1
|
Tuo W, Wu C, Wang X, Yang Z, Xu L, Shen S, Zhai J, Wu S. Developmental Morphology, Physiology, and Molecular Basis of the Pentagram Fruit of Averrhoa carambola. PLANTS (BASEL, SWITZERLAND) 2024; 13:2696. [PMID: 39409566 PMCID: PMC11478451 DOI: 10.3390/plants13192696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Averrhoa carambola, a key tropical and subtropical economic tree in the Oxalidaceae family, is distinguished by its unique pentagram-shaped fruit. This study investigates the developmental processes shaping the polarity of A. carambola fruit and their underlying hormonal and genetic mechanisms. By analyzing the Y1, Y2, and Y3 developmental stages-defined by the fruit diameters of 3-4 mm, 4-6 mm, and 6-12 mm, respectively-we observed that both cell number and cell size contribute to fruit development. Our findings suggest that the characteristic pentagram shape is established before flowering and is maintained throughout development. A hormonal analysis revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) show differential distribution between the convex and concave regions of the fruit across the developmental stages, with IAA playing a crucial role in polar auxin transport and shaping fruit morphology. A transcriptomic analysis identified several key genes, including AcaGH3.8, AcaIAA20, AcaYAB2, AcaXTH6, AcaYAB3, and AcaEXP13, which potentially regulate fruit polarity and growth. This study advances our comprehension of the molecular mechanisms governing fruit shape, offering insights for improving fruit quality through targeted breeding strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.T.); (C.W.); (X.W.); (Z.Y.); (L.X.); (S.S.); (J.Z.)
| |
Collapse
|
2
|
Li R, Atarashi R, Kharisma AD, Arofatullah NA, Tashiro Y, Satitmunnaithum J, Tanabata S, Yamane K, Sato T. Search for Expression Marker Genes That Reflect the Physiological Conditions of Blossom End Enlargement Occurrence in Cucumber. Int J Mol Sci 2024; 25:8317. [PMID: 39125887 PMCID: PMC11312178 DOI: 10.3390/ijms25158317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Blossom end enlargement (BEE) is a postharvest deformation that may be related to the influx of photosynthetic assimilates before harvest. To elucidate the mechanism by which BEE occurs, expression marker genes that indicate the physiological condition of BEE-symptomatic fruit are necessary. First, we discovered that preharvest treatment with a synthetic cytokinin, N-(2-Chloro-4-pyridyl)-N'-phenylurea (CPPU), promoted fruit growth and suppressed BEE occurrence. This suggests that excessive assimilate influx is not a main cause of BEE occurrence. Subsequently, the expression levels of seven sugar-starvation marker genes, CsSEF1, AS, CsFDI1, CsPID, CsFUL1, CsETR1, and CsERF1B, were compared among symptomatic and asymptomatic fruits, combined with and without CPPU treatment. Only CsSEF1 showed a higher expression level in asymptomatic fruits than in symptomatic fruits, regardless of CPPU treatment. This was then tested using fruits stored via the modified-atmosphere packaging technique, which resulted in a lower occurrence of BEE, and the asymptomatic fruits showed a higher CsSEF1 expression level than symptomatic fruits, regardless of the packaging method. CsSEF1 codes a CCCH-type zinc finger protein, and an increase in the expression of CsSEF1 was correlated with a decrease in the fruit respiration rate. Thus, CsSEF1 may be usable as a BEE expression marker gene.
Collapse
Affiliation(s)
- Rui Li
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-8-1, Saiwaicho, Fuchu 183-0054, Japan; (R.L.)
| | - Runewa Atarashi
- Center for International Field Agriculture, Research and Education, College of Agriculture, Ibaraki University, Ami 4668-1, Ami, Inashiki 300-0331, Japan (S.T.)
| | - Agung Dian Kharisma
- Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.K.); (N.A.A.)
| | - Nur Akbar Arofatullah
- Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.K.); (N.A.A.)
| | - Yuki Tashiro
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-8-1, Saiwaicho, Fuchu 183-0054, Japan; (R.L.)
