1
|
Li K, Li Y, Liu C, Li M, Bao R, Wang H, Zeng C, Zhou X, Chen Y, Wang W, Chen X. Protein kinase MeSnRK2.3 positively regulates starch biosynthesis by interacting with the transcription factor MebHLH68 in cassava. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6369-6387. [PMID: 39139055 DOI: 10.1093/jxb/erae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Starch biosynthesis involves numerous enzymes and is a crucial metabolic activity in plant storage organs. Sucrose non-fermenting related protein kinase 2 (SnRK2) is an abscisic acid (ABA)-dependent kinase and a significant regulatory enzyme in the ABA signaling pathway. However, whether SnRK2 kinases regulate starch biosynthesis is unclear. In this study, we identified that MeSnRK2.3, encoding an ABA-dependent kinase, was highly expressed in the storage roots of cassava (Manihot esculenta) and was induced by ABA. Overexpression of MeSnRK2.3 in cassava significantly increased the starch content in the storage roots and promoted plant growth. MeSnRK2.3 was further found to interact with the cassava basic helix-loop-helix 68 (MebHLH68) transcription factor in vivo and in vitro. MebHLH68 directly bound to the promoters of sucrose synthase 1 (MeSUS1), granule-bound starch synthase I a (MeGBSSIa), and starch-branching enzyme 2.4 (MeSBE2.4), thereby up-regulating their transcriptional activities. Additionally, MebHLH68 negatively regulated the transcriptional activity of sucrose phosphate synthase B (MeSPSB). Moreover, MebHLH68 phosphorylated by MeSnRK2.3 up-regulated the transcription activity of MeSBE2.4. These findings demonstrated that the MeSnRK2.3-MebHLH68 module connects the ABA signaling pathway and starch biosynthesis in cassava, thereby providing direct evidence of ABA-mediated participation in the sucrose metabolism and starch biosynthesis pathways.
Collapse
Affiliation(s)
- Ke Li
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
| | - Chen Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Mengtao Li
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Ruxue Bao
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Haiyan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
| | - Changying Zeng
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Xincheng Zhou
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, Hainan, China
| | - Yinhua Chen
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Wenquan Wang
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Xin Chen
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, Hainan, China
| |
Collapse
|
2
|
Rüscher D, Vasina VV, Knoblauch J, Bellin L, Pommerrenig B, Alseekh S, Fernie AR, Neuhaus HE, Knoblauch M, Sonnewald U, Zierer W. Symplasmic phloem loading and subcellular transport in storage roots are key factors for carbon allocation in cassava. PLANT PHYSIOLOGY 2024; 196:1322-1339. [PMID: 38775728 PMCID: PMC11483629 DOI: 10.1093/plphys/kiae298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 10/03/2024]
Abstract
Cassava (Manihot esculenta) is a deciduous woody perennial shrub that stores large amounts of carbon and water in its storage roots. Previous studies have shown that assimilating unloading into storage roots happens symplasmically once secondary anatomy is established. However, mechanisms controlling phloem loading and overall carbon partitioning to different cassava tissues remain unclear. Here, we used a combination of histological, transcriptional, and biochemical analyses on different cassava tissues and at different timepoints to better understand source-sink carbon allocation. We found that cassava likely utilizes a predominantly passive symplasmic phloem loading strategy, indicated by the lack of expression of genes coding for key players of sucrose transport, the existence of branched plasmodesmata in the companion cell/bundle sheath interface of minor leaf veins, and very high leaf sucrose concentrations. Furthermore, we showed that tissue-specific changes in anatomy and non-structural carbohydrate contents are associated with tissue-specific modification in gene expression for sucrose cleavage/synthesis, as well as subcellular compartmentalization of sugars. Overall, our data suggest that carbon allocation during storage root filling is mostly facilitated symplasmically and is likely mostly regulated by local tissue demand and subcellular compartmentalization.
Collapse
Affiliation(s)
- David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Leo Bellin
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Saleh Alseekh
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alisdair R Fernie
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Gutschker S, Ruescher D, Rabbi IY, Rosado-Souza L, Pommerrenig B, Pauly M, Robertz S, van Doorn AM, Schlereth A, Neuhaus HE, Fernie AR, Reinert S, Sonnewald U, Zierer W. Carbon usage in yellow-fleshed Manihot esculenta storage roots shifts from starch biosynthesis to cell wall and raffinose biosynthesis via the myo-inositol pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2045-2062. [PMID: 38961707 DOI: 10.1111/tpj.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Cassava is a crucial staple crop for smallholder farmers in tropical Asia and Sub-Saharan Africa. Although high yield remains the top priority for farmers, the significance of nutritional values has increased in cassava breeding programs. A notable negative correlation between provitamin A and starch accumulation poses a significant challenge for breeding efforts. The negative correlation between starch and carotenoid levels in conventional and genetically modified cassava plants implies the absence of a direct genomic connection between the two traits. The competition among various carbon pathways seems to account for this relationship. In this study, we conducted a thorough analysis of 49 African cassava genotypes with varying levels of starch and provitamin A. Our goal was to identify factors contributing to differential starch accumulation. Considering carotenoid levels as a confounding factor in starch production, we found that yellow- and white-fleshed storage roots did not differ significantly in most measured components of starch or de novo fatty acid biosynthesis. However, genes and metabolites associated with myo-inositol synthesis and cell wall polymer production were substantially enriched in high provitamin A genotypes. These results indicate that yellow-fleshed cultivars, in comparison to their white-fleshed counterparts, direct more carbon toward the synthesis of raffinose and cell wall components. This finding is underlined by a significant rise in cell wall components measured within the 20 most contrasting genotypes for carotenoid levels. Our findings enhance the comprehension of the biosynthesis of starch and carotenoids in the storage roots of cassava.
