk C, Ståhlberg J, Bozhkov P. Expression and Purification of the Type II Metacaspase from a Unicellular Green Alga Chlamydomonas reinhardtii. Methods Mol Biol 2022; 2447:13-20. [PMID: 35583769 DOI: 10.1007/978-1-0716-2079-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Type II metacaspases (MCAs) are proteases, belonging to the C14B MEROPS family. Like the MCAs of type I and type III, they preferentially cleave their substrates after the positively charged amino acid residues (Arg or Lys) at the P1 position. Type II MCAs from various higher plants have already been successfully overexpressed in E. coli mostly as His-tagged proteins and were shown to be proteolytically active after the purification. Here we present a protocol for expression and purification of the only type II MCA from the model green alga Chlamydomonas reinhardtii. The two-step purification, which consists of immobilized metal affinity chromatography using cobalt as ion followed by size-exclusion chromatography, can be performed in 1 day and yields 4 mg CrMCA-II protein per liter of overexpression culture.
Collapse
Affiliation(s)
- Igor Sabljić
- Uppsala BioCenter, Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Yong Zou
- Uppsala BioCenter, Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marina Klemenčič
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Ljubljana, Slovenia
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Jerry Ståhlberg
- Uppsala BioCenter, Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter Bozhkov
- Uppsala BioCenter, Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Štrancar V, van Midden KP, Klemenčič M, Funk C. Expression and Purification of the Type I Metacaspase from a Cryptophyte Guillardia theta , GtMCA-I. Methods Mol Biol 2022; 2447:1-11. [PMID: 35583768 DOI: 10.1007/978-1-0716-2079-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Type I metacaspases are the most ubiquitous of the three metacaspase types and are present in representatives of prokaryotes, unicellular eukaryotes including yeasts, algae, and protozoa, as well as land plants. They are composed of two structural units: a catalytic so-called p20 domain with the His-Cys catalytic dyad and a regulatory p10 domain. Despite their structural homology to caspases, these proteases cleave their substrates after the positively charged amino acid residues at the P1 position, just like the metacaspases of type II and type III. We present a protocol for expression and purification of the only type I protease from a secondary endosymbiosis Guillardia theta , GtMCA-I by overexpression of its gene in BL21 (DE3) E. coli cells and one-day sequential purification using nickel-affinity, ion-exchange, and size-exclusion chromatography.
Collapse
Affiliation(s)
- Vida Štrancar
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Petra van Midden
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Marina Klemenčič
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Ljubljana, Slovenia
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
13
|
Plant metacaspase: A case study of microcrystal structure determination and analysis. Methods Enzymol 2022; 676:103-131. [DOI: 10.1016/bs.mie.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Refolding of metacaspase 5 from Trypanosoma cruzi, structural characterization and the influence of c-terminal in protein recombinant production. Protein Expr Purif 2021; 191:106007. [PMID: 34728367 DOI: 10.1016/j.pep.2021.106007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Metacaspases are known to have a fundamental role in apoptosis-like, a programmed cellular death (PCD) in plants, fungi, and protozoans. The last includes several parasites that cause diseases of great interest to public health, mostly without adequate treatment and included in the neglected tropical diseases category. One of them is Trypanosoma cruzi which causes Chagas disease and has two metacaspases involved in its PCD: TcMCA3 and TcMCA5. Their roles seemed different in PCD, TcMCA5 appears as a proapoptotic protein negatively regulated by its C-terminal sequence, while TcMCA3 is described as a cell cycle regulator. Despite this, the precise role of TcMCA3 and TcMCA5 and their atomic structures remain elusive. Therefore, developing methodologies to allow investigations of those metacaspases is relevant. Herein, we produced full-length and truncated versions of TcMCA5 and applied different strategies for their folded recombinant production from E. coli inclusion bodies. Biophysical assays probed the efficacy of the production method in providing a high yield of folded recombinant TcMCA5. Moreover, we modeled the TcMCA5 protein structure using experimental restraints obtained by XLMS. The experimental design for novel methods and the final protocol provided here can guide studies with other metacaspases. The production of TcMCA5 allows further investigations as protein crystallography, HTS drug discovery to create potential therapeutic in the treatment of Chagas' disease and in the way to clarify how the PCD works in the parasite.