| | - Junjira Satitmunnaithum
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571, Japan;
| | - Sayuri Tanabata
- Center for International Field Agriculture, Research and Education, College of Agriculture, Ibaraki University, Ami 4668-1, Ami, Inashiki 300-0331, Japan (S.T.)
| | - Kenji Yamane
- School of Agriculture, Utsunomiya University, Mine 350, Utsunomiya 321-8505, Japan;
| | - Tatsuo Sato
- Center for International Field Agriculture, Research and Education, College of Agriculture, Ibaraki University, Ami 4668-1, Ami, Inashiki 300-0331, Japan (S.T.)
| |
Collapse
|
3
|
Wang C, Li J, Fang K, Yao H, Chai X, Du Y, Wang J, Hao N, Cao J, Li B, Wu T. CsHLS1-CsSCL28 module regulates compact plant architecture in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1724-1739. [PMID: 38261466 PMCID: PMC11123426 DOI: 10.1111/pbi.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Increased planting densities boost crop yields. A compact plant architecture facilitates dense planting. However, the mechanisms regulating compact plant architecture in cucurbits remain unclear. In this study, we identified a cucumber (Cucumis sativus) compact plant architecture (cpa1) mutant from an ethyl methane sulfonate (EMS)-mutagenized library that exhibited distinctive phenotypic traits, including reduced leaf petiole angle and leaf size. The candidate mutation causes a premature stop codon in CsaV3_1G036420, which shares similarity to Arabidopsis HOOKLESS 1 (HLS1) encoding putative histone N-acetyltransferase (HAT) protein and was named CsHLS1. Consistent with the mutant phenotype, CsHLS1 was predominantly expressed in leaf petiole bases and leaves. Constitutive overexpressing CsHLS1 in cpa1 restored the wild-type plant architecture. Knockout of CsHLS1 resulted in reduces leaf petiole angle and leaf size and as well as decreased acetylation levels. Furthermore, CsHLS1 directly interacted with CsSCL28 and negatively regulated compact plant architecture in cucumber. Importantly, CsHLS1 knockout increased the photosynthesis rate and leaf nitrogen in cucumbers, thereby maintaining cucumber yield at normal density. Overall, our research provides valuable genetic breeding resource and gene target for creating a compact plant architecture for dense cucumber planting.
Collapse
Affiliation(s)
- Chunhua Wang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| | - Jie Li
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| | - Kai Fang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| | - Hongxin Yao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| | - Xingwen Chai
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| | - Yalin Du
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| | - Junwei Wang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| | - Ning Hao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| | - Jiajian Cao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource ScienceZhejiang UniversityHangzhouChina
| | - Tao Wu
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research InstituteHunan Agricultural UniversityChangshaHunanChina
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of ChinaChangshaChina
| |
Collapse
|
4
|
Yang T, Wang Y, Li Y, Liang S, Yang Y, Huang Z, Li Y, Gao J, Ma N, Zhou X. The transcription factor RhMYB17 regulates the homeotic transformation of floral organs in rose (Rosa hybrida) under cold stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2965-2981. [PMID: 38452221 PMCID: PMC11103112 DOI: 10.1093/jxb/erae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Low temperatures affect flower development in rose (Rosa hybrida), increasing petaloid stamen number and reducing normal stamen number. We identified the low-temperature-responsive R2R3-MYB transcription factor RhMYB17, which is homologous to Arabidopsis MYB17 by similarity of protein sequences. RhMYB17 was up-regulated at low temperatures, and RhMYB17 transcripts accumulated in floral buds. Transient silencing of RhMYB17 by virus-induced gene silencing decreased petaloid stamen number and increased normal stamen number. According to the ABCDE model of floral organ identity, class A genes APETALA 1 (AP1) and AP2 contribute to sepal and petal formation. Transcription factor binding analysis identified RhMYB17 binding sites in the promoters of rose APETALA 2 (RhAP2) and APETALA 2-LIKE (RhAP2L). Yeast one-hybrid assays, dual-luciferase reporter assays, and electrophoretic mobility shift assays confirmed that RhMYB17 directly binds to the promoters of RhAP2 and RhAP2L, thereby activating their expression. RNA sequencing further demonstrated that RhMYB17 plays a pivotal role in regulating the expression of class A genes, and indirectly influences the expression of the class C gene. This study reveals a novel mechanism for the homeotic transformation of floral organs in response to low temperatures.