Collapse
Affiliation(s)
- Sindy Gutschker
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - David Ruescher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Ismail Y Rabbi
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | | | - Markus Pauly
- Heinrich-Heine-University, Institute of Plant Cell Biology and Biotechnology, Düsseldorf, Germany
| | - Stefan Robertz
- Heinrich-Heine-University, Institute of Plant Cell Biology and Biotechnology, Düsseldorf, Germany
| | - Anna M van Doorn
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Stephan Reinert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| |
Collapse
|
4
|
Hou G, Wu G, Jiang H, Bai X, Chen Y. RNA-Seq Reveals That Multiple Pathways Are Involved in Tuber Expansion in Tiger Nuts ( Cyperus esculentus L.). Int J Mol Sci 2024; 25:5100. [PMID: 38791140 PMCID: PMC11121407 DOI: 10.3390/ijms25105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The tiger nut (Cyperus esculentus L.) is a usable tuber and edible oil plant. The size of the tubers is a key trait that determines the yield and the mechanical harvesting of tiger nut tubers. However, little is known about the anatomical and molecular mechanisms of tuber expansion in tiger nut plants. This study conducted anatomical and comprehensive transcriptomics analyses of tiger nut tubers at the following days after sowing: 40 d (S1); 50 d (S2); 60 d (S3); 70 d (S4); 90 d (S5); and 110 d (S6). The results showed that, at the initiation stage of a tiger nut tuber (S1), the primary thickening meristem (PTM) surrounded the periphery of the stele and was initially responsible for the proliferation of parenchyma cells of the cortex (before S1) and then the stele (S2-S3). The increase in cell size of the parenchyma cells occurred mainly from S1 to S3 in the cortex and from S3 to S4 in the stele. A total of 12,472 differentially expressed genes (DEGs) were expressed to a greater extent in the S1-S3 phase than in S4-S6 phase. DEGs related to tuber expansion were involved in cell wall modification, vesicle transport, cell membrane components, cell division, the regulation of plant hormone levels, signal transduction, and metabolism. DEGs involved in the biosynthesis and the signaling of indole-3-acetic acid (IAA) and jasmonic acid (JA) were expressed highly in S1-S3. The endogenous changes in IAA and JAs during tuber development showed that the highest concentrations were found at S1 and S1-S3, respectively. In addition, several DEGs were related to brassinosteroid (BR) signaling and the G-protein, MAPK, and ubiquitin-proteasome pathways, suggesting that these signaling pathways have roles in the tuber expansion of tiger nut. Finally, we come to the conclusion that the cortex development preceding stele development in tiger nut tubers. The auxin signaling pathway promotes the division of cortical cells, while the jasmonic acid pathway, brassinosteroid signaling, G-protein pathway, MAPK pathway, and ubiquitin protein pathway regulate cell division and the expansion of the tuber cortex and stele. This finding will facilitate searches for genes that influence tuber expansion and the regulatory networks in developing tubers.
Collapse
Affiliation(s)
- Guangshan Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guojiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huawu Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xue Bai
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun 666303, China;
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
5
|
Lamm CE, Rabbi IY, Medeiros DB, Rosado-Souza L, Pommerrenig B, Dahmani I, Rüscher D, Hofmann J, van Doorn AM, Schlereth A, Neuhaus HE, Fernie AR, Sonnewald U, Zierer W. Efficient sugar utilization and transition from oxidative to substrate-level phosphorylation in high starch storage roots of African cassava genotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:38-57. [PMID: 37329210 DOI: 10.1111/tpj.16357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Cassava's storage roots represent one of the most important sources of nutritional carbohydrates worldwide. Particularly, smallholder farmers in sub-Saharan Africa depend on this crop plant, where resilient and yield-improved varieties are of vital importance to support steadily increasing populations. Aided by a growing understanding of the plant's metabolism and physiology, targeted improvement concepts already led to visible gains in recent years. To expand our knowledge and to contribute to these successes, we investigated storage roots of eight cassava genotypes with differential dry matter content from three successive field trials for their proteomic and metabolic profiles. At large, the metabolic focus in storage roots transitioned from cellular growth processes toward carbohydrate and nitrogen storage with increasing dry matter content. This is reflected in higher abundance of proteins related to nucleotide synthesis, protein turnover, and vacuolar energization in low starch genotypes, while proteins involved in sugar conversion and glycolysis were more prevalent in high dry matter genotypes. This shift in metabolic orientation was underlined by a clear transition from oxidative- to substrate-level phosphorylation in high dry matter genotypes. Our analyses highlight metabolic patterns that are consistently and quantitatively associated with high dry matter accumulation in cassava storage roots, providing fundamental understanding of cassava's metabolism as well as a data resource for targeted genetic improvement.
Collapse
Affiliation(s)
- Christian E Lamm
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Ismail Y Rabbi
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - Laise Rosado-Souza
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Ismail Dahmani
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - David Rüscher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Jörg Hofmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Anna M van Doorn
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| |
Collapse
|
6
|
Cheng S, Liu Y, Su L, Liu X, Chu Q, He Z, Zhou X, Lu W, Jiang C, Zheng W. Physiological, anatomical and quality indexes of root tuber formation and development in chayote (Sechium edule). BMC PLANT BIOLOGY 2023; 23:413. [PMID: 37674150 PMCID: PMC10483781 DOI: 10.1186/s12870-023-04427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Chayote is an underutilized species of Cucurbitaceae. It is rich in nutrients such as protein, minerals, phenols and its extracts have anti-cardiovascular and anti-cancer effects, making it a versatile plant for both medicinal and culinary purposes. Although research on its root tuber is limited, they are rich in starch and have a structure similar to that of potatoes, cassava, and sweet potatoes. Therefore, they can serve as potential substitutes for potatoes and offer promising prospects as agricultural and industrial resources. However, the physiological and cellular mechanisms of chayote root tuber formation and development are still unclear. RESULTS In this study, we observed the growth habit of 'Tuershao' (high yield of root tuber). The results revealed that the tuber enlargement period of 'Tuershao' lasts approximately 120 days, with the early enlargement phase occurring during 0-30 days, rapid enlargement phase during 30-90 days, and maturation phase during 90-120 days. Physiological indicators demonstrated a gradual increase in starch content as the tuber developed. The activities of sucrose synthase (SUS) and invertase (VIN) showed a consistent trend, reaching the highest level in the rapid expansion period, which was the key enzyme affecting tuber expansion. Moreover, the special petal like structure formed by the secondary phloem and secondary xylem of the tuber resulted in its enlargement, facilitating the accumulation of abundant starch within the thin-walled cells of this structure. Principal component analysis further confirmed that starch content, SUS and VIN activities, as well as the concentrations of calcium (Ca), iron (Fe), and selenium (Se), were the major factors influencing tuber development. Moreover, the low temperature environment not only promoted the growth of 'Tuershao' tubers but also enhanced the accumulation of nutritional substances. CONCLUSIONS These findings contribute to a deeper understanding of the formation and developmental mechanisms of 'Tuershao' tubers, providing valuable guidance for cultivation practices aimed at improving crop yield.
Collapse
Affiliation(s)
- Shaobo Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhang Liu
- Horticulture Research Institute, Chengdu Academy of Agricultural and Forest Sciences, Chengdu, 611130, China
| | - Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuanxuan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianwen Chu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqun He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaoting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wangang Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
7
|
Xufeng X, Yuanfeng H, Ming Z, Shucheng S, Haonan Z, Weifeng Z, Fei G, Caijun W, Shuying F. Transcriptome profiling reveals the genes involved in tuberous root expansion in Pueraria (Pueraria montana var. thomsonii). BMC PLANT BIOLOGY 2023; 23:338. [PMID: 37365513 DOI: 10.1186/s12870-023-04303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Pueraria is a dry root commonly used in Traditional Chinese Medicine or as food and fodder, and tuberous root expansion is an important agronomic characteristic that influences its yield. However, no specific genes regulating tuberous root expansion in Pueraria have been identified. Therefore, we aimed to explore the expansion mechanism of Pueraria at six developmental stages (P1-P6), by profiling the tuberous roots of an annual local variety "Gange No.1" harvested at 105, 135, 165, 195, 225, and 255 days after transplanting. RESULTS Observations of the tuberous root phenotype and cell microstructural morphology revealed that the P3 stage was a critical boundary point in the expansion process, which was preceded by a thickening diameter and yield gain rapidly of the tuberous roots, and followed by longitudinal elongation at both ends. A total of 17,441 differentially expressed genes (DEGs) were identified by comparing the P1 stage (unexpanded) against the P2-P6 stages (expanded) using transcriptome sequencing; 386 differential genes were shared across the six developmental stages. KEGG pathway enrichment analysis showed that the DEGs shared by P1 and P2-P6 stages were mainly involved in pathways related to the "cell wall and cell cycle", "plant hormone signal transduction", "sucrose and starch metabolism", and "transcription factor (TF)". The finding is consistent with the physiological data collected on changes in sugar, starch, and hormone contents. In addition, TFs including bHLHs, AP2s, ERFs, MYBs, WRKYs, and bZIPs were involved in cell differentiation, division, and expansion, which may relate to tuberous root expansion. The combination of KEGG and trend analyses revealed six essential candidate genes involved in tuberous root expansion; of them, CDC48, ARF, and EXP genes were significantly upregulated during tuberous root expansion while INV, EXT, and XTH genes were significantly downregulated. CONCLUSION Our findings provide new insights into the complex mechanisms of tuberous root expansion in Pueraria and candidate target genes, which can aid in increasing Pueraria yield.
Collapse
Affiliation(s)
- Xiao Xufeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Hu Yuanfeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhang Ming
- Department of Biological Engineering, Jiangxi Biotech Vocational College, Nanchang, 330200, China
| | - Si Shucheng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhou Haonan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhu Weifeng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ge Fei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wu Caijun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Fan Shuying
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
8
|
Van Laere J, Willemen A, De Bauw P, Hood‐Nowotny R, Merckx R, Dercon G. Carbon allocation in cassava is affected by water deficit and potassium application - A 13 C-CO 2 pulse labelling assessment. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9426. [PMID: 36329665 PMCID: PMC9787844 DOI: 10.1002/rcm.9426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Cassava production faces challenges in a changing climate. Pulse labelling cassava with 13 C-CO2 has the potential to elucidate carbon allocation mechanisms of cassava under drought stress and with potassium application. Understanding these mechanisms could guide efforts to mitigate effects of drought in cassava cropping systems. METHODS Forty-eight cassava plants received a nutrient solution high or low in potassium. Water deficit was imposed on half of the plants at bulk root initiation stage, after which they were labelled for 8 h with 13 C-CO2 in a 15 m3 growth chamber. Plants were harvested 8 h, 9 days and 24 days after labelling, and separated into leaves, stems and roots. δ13 C values of the different parts were measured using an isotope ratio mass spectrometer, from which 13 C excess was calculated. RESULTS Water deficit decreased transpiration (P < 0.001) and increased carbon respiration (P < 0.05). Potassium application increased assimilate distribution to the roots (P < 0.05) at 9 days after labelling, more strongly for plants under water deficit. The opposite was found at 24 days (P < 0.05) with the legacy of water deficit additionally increasing assimilate distribution to roots (P < 0.05). Youngest, fully expanded leaves contained up to 47% of initial 13 C excess at 24 days after labelling. CONCLUSIONS Pulse labelling proved to be successful in shedding light on carbon allocation in relation to water and potassium availability. This technique, once adapted to field conditions, could further be used to improve fertilizer recommendations or change agronomic practices to cope with plant stress.