Collapse
|
15
|
van Midden KP, Peric T, Klemenčič M. Plant type I metacaspases are proteolytically active proteases despite their hydrophobic nature. FEBS Lett 2021; 595:2237-2247. [PMID: 34318487 DOI: 10.1002/1873-3468.14165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022]
Abstract
Plant metacaspases type I (MCA-Is), the closest structural homologs of caspases, are key proteases in stress-induced regulated cell death processes in plants. However, no plant MCA-Is have been characterized in vitro to date. Here, we show that only plant MCA-Is contain a highly hydrophobic loop within the C terminus of their p10 domain. When removed, soluble and proteolytically active plant MCA-Is can be designed and recombinantly produced. We show that the activity of MCA-I depends on calcium ions and that removal of the hydrophobic loop does not affect cleavage and covalent binding to its inhibitor SERPIN. This novel approach will finally allow the development of tools to detect and manipulate the activity of these cysteine proteases in vivo and in planta.
Collapse
Affiliation(s)
- Katarina Petra van Midden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Tanja Peric
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| |
Collapse
|
16
|
Hou S, Zhang J, He P. Stress-induced activation of receptor signaling by protease-mediated cleavage. Biochem J 2021; 478:1847-1852. [PMID: 34003253 PMCID: PMC9059214 DOI: 10.1042/bcj20200941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Plants encode a large number of proteases in activating intracellular signaling through proteolytic cleavages of various protein substrates. One type of the substrates is proligands, including peptide hormones, which are perceived by cell surface-resident receptors. The peptide hormones are usually first synthesized as propeptides, and then cleaved by specific proteases for activation. Accumulating evidence indicates that the protease-mediated cleavage of proligands can be triggered by environmental stresses and subsequently activates plant stress signaling. In this perspective, we highlight several recent publications and provide an update about stress-induced cleavage of propeptides and receptor-associated components by proteases in the activation of cell surface-resident receptor signaling in plants. We also discuss some questions and future challenges in the research of protease functions in plant stress response.
Collapse
Affiliation(s)
- Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250100, China
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250100, China
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, U.S.A
| |
Collapse
|
17
|
Berenguer E, Minina EA, Carneros E, B�r�ny I, Bozhkov PV, Testillano PS. Suppression of Metacaspase- and Autophagy-Dependent Cell Death Improves Stress-Induced Microspore Embryogenesis in Brassica napus. PLANT & CELL PHYSIOLOGY 2021; 61:2097-2110. [PMID: 33057654 PMCID: PMC7861468 DOI: 10.1093/pcp/pcaa128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/29/2020] [Indexed: 05/12/2023]
Abstract
Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.
Collapse
Affiliation(s)
- Eduardo Berenguer
- Microbial and Plant Biotechnology Department, Pollen Biotechnology of Crop Plants Laboratory, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala 75007, Sweden
| | - Elena Carneros
- Microbial and Plant Biotechnology Department, Pollen Biotechnology of Crop Plants Laboratory, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Ivett B�r�ny
- Microbial and Plant Biotechnology Department, Pollen Biotechnology of Crop Plants Laboratory, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala 75007, Sweden
| | - Pilar S Testillano
- Microbial and Plant Biotechnology Department, Pollen Biotechnology of Crop Plants Laboratory, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
18
|
Ndhlovu A, Durand PM, Ramsey G. Programmed cell death as a black queen in microbial communities. Mol Ecol 2020; 30:1110-1119. [PMID: 33253458 DOI: 10.1111/mec.15757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/25/2020] [Indexed: 01/20/2023]
Abstract
Programmed cell death (PCD) in unicellular organisms is in some instances an altruistic trait. When the beneficiaries are clones or close kin, kin selection theory may be used to explain the evolution of the trait, and when the trait evolves in groups of distantly related individuals, group or multilevel selection theory is invoked. In mixed microbial communities, the benefits are also available to unrelated taxa. But the evolutionary ecology of PCD in communities is poorly understood. Few hypotheses have been offered concerning the community role of PCD despite its far-reaching effects. The hypothesis we consider here is that PCD is a black queen. The Black Queen Hypothesis (BQH) outlines how public goods arising from a leaky function are exploited by other taxa in the community. Black Queen (BQ) traits are essential for community survival, but only some members bear the cost of possessing them, while others lose the trait In addition, BQ traits have been defined in terms of adaptive gene loss, and it is unknown whether this has occurred for PCD. Our conclusion is that PCD fulfils the two most important criteria of a BQ (leakiness and costliness), but that more empirical data are needed for assessing the remaining two criteria. In addition, we hold that for viewing PCD as a BQ, the original BQH needs to include social traits. Thus, despite some empirical and conceptual shortcomings, the BQH provides a helpful avenue for investigating PCD in microbial communities.