Collapse
Affiliation(s)
- Tuo Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yuqi Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Shangyi Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yunyao Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ziwei Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Hao N, Yao H, Suzuki M, Li B, Wang C, Cao J, Fujiwara T, Wu T, Kamiya T. Novel lignin-based extracellular barrier in glandular trichome. NATURE PLANTS 2024; 10:381-389. [PMID: 38374437 DOI: 10.1038/s41477-024-01626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Successful biochemical reactions in organisms necessitate compartmentalization of the requisite components. Glandular trichomes (GTs) act as compartments for the synthesis and storage of specialized compounds. These compounds not only are crucial for the survival of plants under biotic and abiotic stresses but also have medical and commercial value for humans. However, the mechanisms underlying compartmentalization remain unclear. Here we identified a novel structure that is indispensable for the establishment of compartments in cucumber GTs. Silica, a specialized compound, is deposited on the GTs and is visible on the surface of the fruit as a white powder, known as bloom. This deposition provides resistance against pathogens and prevents water loss from the fruits1. Using the cucumber bloomless mutant2, we discovered that a lignin-based cell wall structure in GTs, named 'neck strip', achieves compartmentalization by acting as an extracellular barrier crucial for the silica polymerization. This structure is present in the GTs of diverse plant species. Our findings will enhance the understanding of the biosynthesis of unique compounds in trichomes and provide a basis for improving the production of compounds beneficial to humans.
Collapse
Affiliation(s)
- Ning Hao
- College of Horticulture/Yuelu Mountain Laboratory of Hunan Province, Hunan Agricultural University, Changsha, China
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hongxin Yao
- College of Horticulture/Yuelu Mountain Laboratory of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chunhua Wang
- College of Horticulture/Yuelu Mountain Laboratory of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Jiajian Cao
- College of Horticulture/Yuelu Mountain Laboratory of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Tao Wu
- College of Horticulture/Yuelu Mountain Laboratory of Hunan Province, Hunan Agricultural University, Changsha, China.
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Jiang Y, Zhang A, He W, Li Q, Zhao B, Zhao H, Ke X, Guo Y, Sun P, Yang T, Wang Z, Jiang B, Shen J, Li Z. GRAS family member LATERAL SUPPRESSOR regulates the initiation and morphogenesis of watermelon lateral organs. PLANT PHYSIOLOGY 2023; 193:2592-2604. [PMID: 37584314 DOI: 10.1093/plphys/kiad445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023]
Abstract
The lateral organs of watermelon (Citrullus lanatus), including lobed leaves, branches, flowers, and tendrils, together determine plant architecture and yield. However, the genetic controls underlying lateral organ initiation and morphogenesis remain unclear. Here, we found that knocking out the homologous gene of shoot branching regulator LATERAL SUPPRESSOR in watermelon (ClLs) repressed the initiation of branches, flowers, and tendrils and led to developing round leaves, indicating that ClLs undergoes functional expansion compared with its homologs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum). Using ClLs as the bait to screen against the cDNA library of watermelon, we identified several ClLs-interacting candidate proteins, including TENDRIL (ClTEN), PINOID (ClPID), and APETALA1 (ClAP1). Protein-protein interaction assays further demonstrated that ClLs could directly interact with ClTEN, ClPID, and ClAP1. The mRNA in situ hybridization assay revealed that the transcriptional patterns of ClLs overlapped with those of ClTEN, ClPID, and ClAP1 in the axillary meristems and leaf primordia. Mutants of ClTEN, ClPID, and ClAP1 generated by the CRISPR/Cas9 gene editing system lacked tendrils, developed round leaves, and displayed floral diapause, respectively, and all these phenotypes could be observed in ClLs knockout lines. Our findings indicate that ClLs acts as lateral organ identity protein by forming complexes with ClTEN, ClPID, and ClAP1, providing several gene targets for transforming the architecture of watermelon.