Collapse
Affiliation(s)
- Jonas Van Laere
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and ApplicationsInternational Atomic Energy AgencyViennaAustria
- Division of Soil and Water Management, Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
- Institute of Soil Research, Department of Forest and Soil SciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Annemie Willemen
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and ApplicationsInternational Atomic Energy AgencyViennaAustria
- Division of Soil and Water Management, Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
| | | | - Rebecca Hood‐Nowotny
- Institute of Soil Research, Department of Forest and Soil SciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Roel Merckx
- Division of Soil and Water Management, Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
| | - Gerd Dercon
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and ApplicationsInternational Atomic Energy AgencyViennaAustria
| |
Collapse
|
9
|
Fan XW, Sun JL, Cai Z, Zhang F, Li YZ, Palta JA. MeSWEET15a/b genes play a role in the resistance of cassava (Manihot esculenta Crantz) to water and salt stress by modulating sugar distribution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:394-405. [PMID: 36481708 DOI: 10.1016/j.plaphy.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The sugar transporter SWEET plays a role in plant growth, carbon allocation, and abiotic stress resistance. We examined the function of SWEET in cassava (Manihot esculenta Crantz) under water and salt stress. Bioinformatics, subcellular localization, yeast deficient complementation, and virus-induced gene silencing (VIGS) were used to examine the function of SWEET in cassava. Twenty-eight MeSWEETs genes were found based on the conserved domain MtN3/saliva of SWEET transporters, two MeSWEET15a/b of them were identified by phylogenetic analysis, which were located on the cell membrane. They transfer sucrose, fructose, glucose, and mannitol from culture media to yeast cells, predominately transferring sucrose via bleeding fluid saps in plant. Leaf sucrose content was increased in MeSWEET15a/b-silenced cassava plants, resulting in changes in carbon distribution, with an increase in starch accumulation in the leaves and a decrease in starch accumulation in the roots. The silencing of MeSWEET15a/b genes led to tolerance to water and salt stress, consistent with a high accumulation of osmolytes, and low lipid membrane peroxidation. Changes in sugar distribution increased the expression of MeTOR and MeE2Fa in pTRV2-MeSWEET15a and pTRV2-MeSWEET15b cassava leaves. MeSWEET15a/b acts as pivotal modulators of sugar distribution and tolerance to water and high salt stress in cassava.
Collapse
Affiliation(s)
- Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China.
| | - Jin-Liang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Zheng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Fan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jairo A Palta
- CSIRO, Agriculture Flagship, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Plant Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
10
|
Zierer W, Anjanappa RB, Lamm CE, Chang SH, Gruissem W, Sonnewald U. A promoter toolbox for tissue-specific expression supporting translational research in cassava ( Manihot esculenta). FRONTIERS IN PLANT SCIENCE 2022; 13:1042379. [PMID: 36605961 PMCID: PMC9807883 DOI: 10.3389/fpls.2022.1042379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
There is an urgent need to stimulate agricultural output in many tropical and subtropical countries of the world to combat hunger and malnutrition. The starchy crop cassava (Manihot esculenta), growing even under sub-optimal conditions, is a key staple food in these regions, providing millions of people with food. Cassava biotechnology is an important technique benefiting agricultural progress, but successful implementation of many biotechnological concepts depends on the availability of the right spatiotemporal expression tools. Yet, well-characterized cassava promoters are scarce in the public domain. In this study, we investigate the promoter activity and tissue specificity of 24 different promoter elements in stably transformed cassava plants. We show that many of the investigated promoters, especially from other species, have surprisingly low activity and/or tissue specificity, but feature several promoter sequences that can drive tissue-specific expression in either autotrophic-, transport- or storage tissues. We especially highlight pAtCAB1, pMePsbR, and pSlRBCS2 as strong and specific source promoters, pAtSUC2, pMeSWEET1-like, and pMeSUS1 as valuable tools for phloem and phloem parenchyma expression, and pStB33, pMeGPT, pStGBSS1, as well as pStPatatin Class I, as strong and specific promoters for heterotrophic storage tissues. We hope that the provided information and sequences prove valuable to the cassava community by contributing to the successful implementation of biotechnological concepts aimed at the improvement of cassava nutritional value and productivity.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ravi Bodampalli Anjanappa
- Plant Biotechnology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Christian Erwin Lamm
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Shu-Heng Chang
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Uwe Sonnewald
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
11
|
Reinhardt D, Gola EM. Law and order in plants - the origin and functional relevance of phyllotaxis. TRENDS IN PLANT SCIENCE 2022; 27:1017-1032. [PMID: 35643801 DOI: 10.1016/j.tplants.2022.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The regular arrangement of organs (phyllotaxis) in vegetative shoots and flowers is one of the most stunning features of plants. Spiral patterns characterized by Fibonacci numbers have attracted the particular interest of natural scientists and mathematicians. Numerous reviews have dealt with the molecular genetic mechanisms underlying phyllotaxis, and modeling studies have sought to recreate phyllotaxis according to mathematical, biochemical, or physical laws. However, what is the functional significance of regular plant architecture, and how did it evolve? We discuss the developmental constraints and selective forces that may have favored the selection of phyllotaxis, and we argue that a central driver of regular phyllotaxis may have been limitations in the allocation of founder cells and metabolic resources to the different tissues in the shoot apex.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, Route Albert Gockel 3, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Edyta M Gola
- Department of Plant Developmental Biology, Faculty of Plant Sciences, University of Wroclaw, Kanonia 6/8, 50-328, Wroclaw, Poland