Collapse
Affiliation(s)
- Andrew Ndhlovu
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Pierre M Durand
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Grant Ramsey
- Institute of Philosophy, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Structural basis for Ca 2+-dependent activation of a plant metacaspase. Nat Commun 2020; 11:2249. [PMID: 32382010 PMCID: PMC7206013 DOI: 10.1038/s41467-020-15830-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Plant metacaspases mediate programmed cell death in development, biotic and abiotic stresses, damage-induced immune response, and resistance to pathogen attack. Most metacaspases require Ca2+ for their activation and substrate processing. However, the Ca2+-dependent activation mechanism remains elusive. Here we report the crystal structures of Metacaspase 4 from Arabidopsis thaliana (AtMC4) that modulates Ca2+-dependent, damage-induced plant immune defense. The AtMC4 structure exhibits an inhibitory conformation in which a large linker domain blocks activation and substrate access. In addition, the side chain of Lys225 in the linker domain blocks the active site by sitting directly between two catalytic residues. We show that the activation of AtMC4 and cleavage of its physiological substrate involve multiple cleavages in the linker domain upon activation by Ca2+. Our analysis provides insight into the Ca2+-dependent activation of AtMC4 and lays the basis for tuning its activity in response to stresses for engineering of more sustainable crops for food and biofuels. Plant metacaspases mediate immune response following activation by Ca2+. Here, via crystallography and functional analyses, the authors show that a linker domain in Arabidopsis Metacaspase 4 blocks substrate access to the active site but is cleaved multiple times in the presence of Ca2+ to allow enzyme activation.
Collapse
|
20
|
Vandana, Dixit R, Tiwari R, Katyal A, Pandey KC. Metacaspases: Potential Drug Target Against Protozoan Parasites. Front Pharmacol 2019; 10:790. [PMID: 31379569 PMCID: PMC6657590 DOI: 10.3389/fphar.2019.00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Among the numerous strategies/targets for controlling infectious diseases, parasites-derived proteases receive prime attention due to their essential contribution to parasite growth and development. Parasites produce a broad array of proteases, which are required for parasite entry/invasion, modification/degradation of host proteins for their nourishment, and activation of inflammation that ensures their survival to maintain infection. Presently, extensive research is focused on unique proteases termed as "metacaspases" (MCAs) in relation to their versatile functions in plants and non-metazoans. Such unique MCAs proteases could be considered as a potential drug target against parasites due to their absence in the human host. MCAs are cysteine proteases, having Cys-His catalytic dyad present in fungi, protozoa, and plants. Studies so far indicated that MCAs are broadly associated with apoptosis-like cell death, growth, and stress regulation in different protozoa. The present review comprises the important research outcomes from our group and published literature, showing the variable properties and function of MCAs for therapeutic purpose against infectious diseases.
Collapse
Affiliation(s)
- Vandana
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India.,Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnarayan Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anju Katyal
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Kailash C Pandey
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India.,Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
21
|
Abstract
Plants protect their wounds against pathogen invasion by releasing damage signals that induce immune responses in neighboring cells. A new study shows that a conserved bioactive peptide is released from its cytoplasmic precursor upon wounding by a metacaspase that is activated by calcium influx into the injured cell.
Collapse
|
22
|
Stael S, Van Breusegem F, Gevaert K, Nowack MK. Plant proteases and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1991-1995. [PMID: 31222306 PMCID: PMC6460956 DOI: 10.1093/jxb/erz126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|