Collapse
Affiliation(s)
- Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Anran Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenjing He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingqing Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xubo Ke
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalu Guo
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
7
|
Liu J, Shi X, Zhong T, Jie W, Xu R, Ding Y, Ding C. PINOID and PIN-FORMED Paralogous Genes Are Required for Leaf Morphogenesis in Rice. PLANT & CELL PHYSIOLOGY 2023; 64:1146-1158. [PMID: 37540575 DOI: 10.1093/pcp/pcad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Auxin plays an essential role in modulating leaf development. However, its role in leaf development in rice (Oryza sativa L.) remains largely unknown. In this study, we found that PINOID (OsPID) and two Sister-of-PIN1s, termed PIN-FORMED1c (OsPIN1c) and OsPIN1d, are necessary for rice leaf development. The ospin1c ospin1d null mutant lines presented severe defects in leaf morphogenesis, including drooping and semi-drooping blades, an abnormally thickened sheath and lamina joint, and fused leaves with absent ligules and auricles. Loss-of-function ospid mutants displayed generally similar leaf morphology but lacked leaf fusion. Interestingly, misshaped leaf genesis displayed a preference for being ipsilateral. In addition, OsPIN1c and OsPID were commonly localized in the initiating leaf primordia. Furthermore, accompanied by the more severe organ morphogenesis in the ospin1c ospin1d ospid triple mutant, RNA sequencing analysis revealed that many genes essential for leaf development have an altered expression level. Together, this study furthers our understanding of the role auxin transport plays during leaf development in monocot rice.
Collapse
Affiliation(s)
- Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, People's Republic of China
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Nanchang 330200, People's Republic of China
| | - Xi'an Shi
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, People's Republic of China
| | - Tianhui Zhong
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, People's Republic of China
| | - Wanrong Jie
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, People's Republic of China
| | - Ruihan Xu
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, People's Republic of China
- Key Laboratory of Crop Physiology, Ecology and Production Management, Ministry of Agriculture, No. 1 Weigang, Nanjing 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, People's Republic of China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, People's Republic of China
- Key Laboratory of Crop Physiology, Ecology and Production Management, Ministry of Agriculture, No. 1 Weigang, Nanjing 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, People's Republic of China
| |
Collapse
|
8
|
Hong Z, Wang X, Yang A, Yan G, He Y, Zhu Z, Xu Y. Tendril morphogenesis is regulated by a CsaTEN-CsaUFO module in cucumber. THE NEW PHYTOLOGIST 2023; 239:364-373. [PMID: 36967583 DOI: 10.1111/nph.18908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/21/2023] [Indexed: 06/02/2023]
Abstract
Tendril is a morphological innovation during plant evolution, which provides the plants to obtain climbing ability. However, the tendril morphogenesis is poorly understood. A novel tendril morphogenesis defective mutant (tmd1) was identified in cucumber. The apical part of tendril was replaced by a leaf blade in tmd1 mutant, and it lost the climbing ability. Map-based cloning, qPCR detection, bioinformatic analysis, yeast one-hybrid assay, electrophoretic mobility shift assay, and luciferase assay were used to explore the molecular mechanism of CsaTMD1 in regulating tendril morphogenesis. CsaUFO was the candidate causal gene, and a fragment deletion within promoter impaired CsaUFO expression in tmd1 mutant. A conserved motif 1, which harbored two putative TCP transcription factor binding sites, was located within this deleted fragment. CsaTEN directly bound the motif 1 and positively regulated CsaUFO, and mutation in motif 1 removed this regulation. Our work shows a CsaTEN-CsaUFO module in regulating tendril morphogenesis, indicating that evolution of tendril in cucumber due to simply drive of CsaUFO by CsaTEN in tendril. Additionally, the conserved motif 1 provides a strategy for engineering tendril-less Cucurbitaceae crops.
Collapse
Affiliation(s)
- Zezhou Hong
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xinrui Wang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Aiyi Yang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Guochao Yan
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Hangzhou, 311300, Zhejiang, China
| | - Yong He
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Hangzhou, 311300, Zhejiang, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Hangzhou, 311300, Zhejiang, China
| | - Yunmin Xu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
9
|
Cheng F, Song M, Zhang M, Zha G, Yin J, Cheng C, Chen J, Lou Q. A mutation in CsABCB19 encoding an ATP-binding cassette auxin transporter leads to erect and compact leaf architecture in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111625. [PMID: 36758728 DOI: 10.1016/j.plantsci.2023.111625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Leaf architecture, including leaf position and leaf morphology, is a critical component of plant architecture that directly determines plant appearance, photosynthetic utilization, and ultimate productivity. The mechanisms regulating leaf petiole angle and leaf flatness in cucumber remain unclear. In this study, we identified an erect and compact leaf architecture mutant (ecla) from an EMS (ethyl methanesulfonate) -mutagenized cucumber population, which exhibited erect petioles and crinkled leaves. Histological examination revealed significant phenotypic variation in ecla was associated with asymmetric cell expansion. MutMap sequencing combined with genetic mapping revealed that CsaV3_5G037960 is the causative gene for the ecla mutant phenotype. Through protein sequence alignment and Arabidopsis genetic complementation, we identified this gene as a functional direct homolog encoding the ATP-binding cassette transporter AtABCB19, hence named CsABCB19. A nonsynonymous mutation in the eleventh exon of CsABCB19 leads to premature termination of translation. The expression level of CsABCB19 in the ecla mutant was significantly reduced in all tissues compared to the wild type (WT). Transcriptome analysis revealed that auxin and polarity-related genes were significantly differentially expressed in mutant petioles and leaves, compared with those in WT. Auxin assay and exogenous treatment further demonstrated that CsABCB19 regulates leaf architecture by mediating auxin accumulation and transport. Our research is the first report describing the role of the ABCB19 transporter protein in auxin transport controlling cucumber leaf development. Furthermore, this study provides recent insights into the genetic mechanisms conferring morphological diversity and regulation of petiole angle and leaf flattening. DATA AVAILABILITY: The RNA-seq data in this study have been deposited in the NCBI SRA under BioProject accession number PRJNA874548.
Collapse
Affiliation(s)
- Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Gaohui Zha
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Juan Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|
11
|
Hao N, Cao J, Wang C, Zhu Y, Du Y, Wu T. Understanding the molecular mechanism of leaf morphogenesis in vegetable crops conduces to breeding process. FRONTIERS IN PLANT SCIENCE 2022; 13:971453. [PMID: 36570936 PMCID: PMC9773389 DOI: 10.3389/fpls.2022.971453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Leaf morphology can affect the development and yield of plants by regulating plant architecture and photosynthesis. Several factors can determine the final leaf morphology, including the leaf complexity, size, shape, and margin type, which suggests that leaf morphogenesis is a complex regulation network. The formation of diverse leaf morphology is precisely controlled by gene regulation on translation and transcription levels. To further reveal this, more and more genome data has been published for different kinds of vegetable crops and advanced genotyping approaches have also been applied to identify the causal genes for the target traits. Therefore, the studies on the molecular regulation of leaf morphogenesis in vegetable crops have also been largely improved. This review will summarize the progress on identified genes or regulatory mechanisms of leaf morphogenesis and development in vegetable crops. These identified markers can be applied for further molecular-assisted selection (MAS) in vegetable crops. Overall, the review will contribute to understanding the leaf morphology of different crops from the perspective of molecular regulation and shortening the breeding cycle for vegetable crops.
Collapse
Affiliation(s)
- Ning Hao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Chunhua Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Yipeng Zhu
- Guiyang Productivity Promotion Center, Guiyang Science and Technology Bureau, Guiyang, China
| | - Yalin Du
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| |
Collapse
|
12
|
Cheng Z, Song W, Zhang X. Genic male and female sterility in vegetable crops. HORTICULTURE RESEARCH 2022; 10:uhac232. [PMID: 36643746 PMCID: PMC9832880 DOI: 10.1093/hr/uhac232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Vegetable crops are greatly appreciated for their beneficial nutritional and health components. Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance, which require the participation of male (stamen) and female (pistil) reproductive organs. Male- or female-sterile plants are commonly used for production of hybrid seeds or seedless fruits in vegetables. In this review we will focus on the types of genic male sterility and factors affecting female fertility, summarize typical gene function and research progress related to reproductive organ identity and sporophyte and gametophyte development in vegetable crops [mainly tomato (Solanum lycopersicum) and cucumber (Cucumis sativus)], and discuss the research trends and application perspectives of the sterile trait in vegetable breeding and hybrid production, in order to provide a reference for fertility-related germplasm innovation.
Collapse
Affiliation(s)
- Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
DeGennaro D, Urquidi Camacho RA, Zhang L, Shpak ED. Initiation of aboveground organ primordia depends on combined action of auxin, ERECTA family genes, and PINOID. PLANT PHYSIOLOGY 2022; 190:794-812. [PMID: 35703946 PMCID: PMC9434323 DOI: 10.1093/plphys/kiac288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Leaves and flowers are produced by the shoot apical meristem (SAM) at a certain distance from its center, a process that requires the hormone auxin. The amount of auxin and the pattern of its distribution in the initiation zone determine the size and spatial arrangement of organ primordia. Auxin gradients in the SAM are formed by PIN-FORMED (PIN) auxin efflux carriers whose polar localization in the plasma membrane depends on the protein kinase PINOID (PID). Previous work determined that ERECTA (ER) family genes (ERfs) control initiation of leaves. ERfs are plasma membrane receptors that enable cell-to-cell communication by sensing extracellular small proteins from the EPIDERMAL PATTERNING FACTOR/EPF-LIKE (EPF/EPFL) family. Here, we investigated whether ERfs regulate initiation of organs by altering auxin distribution or signaling in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological data suggested that ERfs do not regulate organogenesis through PINs while transcriptomics data showed that ERfs do not alter primary transcriptional responses to auxin. Our results indicated that in the absence of ERf signaling the peripheral zone cells inefficiently initiate leaves in response to auxin signals and that increased accumulation of auxin in the er erecta-like1 (erl1) erl2 SAM can partially rescue organ initiation defects. We propose that both auxin and ERfs are essential for leaf initiation and that they have common downstream targets. Genetic data also indicated that the role of PID in initiation of cotyledons and leaves cannot be attributed solely to regulation of PIN polarity and PID is likely to have other functions in addition to regulation of auxin distribution.
Collapse
Affiliation(s)
- Daniel DeGennaro
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
14
|
Research Progress on the Leaf Morphology, Fruit Development and Plant Architecture of the Cucumber. PLANTS 2022; 11:plants11162128. [PMID: 36015432 PMCID: PMC9415855 DOI: 10.3390/plants11162128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cucumber (Cucumis sativus L.) is an annual climbing herb that belongs to the Cucurbitaceae family and is one of the most important economic crops in the world. The breeding of cucumber varieties with excellent agronomic characteristics has gained more attention in recent years. The size and shape of the leaves or fruit and the plant architecture are important agronomic traits that influence crop management and productivity, thus determining the crop yields and consumer preferences. The growth of the plant is precisely regulated by both environmental stimuli and internal signals. Although significant progress has been made in understanding the plant morphological regulation of Arabidopsis, rice, and maize, our understanding of the control mechanisms of the growth and development of cucumber is still limited. This paper reviews the regulation of phytohormones in plant growth and expounds the latest progress in research regarding the genetic regulation pathways in leaf development, fruit size and shape, branching, and plant type in cucumber, so as to provide a theoretical basis for improving cucumber productivity and cultivation efficiency.
Collapse
|
15
|
Cheng Z, Song X, Liu X, Yan S, Song W, Wang Z, Han L, Zhao J, Yan L, Zhou Z, Zhang X. SPATULA and ALCATRAZ confer female sterility and fruit cavity via mediating pistil development in cucumber. PLANT PHYSIOLOGY 2022; 189:1553-1569. [PMID: 35389464 PMCID: PMC9237723 DOI: 10.1093/plphys/kiac158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/12/2022] [Indexed: 06/03/2023]
Abstract
Fruits and seeds play essential roles in plant sexual reproduction and the human diet. Successful fertilization involves delivery of sperm in the pollen tube to the egg cell within the ovary along the transmitting tract (TT). Fruit cavity is an undesirable trait directly affecting cucumber (Cucumis sativus) commercial value. However, the regulatory genes underlying fruit cavity formation and female fertility determination remain unknown in crops. Here, we characterized a basic Helix-Loop-Helix (bHLH) gene C. sativus SPATULA (CsSPT) and its redundant and divergent function with ALCATRAZ (CsALC) in cucumber. CsSPT transcripts were enriched in reproductive organs. Mutation of CsSPT resulted in 60% reduction in female fertility, with seed produced only in the upper portion of fruits. Csspt Csalc mutants displayed complete loss of female fertility and fruit cavity due to carpel separation. Further examination showed that stigmas in the double mutant turned outward with defective papillae identity, and extracellular matrix contents in the abnormal TT were dramatically reduced, which resulted in no path for pollen tube extension and no ovules fertilized. Biochemical and transcriptome analysis showed that CsSPT and CsALC act in homodimers and heterodimers to confer fruit cavity and female sterility by mediating genes involved in TT development, auxin-mediated signaling, and cell wall organization in cucumber.
Collapse
Affiliation(s)
- Zhihua Cheng
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaofei Song
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaofeng Liu
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
16
|
Wang C, Hao N, Xia Y, Du Y, Huang K, Wu T. CsKDO is a candidate gene regulating seed germination lethality in cucumber. BREEDING SCIENCE 2021; 71:417-425. [PMID: 34912168 PMCID: PMC8661486 DOI: 10.1270/jsbbs.20149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/18/2021] [Indexed: 06/14/2023]
Abstract
Seed germination plays an important role in the initial stage of plant growth. However, few related studies focused on lethality after seed germination in plants. In this study, we identified an Ethyl methanesulfonate (EMS) mutagenesis mutant Csleth with abnormal seed germination in cucumber (Cucumis sativus L.). The radicle of the Csleth mutant grew slowly and detached from the cotyledon until 14 d after sowing. Genetic analysis showed that the mutant phenotype of Csleth was controlled by a single recessive gene. MutMap+ and Kompetitive Allele Specific PCR (KASP) genotyping results demonstrated that Csa3G104930 encoding 3-deoxy-manno-octulosonate cytidylyltransferase (CsKDO) was the candidate gene of the Csleth mutant. The transition mutation of aspartate occurred in Csa3G104930 co-segregated with the phenotyping data. CsKDO was highly expressed in male flowers in wild type cucumbers. Subcellular localization results showed that CsKDO was located in the nucleus. Overall, these results suggest CsKDO regulates lethality during seed germination in cucumber.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- College of Horticulture and Landscape, Northeast Agricultural
University, 600 Changjiang Road, Harbin 150030,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Ning Hao
- College of Horticulture and Landscape, Northeast Agricultural
University, 600 Changjiang Road, Harbin 150030,
China
| | - Yutong Xia
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Yalin Du
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Ke Huang
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- College of Horticulture and Landscape, Northeast Agricultural
University, 600 Changjiang Road, Harbin 150030,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| |
Collapse
|
17
|
Liu X, Chen J, Zhang X. Genetic regulation of shoot architecture in cucumber. HORTICULTURE RESEARCH 2021; 8:143. [PMID: 34193859 PMCID: PMC8245548 DOI: 10.1038/s41438-021-00577-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 05/08/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop species with great economic value. Shoot architecture determines the visual appearance of plants and has a strong impact on crop management and yield. Unlike most model plant species, cucumber undergoes vegetative growth and reproductive growth simultaneously, in which leaves are produced from the shoot apical meristem and flowers are generated from leaf axils, during the majority of its life, a feature representative of the Cucurbitaceae family. Despite substantial advances achieved in understanding the regulation of plant form in Arabidopsis thaliana, rice, and maize, our understanding of the mechanisms controlling shoot architecture in Cucurbitaceae crop species is still limited. In this review, we focus on recent progress on elucidating the genetic regulatory pathways underlying the determinant/indeterminant growth habit, leaf shape, branch outgrowth, tendril identity, and vine length determination in cucumber. We also discuss the potential of applying biotechnology tools and resources for the generation of ideal plant types with desired architectural features to improve cucumber productivity and cultivation efficiency.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Sousa-Baena MS, Hernandes-Lopes J, Van Sluys MA. Reaching the top through a tortuous path: helical growth in climbing plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101982. [PMID: 33395610 DOI: 10.1016/j.pbi.2020.101982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Climbing plants have voluble organs, for example, tendrils and modified stems, which twine up neighboring plants to reach the canopy. These organs perform exaggerated circumnutation, during which they grow towards the shaded areas of the forest (skototropism) to find a host. In response to mechanical stimulus, they grow towards the support (thigmotropism), tailoring their development to firmly attach to it (thigmomorphogenesis). The underlying molecular pathways of these crucial mechanisms are virtually unknown. Here, we review current progress on molecular regulation of the development and growth of climber's voluble organs. Recent advances in the subject point epigenetics and sensory biology as the emerging frontiers in the study of climbing plant's growth and functioning. We briefly review new developments on the molecular basis of plants' mechanosensory system, discussing the findings in the context of the climbing habit.
Collapse
Affiliation(s)
- Mariane S Sousa-Baena
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Rua do Matão 277, 05508-090 São Paulo, SP, Brazil.
| | - José Hernandes-Lopes
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil; Embrapa Informática Agropecuária, 13083-886, Campinas, SP, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Rua do Matão 277, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
19
|
Scossa F, Alseekh S, Fernie AR. Integrating multi-omics data for crop improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153352. [PMID: 33360148 DOI: 10.1016/j.jplph.2020.153352] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 05/26/2023]
Abstract
Our agricultural systems are now in urgent need to secure food for a growing world population. To meet this challenge, we need a better characterization of plant genetic and phenotypic diversity. The combination of genomics, transcriptomics and metabolomics enables a deeper understanding of the mechanisms underlying the complex architecture of many phenotypic traits of agricultural relevance. We review the recent advances in plant genomics to see how these can be integrated with broad molecular profiling approaches to improve our understanding of plant phenotypic variation and inform crop breeding strategies.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178, Rome, Italy.
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.
| |
Collapse
|
20
|
Wang H, Niu H, Li C, Shen G, Liu X, Weng Y, Wu T, Li Z. WUSCHEL-related homeobox1 (WOX1) regulates vein patterning and leaf size in Cucumis sativus. HORTICULTURE RESEARCH 2020; 7:182. [PMID: 33328463 PMCID: PMC7603520 DOI: 10.1038/s41438-020-00404-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 05/24/2023]
Abstract
In plants, WUSCHEL-related homeobox1 (WOX1) homologs promote lamina mediolateral outgrowth. However, the downstream components linking WOX1 and lamina development remain unclear. In this study, we revealed the roles of WOX1 in palmate leaf expansion in cucumber (Cucumis sativus). A cucumber mango fruit (mf) mutant, resulting from truncation of a WOX1-type protein (CsWOX1), displayed abnormal lamina growth and defects in the development of secondary and smaller veins. CsWOX1 was expressed in the middle mesophyll and leaf margins and rescued defects of the Arabidopsis wox1 prs double mutant. Transcriptomic analysis revealed that genes involved in auxin polar transport and auxin response were highly associated with leaf development. Analysis of the cucumber mf rl (round leaf) double mutant revealed that CsWOX1 functioned in vein development via PINOID (CsPID1)-controlled auxin transport. Overexpression of CsWOX1 in cucumber (CsWOX1-OE) affected vein patterning and produced 'butterfly-shaped' leaves. CsWOX1 physically interacted with CsTCP4a, which may account for the abnormal lamina development in the mf mutant line and the smaller leaves in the CsWOX1-OE plants. Our findings demonstrated that CsWOX1 regulates cucumber leaf vein development by modulating auxin polar transport; moreover, CsWOX1 regulates leaf size by controlling CIN-TCP genes.
Collapse
Affiliation(s)
- Hu Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huanhuan Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guoyan Shen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaofeng Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Genome-Wide Association Analysis Identifies Candidate Genes Regulating Seed Number Per Silique in Arabidopsis thaliana. PLANTS 2020; 9:plants9050585. [PMID: 32370287 PMCID: PMC7284809 DOI: 10.3390/plants9050585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022]
Abstract
Seed weight and number ultimately determine seed yield. