1
|
Kiervel D, Boissinot S, Piccini C, Scheidecker D, Villeroy C, Gilmer D, Brault V, Ziegler-Graff V. Arabidopsis RNA-binding proteins interact with viral structural proteins and modify turnip yellows virus accumulation. PLANT PHYSIOLOGY 2024:kiae590. [PMID: 39658301 DOI: 10.1093/plphys/kiae590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024]
Abstract
As obligate intracellular parasites, viruses depend on host proteins and pathways for their multiplication. Among these host factors, specific nuclear proteins are involved in the life cycle of some cytoplasmic replicating RNA viruses, although their role in the viral cycle remains largely unknown. The polerovirus turnip yellows virus (TuYV) encodes a major coat protein (CP) and a 74 kDa protein known as the readthrough (RT) protein. The icosahedral viral capsid is composed of the CP and a minor component RT*, arising from a C-terminal cleavage of the full-length RT. In this study, we identified Arabidopsis (Arabidopsis thaliana) ALY family proteins as interacting partners of TuYV structural proteins using yeast 2-hybrid assays and co-immunoprecipitations in planta. ALY proteins are adaptor proteins of the THO-TREX-1 complex essential to the nuclear export of mature messenger RNAs (mRNAs). Although all 4 ALY proteins colocalized with the CP and the RT protein in the nucleus upon co-expression in agro-infiltrated Nicotiana benthamiana leaves, only the CP remained nuclear and colocalized with ALY proteins in TuYV-infected cells, suggesting that the CP is an essential partner of ALY proteins. Importantly, TuYV-infected A. thaliana 4xaly knock-out mutants showed a significant increase in viral accumulation, indicating that TuYV infection is affected by an unknown ALY-mediated antiviral defense mechanism or impairs the cellular mRNA export pathway to favor viral RNA translation. This finding underpins the crucial role played by nuclear factors in the life cycle of cytoplasmic RNA viruses.
Collapse
Affiliation(s)
- Déborah Kiervel
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Sylvaine Boissinot
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
- INRAE, BFP UMR 1332, Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Céline Piccini
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Danile Scheidecker
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Claire Villeroy
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Véronique Brault
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
2
|
Fonseca A, Riveras E, Moyano TC, Alvarez JM, Rosa S, Gutiérrez RA. Dynamic changes in mRNA nucleocytoplasmic localization in the nitrate response of Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:4227-4245. [PMID: 38950037 DOI: 10.1111/pce.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Alejandro Fonseca
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José M Alvarez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Rödel A, Weig I, Tiedemann S, Schwartz U, Längst G, Moehle C, Grasser M, Grasser KD. Arabidopsis mRNA export factor MOS11: molecular interactions and role in abiotic stress responses. THE NEW PHYTOLOGIST 2024; 243:180-194. [PMID: 38650347 DOI: 10.1111/nph.19773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Transcription and export (TREX) is a multi-subunit complex that links synthesis, processing and export of mRNAs. It interacts with the RNA helicase UAP56 and export factors such as MOS11 and ALYs to facilitate nucleocytosolic transport of mRNAs. Plant MOS11 is a conserved, but sparsely researched RNA-binding export factor, related to yeast Tho1 and mammalian CIP29/SARNP. Using biochemical approaches, the domains of Arabidopsis thaliana MOS11 required for interaction with UAP56 and RNA-binding were identified. Further analyses revealed marked genetic interactions between MOS11 and ALY genes. Cell fractionation in combination with transcript profiling demonstrated that MOS11 is required for export of a subset of mRNAs that are shorter and more GC-rich than MOS11-independent transcripts. The central α-helical domain of MOS11 proved essential for physical interaction with UAP56 and for RNA-binding. MOS11 is involved in the nucleocytosolic transport of mRNAs that are upregulated under stress conditions and accordingly mos11 mutant plants turned out to be sensitive to elevated NaCl concentrations and heat stress. Collectively, our analyses identify functional interaction domains of MOS11. In addition, the results establish that mRNA export is critically involved in the plant response to stress conditions and that MOS11 plays a prominent role at this.
Collapse
Affiliation(s)
- Amelie Rödel
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Ina Weig
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Sophie Tiedemann
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center, Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Gernot Längst
- Institute for Biochemistry III, Biochemistry Center, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Am Biopark 9, D-93053, Regensburg, Germany
| | - Marion Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
4
|
Fanara S, Schloesser M, Joris M, De Franco S, Vandevenne M, Kerff F, Hanikenne M, Motte P. The Arabidopsis SR45 splicing factor bridges the splicing machinery and the exon-exon junction complex. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2280-2298. [PMID: 38180875 DOI: 10.1093/jxb/erae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
The Arabidopsis splicing factor serine/arginine-rich 45 (SR45) contributes to several biological processes. The sr45-1 loss-of-function mutant exhibits delayed root development, late flowering, unusual numbers of floral organs, shorter siliques with decreased seed sets, narrower leaves and petals, and altered metal distribution. SR45 bears a unique RNA recognition motif (RRM) flanked by one serine/arginine-rich (RS) domain on both sides. Here, we studied the function of each SR45 domains by examining their involvement in: (i) the spatial distribution of SR45; (ii) the establishment of a protein-protein interaction network including spliceosomal and exon-exon junction complex (EJC) components; and (iii) the RNA binding specificity. We report that the endogenous SR45 promoter is active during vegetative and reproductive growth, and that the SR45 protein localizes in the nucleus. We demonstrate that the C-terminal arginine/serine-rich domain is a determinant of nuclear localization. We show that the SR45 RRM domain specifically binds purine-rich RNA motifs via three residues (H101, H141, and Y143), and is also involved in protein-protein interactions. We further show that SR45 bridges both mRNA splicing and surveillance machineries as a partner of EJC core components and peripheral factors, which requires phosphoresidues probably phosphorylated by kinases from both the CLK and SRPK families. Our findings provide insights into the contribution of each SR45 domain to both spliceosome and EJC assemblies.
Collapse
Affiliation(s)
- Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Marine Joris
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Simona De Franco
- InBioS-Center for Protein Engineering, Laboratory of Biological Macromolecules, University of Liège, 4000, Liège, Belgium
| | - Marylène Vandevenne
- InBioS-Center for Protein Engineering, Laboratory of Biological Macromolecules, University of Liège, 4000, Liège, Belgium
| | - Frédéric Kerff
- InBioS-Center for Protein Engineering, Laboratory of Crystallography, University of Liège, 4000, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, 4000, Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
5
|
Zhu C, Zhang S, Zhou C, Tian C, Shi B, Xu K, Huang L, Sun Y, Lin Y, Lai Z, Guo Y. RNA Methylome Reveals the m 6A-mediated Regulation of Flavor Metabolites in Tea Leaves under Solar-withering. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:769-787. [PMID: 36791953 PMCID: PMC10787128 DOI: 10.1016/j.gpb.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/20/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
The epitranscriptomic mark N6-methyladenosine (m6A), which is the predominant internal modification in RNA, is important for plant responses to diverse stresses. Multiple environmental stresses caused by the tea-withering process can greatly influence the accumulation of specialized metabolites and the formation of tea flavor. However, the effects of the m6A-mediated regulatory mechanism on flavor-related metabolic pathways in tea leaves remain relatively uncharacterized. We performed an integrated RNA methylome and transcriptome analysis to explore the m6A-mediated regulatory mechanism and its effects on flavonoid and terpenoid metabolism in tea (Camellia sinensis) leaves under solar-withering conditions. Dynamic changes in global m6A level in tea leaves were mainly controlled by two m6A erasers (CsALKBH4A and CsALKBH4B) during solar-withering treatments. Differentially methylated peak-associated genes following solar-withering treatments with different shading rates were assigned to terpenoid biosynthesis and spliceosome pathways. Further analyses indicated that CsALKBH4-driven RNA demethylation can directly affect the accumulation of volatile terpenoids by mediating the stability and abundance of terpenoid biosynthesis-related transcripts and also indirectly influence the flavonoid, catechin, and theaflavin contents by triggering alternative splicing-mediated regulation. Our findings revealed a novel layer of epitranscriptomic gene regulation in tea flavor-related metabolic pathways and established a link between the m6A-mediated regulatory mechanism and the formation of tea flavor under solar-withering conditions.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biying Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linjie Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Nie Y, Li Y, Liu M, Ma B, Sui X, Chen J, Yu Y, Dong CH. The nucleoporin NUP160 and NUP96 regulate nucleocytoplasmic export of mRNAs and participate in ethylene signaling and response in Arabidopsis. PLANT CELL REPORTS 2023; 42:549-559. [PMID: 36598573 DOI: 10.1007/s00299-022-02976-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis nucleoporin involved in the regulation of ethylene signaling via controlling of nucleocytoplasmic transport of mRNAs. The two-way transport of mRNAs between the nucleus and cytoplasm are controlled by the nuclear pore complex (NPC). In higher plants, the NPC contains at least 30 nucleoporins. The Arabidopsis nucleoporins are involved in various biological processes such as pathogen interaction, nodulation, cold response, flowering, and hormone signaling. However, little is known about the regulatory functions of the nucleoporin NUP160 and NUP96 in ethylene signaling pathway. In the present study, we provided data showing that the Arabidopsis nucleoporin NUP160 and NUP96 participate in ethylene signaling-related mRNAs nucleocytoplasmic transport. The Arabidopsis nucleoporin mutants (nup160, nup96-1, nup96-2) exhibited enhanced ethylene sensitivity. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that the nucleoporin mutants affected the nucleocytoplasmic transport of all the examined mRNAs, including the ethylene signaling-related mRNAs such as ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, and EIN3. Transcriptome analysis of the nucleoporin mutants provided clues suggesting that the nucleoporin NUP160 and NUP96 may participate in ethylene signaling via various molecular mechanisms. These observations significantly advance our understanding of the regulatory mechanisms of nucleoporin proteins in ethylene signaling and ethylene response.
Collapse
Affiliation(s)
- Yuanyuan Nie
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Menghui Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Chen J, Sui X, Ma B, Li Y, Li N, Qiao L, Yu Y, Dong CH. Arabidopsis CPR5 plays a role in regulating nucleocytoplasmic transport of mRNAs in ethylene signaling pathway. PLANT CELL REPORTS 2022; 41:1075-1085. [PMID: 35201411 DOI: 10.1007/s00299-022-02838-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis CPR5 is involved in regulation of ethylene signaling via two different ways: interacting with the ETR1 N-terminal domains, and controlling nucleocytoplasmic transport of ethylene-related mRNAs. The ETR1 receptor plays a predominant role in ethylene signaling in Arabidopsis thaliana. Previous studies showed that both RTE1 and CPR5 can directly bind to the ETR1 receptor and regulate ethylene signaling. RTE1 was suggested to promote the ETR1 receptor signaling by influencing its conformation, but little is known about the regulatory mechanism of CPR5 in ethylene signaling. In this study, we presented the data showing that both RTE1 and CPR5 bound to the N-terminal domains of ETR1, and regulated ethylene signaling via the ethylene receptor. On the other hand, the research provided evidence indicating that CPR5 could act as a nucleoporin to regulate the ethylene-related mRNAs export out of the nucleus, while RTE1 or its homolog (RTH) had no effect on the nucleocytoplasmic transport of mRNAs. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that defect of CPR5 restricted nucleocytoplasmic transport of mRNAs. These results advance our understanding of the regulatory mechanism of CPR5 in ethylene signaling.
Collapse
Affiliation(s)
- Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuetong Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Na Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
A fungal effector suppresses the nuclear export of AGO1-miRNA complex to promote infection in plants. Proc Natl Acad Sci U S A 2022; 119:e2114583119. [PMID: 35290117 PMCID: PMC8944911 DOI: 10.1073/pnas.2114583119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SignificanceIncreasing evidence demonstrates that small RNAs can serve as trafficking effectors to mediate bidirectional transkingdom RNA interference (RNAi) in interacting organisms, including plant-pathogenic fungi systems. Previous findings demonstrated that plants can send microRNAs (miRNAs) to fungal pathogen Verticillium dahliae to trigger antifungal RNAi. Here we report that V. dahliae is able to secret an effector to the plant nucleus to interfere with the nuclear export of AGO1-miRNA complexes, leading to an inhibition in antifungal RNAi and increased virulence in plants. Thus, we reveal an antagonistic mechanism that can be exploited by fungal pathogens to counteract antifungal RNAi immunity via manipulation of plant small RNA function.
Collapse
|
9
|
Kubina J, Geldreich A, Gales JP, Baumberger N, Bouton C, Ryabova LA, Grasser KD, Keller M, Dimitrova M. Nuclear export of plant pararetrovirus mRNAs involves the TREX complex, two viral proteins and the highly structured 5' leader region. Nucleic Acids Res 2021; 49:8900-8922. [PMID: 34370034 PMCID: PMC8421220 DOI: 10.1093/nar/gkab653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, the major nuclear export pathway for mature mRNAs uses the dimeric receptor TAP/p15, which is recruited to mRNAs via the multisubunit TREX complex, comprising the THO core and different export adaptors. Viruses that replicate in the nucleus adopt different strategies to hijack cellular export factors and achieve cytoplasmic translation of their mRNAs. No export receptors are known in plants, but Arabidopsis TREX resembles the mammalian complex, with a conserved hexameric THO core associated with ALY and UIEF proteins, as well as UAP56 and MOS11. The latter protein is an orthologue of mammalian CIP29. The nuclear export mechanism for viral mRNAs has not been described in plants. To understand this process, we investigated the export of mRNAs of the pararetrovirus CaMV in Arabidopsis and demonstrated that it is inhibited in plants deficient in ALY, MOS11 and/or TEX1. Deficiency for these factors renders plants partially resistant to CaMV infection. Two CaMV proteins, the coat protein P4 and reverse transcriptase P5, are important for nuclear export. P4 and P5 interact and co-localise in the nucleus with the cellular export factor MOS11. The highly structured 5′ leader region of 35S RNAs was identified as an export enhancing element that interacts with ALY1, ALY3 and MOS11 in vitro.
Collapse
Affiliation(s)
- Julie Kubina
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Angèle Geldreich
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jón Pol Gales
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Nicolas Baumberger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Clément Bouton
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Mario Keller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
11
|
Lüdke D, Rohmann PFW, Wiermer M. Nucleocytoplasmic Communication in Healthy and Diseased Plant Tissues. FRONTIERS IN PLANT SCIENCE 2021; 12:719453. [PMID: 34394173 PMCID: PMC8357054 DOI: 10.3389/fpls.2021.719453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 05/16/2023]
Abstract
The double membrane of the nuclear envelope (NE) constitutes a selective compartment barrier that separates nuclear from cytoplasmic processes. Plant viability and responses to a changing environment depend on the spatial communication between both compartments. This communication is based on the bidirectional exchange of proteins and RNAs and is regulated by a sophisticated transport machinery. Macromolecular traffic across the NE depends on nuclear transport receptors (NTRs) that mediate nuclear import (i.e. importins) or export (i.e. exportins), as well as on nuclear pore complexes (NPCs) that are composed of nucleoporin proteins (NUPs) and span the NE. In this review, we provide an overview of plant NPC- and NTR-directed cargo transport and we consider transport independent functions of NPCs and NE-associated proteins in regulating plant developmental processes and responses to environmental stresses.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Philipp F. W. Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Molecular Biology of Plant-Microbe Interactions Research Group, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
- *Correspondence: Marcel Wiermer,
| |
Collapse
|
12
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
The transcription and export complex THO/TREX contributes to transcription termination in plants. PLoS Genet 2020; 16:e1008732. [PMID: 32282821 PMCID: PMC7179932 DOI: 10.1371/journal.pgen.1008732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 04/23/2020] [Accepted: 03/22/2020] [Indexed: 11/23/2022] Open
Abstract
Transcription termination has important regulatory functions, impacting mRNA stability, localization and translation potential. Failure to appropriately terminate transcription can also lead to read-through transcription and the synthesis of antisense RNAs which can have profound impact on gene expression. The Transcription-Export (THO/TREX) protein complex plays an important role in coupling transcription with splicing and export of mRNA. However, little is known about the role of the THO/TREX complex in the control of transcription termination. In this work, we show that two proteins of the THO/TREX complex, namely TREX COMPONENT 1 (TEX1 or THO3) and HYPER RECOMBINATION1 (HPR1 or THO1) contribute to the correct transcription termination at several loci in Arabidopsis thaliana. We first demonstrate this by showing defective termination in tex1 and hpr1 mutants at the nopaline synthase (NOS) terminator present in a T-DNA inserted between exon 1 and 3 of the PHO1 locus in the pho1-7 mutant. Read-through transcription beyond the NOS terminator and splicing-out of the T-DNA resulted in the generation of a near full-length PHO1 mRNA (minus exon 2) in the tex1 pho1-7 and hpr1 pho1-7 double mutants, with enhanced production of a truncated PHO1 protein that retained phosphate export activity. Consequently, the strong reduction of shoot growth associated with the severe phosphate deficiency of the pho1-7 mutant was alleviated in the tex1 pho1-7 and hpr1 pho1-7 double mutants. Additionally, we show that RNA termination defects in tex1 and hpr1 mutants leads to 3’UTR extensions in several endogenous genes. These results demonstrate that THO/TREX complex contributes to the regulation of transcription termination. Production of messenger RNAs (mRNAs) involves numerous steps including initiation of transcription, elongation, splicing, termination, as well as export out of the nucleus. All these steps are highly coordinated and failure in any steps has a profound impact on the level and identity of mRNAs produced. The THO/TREX protein complex is associated with nascent RNAs and contributes to several mRNA biogenesis steps, including splicing and export. However, the contribution of the THO/TREX complex to mRNA termination was poorly defined. We have identified a role for two components of the THO/TREX complex, namely the proteins TEX1 and HPR1, in the control of transcription termination in the plant Arabidopsis thaliana. We show that the tex1 and hpr1 mutants have defects in terminating mRNA at the nopaline synthase (NOS) terminator found in a T-DNA insertion mutant leading to the transcriptional read-through pass the NOS terminator. We also show that tex1 and hpr1 mutants have defects in mRNA termination at several endogenous genes, leading to the production of 3’UTR extensions. Together, these results highlight a role for the THO/TREX complex in mRNA termination.
Collapse
|