| |
Collapse
|
12
|
Zhu Y, Zhao S, Deng K, Wu P, Feng K, Li L. Integrated mRNA and Small RNA Sequencing Reveals a microRNA Regulatory Network Associated with Starch Biosynthesis in Lotus ( Nelumbo nucifera Gaertn.) Rhizomes. Int J Mol Sci 2022; 23:ijms23147605. [PMID: 35886954 PMCID: PMC9318480 DOI: 10.3390/ijms23147605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/07/2022] Open
Abstract
Internode starch biosynthesis is one of the most important traits in lotus rhizome because of its relation to crop productivity. Understanding the microRNA (miRNA) and mRNA expression profiles related to lotus internode starch biosynthesis would help develop molecular improvement strategies, but they are not yet well-investigated. To identify genes and miRNAs involved in internode starch biosynthesis, the cDNA and small RNA libraries of Z6-1, Z6-2, and Z6-3 were sequenced, and their expression were further studied. Through combined analyses of transcriptome data and small RNA sequencing data, a complex co-expression regulatory network was constructed, in which 20 miRNAs could modulate starch biosynthesis in different internodes by tuning the expression of 10 target genes. QRT-PCR analysis, transient co-expression experiment and dual luciferase assay comprehensively confirmed that NnumiR396a down-regulated the expression of NnSS2 and ultimately prevents the synthesis of amylopectin, and NnumiR396b down-regulated the expression of NnPGM2 and ultimately prevents the synthesis of total starch. Our results suggest that miRNAs play a critical role in starch biosynthesis in lotus rhizome, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing lotus rhizome.
Collapse
Affiliation(s)
- Yamei Zhu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Shuping Zhao
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Kangming Deng
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Peng Wu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Kai Feng
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Liangjun Li
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
- Correspondence: ; Tel.: +86-054187971026
| |
Collapse
|
13
|
Abstract
Vanderschuren and Agusti introduce plant storage roots.
Collapse
Affiliation(s)
- Hervé Vanderschuren
- Tropical Crop Improvement Laboratory, Biosystems Department, KU Leuven, Belgium; Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium.
| | - Javier Agusti
- IBMCP, Departament de Producció Vegetal, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
14
|
Utsumi Y, Tanaka M, Utsumi C, Takahashi S, Matsui A, Fukushima A, Kobayashi M, Sasaki R, Oikawa A, Kusano M, Saito K, Kojima M, Sakakibara H, Sojikul P, Narangajavana J, Seki M. Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. PLANT MOLECULAR BIOLOGY 2022; 109:249-269. [PMID: 32757126 DOI: 10.1007/s11103-020-01033-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/06/2020] [Indexed: 05/23/2023]
Abstract
Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Tuberous root formation is a complex process consisting of phase changes as well as cell division and elongation for radial growth. We performed an integrated analysis to clarify the relationships among metabolites, phytohormones, and gene transcription during tuberous root formation in cassava (Manihot esculenta Crantz). We also confirmed the effects of the auxin (AUX), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), gibberellin (GA), brassinosteroid (BR), salicylic acid, and indole-3-acetic acid conjugated with aspartic acid on tuberous root development. An integrated analysis of metabolites and gene expression indicated the expression levels of several genes encoding enzymes involved in starch biosynthesis and sucrose metabolism are up-regulated during tuberous root development, which is consistent with the accumulation of starch, sugar phosphates, and nucleotides. An integrated analysis of phytohormones and gene transcripts revealed a relationship among AUX signaling, CK signaling, and BR signaling, with AUX, CK, and BR inducing tuberous root development. In contrast, ABA and JA inhibited tuberous root development. These phenomena might represent the differences between stem tubers (e.g., potato) and root tubers (e.g., cassava). On the basis of these results, a phytohormonal regulatory model for tuberous root development was constructed. This model may be useful for future phytohormonal studies involving cassava.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chikako Utsumi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryosuke Sasaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, 260-8675, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Punchapat Sojikul
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
15
|
González-Vázquez M, Calderón-Domínguez G, Mora-Escobedo R, Salgado-Cruz MP, Arreguín-Centeno JH, Monterrubio-López R. Polysaccharides of nutritional interest in jicama ( Pachyrhizus erosus) during root development. Food Sci Nutr 2022; 10:1146-1158. [PMID: 35432974 PMCID: PMC9007308 DOI: 10.1002/fsn3.2746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 12/16/2022] Open
Abstract
Jicama root applications have focused on their nutraceutical properties without clearly specifying which compounds are related to this effect. Thus, the aim of the present study was to identify the changes in polysaccharides of nutraceutical interest in two commercial jicama roots (YS – Yellow Seed; PS – Purple Seed) during four stages of maturation, focusing on starch, fructooligosaccharides, and pectin (via galacturonic acid), and on their glycemic index, with the goal of determining, if possible, the best cost‐effectiveness between jicama growing stages and nutraceutical effect. Both materials (YS, PS) presented similar growth rates (0.069 and 0.072 cm/day) and final sizes (12.7 ± 1.25, 12.3 ± 1.63 cm). Changes in size were accompanied by changes in protein, fiber, ashes, lipids, and carbohydrates, after 106 or 127 days of growing. It was also found that fructose content was higher than glucose during the maturing stages, possibly because of the hydrolysis of fructooligosaccharides or sucrose for starch production. Concerning inulin, its levels decreased (<6.0%), after the first days (YS: 13.4% ± 0.7%; PS: 8.4% ± 0.2%, 106 days); however, during development, the presence of other fructooligosaccharides was observed (nystose‐YS 106 days 15.8% ± 0.9% and PS‐106 days 18.5% ± 0.1%), while galacturonic acid and native starch levels increased, which must be related to the jicama's low glycemic index found (<25%), and their nutraceutical properties. This work proves the presence of inulin in jicama roots by analytical methods, its dependence on root development and classifies jicama as a low glycemic index food, supporting its nutraceutical character.
Collapse
Affiliation(s)
| | | | - Rosalva Mora-Escobedo
- Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Ciudad de México México
| | - Ma Paz Salgado-Cruz
- Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Ciudad de México México.,Consejo Nacional de Ciencia y Tecnología (CONACyT) Ciudad de México México
| | | | | |
Collapse
|
16
|
Miras M, Pottier M, Schladt TM, Ejike JO, Redzich L, Frommer WB, Kim JY. Plasmodesmata and their role in assimilate translocation. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153633. [PMID: 35151953 DOI: 10.1016/j.jplph.2022.153633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
During multicellularization, plants evolved unique cell-cell connections, the plasmodesmata (PD). PD of angiosperms are complex cellular domains, embedded in the cell wall and consisting of multiple membranes and a large number of proteins. From the beginning, it had been assumed that PD provide passage for a wide range of molecules, from ions to metabolites and hormones, to RNAs and even proteins. In the context of assimilate allocation, it has been hypothesized that sucrose produced in mesophyll cells is transported via PD from cell to cell down a concentration gradient towards the phloem. Entry into the sieve element companion cell complex (SECCC) is then mediated on three potential routes, depending on the species and conditions, - either via diffusion across PD, after conversion to raffinose via PD using a polymer trap mechanism, or via a set of transporters which secrete sucrose from one cell and secondary active uptake into the SECCC. Multiple loading mechanisms can likely coexist. We here review the current knowledge regarding photoassimilate transport across PD between cells as a prerequisite for translocation from leaves to recipient organs, in particular roots and developing seeds. We summarize the state-of-the-art in protein composition, structure, transport mechanism and regulation of PD to apprehend their functions in carbohydrate allocation. Since many aspects of PD biology remain elusive, we highlight areas that require new approaches and technologies to advance our understanding of these enigmatic and important cell-cell connections.
Collapse
Affiliation(s)
- Manuel Miras
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mathieu Pottier
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - T Moritz Schladt
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - J Obinna Ejike
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Laura Redzich
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
17
|
Sankoh AF, Burch-Smith TM. Approaches for investigating plasmodesmata and effective communication. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102143. [PMID: 34826658 DOI: 10.1016/j.pbi.2021.102143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plasmodesmata (PD) are integral plant cell wall components that provide routes for intercellular communication, signaling, and resource sharing. They are therefore essential for plant growth and survival. Much effort has been put forth to understand how PD are generated and their structure is refined for function and to determine how they regulate intercellular trafficking. This review provides an overview of some of the approaches that have been used to study PD structure and function, highlighting those that may be more widely adopted to address questions of PD cell biology and function. Extending our focus on the importance of communication, we address how effective communication strategies can increase diversity and accessibility in the research laboratory, focusing on challenges faced by our deaf/hard-of-hearing colleagues, and highlight successful approaches to including them in the research laboratory.
Collapse
Affiliation(s)
- Amie F Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
18
|
Stadler R. Hop-off hop-on: Assimilates on the road. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153509. [PMID: 34517336 DOI: 10.1016/j.jplph.2021.153509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Solutes are subject of constant release and retrieval processes during long distance transport in higher plants. In the stem, sugars and amino acids are used for storage or for nutrition of parenchymatic tissues. Modification of export/import capacities along the transport phloem might provide a powerful tool to enhance the productivity of crop plants.
Collapse
Affiliation(s)
- Ruth Stadler
- Friedrich-Alexander University of Erlangen-Nuernberg, Molecular Plant Physiology, Staudtstrasse 5, 91058, Erlangen, Germany.
| |
Collapse
|
19
|
Zierer W, Rüscher D, Sonnewald U, Sonnewald S. Tuber and Tuberous Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:551-580. [PMID: 33788583 DOI: 10.1146/annurev-arplant-080720-084456] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Root and tuber crops have been an important part of human nutrition since the early days of humanity, providing us with essential carbohydrates, proteins, and vitamins. Today, they are especially important in tropical and subtropical regions of the world, where they help to feed an ever-growing population. Early induction and storage organ size are important agricultural traits, as they determine yield over time. During potato tuberization, environmental and metabolic status are sensed, ensuring proper timing of tuberization mediated by phloem-mobile signals. Coordinated cellular restructuring and expansion growth, as well as controlled storage metabolism in the tuber, are executed. This review summarizes our current understanding of potato tuber development and highlights similarities and differences to important tuberous root crop species like sweetpotato and cassava. Finally, we point out knowledge gaps that need to be filled before a complete picture of storage organ development can emerge.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| |
Collapse
|
20
|
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3688-3703. [PMID: 33712830 PMCID: PMC8096603 DOI: 10.1093/jxb/erab106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.
Collapse
Affiliation(s)
- David Rüscher
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - José María Corral
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Anna Vittoria Carluccio
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Patrick A W Klemens
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Andreas Gisel
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, CNR, Bari, Italy
| | - Livia Stavolone
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - H Ekkehard Neuhaus
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Frank Ludewig
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Present address: KWS Saat SE, Grimsehlstraße 31, D-37574 Einbeck, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Correspondence:
| |
Collapse
|
21
|
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. JOURNAL OF EXPERIMENTAL BOTANY 2021. [PMID: 33712830 DOI: 10.5061/dryad.0cfxpnw0t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.
Collapse
Affiliation(s)
- David Rüscher
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - José María Corral
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Anna Vittoria Carluccio
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Patrick A W Klemens
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Andreas Gisel
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, CNR, Bari, Italy
| | - Livia Stavolone
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - H Ekkehard Neuhaus
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Frank Ludewig
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| |
Collapse
|
22
|
Wu Y, Ren Z, Gao C, Sun M, Li S, Min R, Wu J, Li D, Wang X, Wei Y, Xia Y. Change in Sucrose Cleavage Pattern and Rapid Starch Accumulation Govern Lily Shoot-to-Bulblet Transition in vitro. FRONTIERS IN PLANT SCIENCE 2021; 11:564713. [PMID: 33519832 PMCID: PMC7840508 DOI: 10.3389/fpls.2020.564713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 05/11/2023]
Abstract
In bulb crops, bulbing is a key progress in micropropagation and is the feature that most distinguishes bulbous crops from other plants. Generally, bulbing involves a shoot-to-bulblet transition; however, the underlying mechanism remains elusive. We explored this process by tracking the shoot-to-bulblet transition under different culture conditions. Rapid starch accumulation occurred at 15 days after transplanting (DAT) in the bulblet-inducing treatments as confirmed via histological observations and the significant elevation of starch synthesis related-gene transcription, including LohAGPS, LohAGPL, LohGBSS, LohSS, and LohSBE. However, for shoots that did not transition to bulblets and maintained the shoot status, much higher soluble sugars were detected. Interestingly, we observed a clear shift from invertase-catalyzed to sucrose synthase-catalyzed sucrose cleavage pattern based on the differential expression of LohCWIN and LohSuSy during the key transition stage (prior to and after bulbing at 0-15 DAT). Shoots that transitioned into bulblets showed significantly higher LohSuSy expression, especially LohSuSy4 expression, than shoots that did not transition. A symplastic phloem unloading pathway at the bulblet emergence stage (15 DAT) was verified via the 6(5)-carboxyfluorescein diacetate fluorescent tracer. We propose that starch is the fundamental compound in the shoot-to-bulblet transition and that starch synthesis is likely triggered by the switch from apoplastic to symplastic sucrose unloading, which may be related to sucrose depletion. Furthermore, this study is the first to provide a complete inventory of the genes involved in starch metabolism based on our transcriptome data. Two of these genes, LohAGPS1.2b and LohSSIIId, were verified by rapid amplification of cDNA ends cloning, and these data will provide additional support for Lilium research since whole genome is currently lacking.
Collapse
Affiliation(s)
- Yun Wu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ziming Ren
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minyi Sun
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shiqi Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ruihan Min
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanping Wei
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Keller I, Müdsam C, Rodrigues CM, Kischka D, Zierer W, Sonnewald U, Harms K, Czarnecki O, Fiedler-Wiechers K, Koch W, Neuhaus HE, Ludewig F, Pommerrenig B. Cold-Triggered Induction of ROS- and Raffinose Metabolism in Freezing-Sensitive Taproot Tissue of Sugar Beet. FRONTIERS IN PLANT SCIENCE 2021; 12:715767. [PMID: 34539707 PMCID: PMC8446674 DOI: 10.3389/fpls.2021.715767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 05/20/2023]
Abstract
Sugar beet (Beta vulgaris subsp. vulgaris) is the exclusive source of sugar in the form of sucrose in temperate climate zones. Sugar beet is grown there as an annual crop from spring to autumn because of the damaging effect of freezing temperatures to taproot tissue. A collection of hybrid and non-hybrid sugar beet cultivars was tested for winter survival rates and freezing tolerance. Three genotypes with either low or high winter survival rates were selected for detailed study of their response to frost. These genotypes differed in the severity of frost injury in a defined inner region in the upper part of the taproot, the so-called pith. We aimed to elucidate genotype- and tissue-dependent molecular processes during freezing and combined analyses of sugar beet anatomy and physiology with transcriptomic and metabolite profiles of leaf and taproot tissues at low temperatures. Freezing temperatures induced strong downregulation of photosynthesis in leaves, generation of reactive oxygen species (ROS), and ROS-related gene expression in taproots. Simultaneously, expression of genes involved in raffinose metabolism, as well as concentrations of raffinose and its intermediates, increased markedly in both leaf and taproot tissue at low temperatures. The accumulation of raffinose in the pith tissue correlated with freezing tolerance of the three genotypes. We discuss a protective role for raffinose and its precursors against freezing damage of sugar beet taproot tissue.
Collapse
Affiliation(s)
- Isabel Keller
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Christina Müdsam
- Department of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - C. Martins Rodrigues
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dominik Kischka
- Department of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Zierer
- Department of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - H. Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Benjamin Pommerrenig
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
- *Correspondence: Benjamin Pommerrenig,
| |
Collapse
|
24
|
Sonnewald U, Fernie AR, Gruissem W, Schläpfer P, Anjanappa RB, Chang SH, Ludewig F, Rascher U, Muller O, van Doorn AM, Rabbi IY, Zierer W. The Cassava Source-Sink project: opportunities and challenges for crop improvement by metabolic engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1655-1665. [PMID: 32502321 DOI: 10.1111/tpj.14865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the important staple foods in Sub-Saharan Africa. It produces starchy storage roots that provide food and income for several hundred million people, mainly in tropical agriculture zones. Increasing cassava storage root and starch yield is one of the major breeding targets with respect to securing the future food supply for the growing population of Sub-Saharan Africa. The Cassava Source-Sink (CASS) project aims to increase cassava storage root and starch yield by strategically integrating approaches from different disciplines. We present our perspective and progress on cassava as an applied research organism and provide insight into the CASS strategy, which can serve as a blueprint for the improvement of other root and tuber crops. Extensive profiling of different field-grown cassava genotypes generates information for leaf, phloem, and root metabolic and physiological processes that are relevant for biotechnological improvements. A multi-national pipeline for genetic engineering of cassava plants covers all steps from gene discovery, cloning, transformation, molecular and biochemical characterization, confined field trials, and phenotyping of the seasonal dynamics of shoot traits under field conditions. Together, the CASS project generates comprehensive data to facilitate conventional breeding strategies for high-yielding cassava genotypes. It also builds the foundation for genome-scale metabolic modelling aiming to predict targets and bottlenecks in metabolic pathways. This information is used to engineer cassava genotypes with improved source-sink relations and increased yield potential.
Collapse
Affiliation(s)
- Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
- Advanced Plant Biotechnology Center, Institute of Biotechnology, National Chung Hsing University, Xingda Road, South District, Taichung City, 402, Taiwan
| | - Pascal Schläpfer
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| | - Ravi B Anjanappa
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| | - Shu-Heng Chang
- Advanced Plant Biotechnology Center, Institute of Biotechnology, National Chung Hsing University, Xingda Road, South District, Taichung City, 402, Taiwan
| | - Frank Ludewig
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Uwe Rascher
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Leo-Brandt-Str, Jülich, 52425, Germany
| | - Onno Muller
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Leo-Brandt-Str, Jülich, 52425, Germany
| | - Anna M van Doorn
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Leo-Brandt-Str, Jülich, 52425, Germany
| | - Ismail Y Rabbi
- International Institue for Tropical Agriculture, Oyo Road, Ibadan, Oyo State, 200001, Nigeria
| | - Wolfgang Zierer
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| |
Collapse
|
25
|
Pommerrenig B, Müdsam C, Kischka D, Neuhaus HE. Treat and trick: common regulation and manipulation of sugar transporters during sink establishment by the plant and the pathogen. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3930-3940. [PMID: 32242225 DOI: 10.1093/jxb/eraa168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Sugar transport proteins are crucial for the coordinated allocation of sugars. In this Expert View we summarize recent key findings of the roles and regulation of sugar transporters in inter- and intracellular transport by focusing on applied approaches, demonstrating how sucrose transporter activity may alter source and sink dynamics and their identities. The plant itself alters its sugar transport activity in a developmentally dependent manner to either establish or load endogenous sinks, for example, during tuber formation and filling. Pathogens represent aberrant sinks that trigger the plant to induce the same processes, resulting in loss of carbon assimilates. We explore common mechanisms of intrinsic, developmentally dependent processes and aberrant, pathogen-induced manipulation of sugar transport. Transporter activity may also be targeted by breeding or genetic modification approaches in crop plants to alter source and sink metabolism upon the overexpression or heterologous expression of these proteins. In addition, we highlight recent progress in the use of sugar analogs to study these processes in vivo.
Collapse
Affiliation(s)
| | - Christina Müdsam
- Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Kischka
- Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
26
|
Hoang NV, Park C, Kamran M, Lee JY. Gene Regulatory Network Guided Investigations and Engineering of Storage Root Development in Root Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:762. [PMID: 32625220 PMCID: PMC7313660 DOI: 10.3389/fpls.2020.00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/23/2023]
Abstract
The plasticity of plant development relies on its ability to balance growth and stress resistance. To do this, plants have established highly coordinated gene regulatory networks (GRNs) of the transcription factors and signaling components involved in developmental processes and stress responses. In root crops, yields of storage roots are mainly determined by secondary growth driven by the vascular cambium. In relation to this, a dynamic yet intricate GRN should operate in the vascular cambium, in coordination with environmental changes. Despite the significance of root crops as food sources, GRNs wired to mediate secondary growth in the storage root have just begun to emerge, specifically with the study of the radish. Gene expression data available with regard to other important root crops are not detailed enough for us directly to infer underlying molecular mechanisms. Thus, in this review, we provide a general overview of the regulatory programs governing the development and functions of the vascular cambium in model systems, and the role of the vascular cambium on the growth and yield potential of the storage roots in root crops. We then undertake a reanalysis of recent gene expression data generated for major root crops and discuss common GRNs involved in the vascular cambium-driven secondary growth in storage roots using the wealth of information available in Arabidopsis. Finally, we propose future engineering schemes for improving root crop yields by modifying potential key nodes in GRNs.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chulmin Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Kamran
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|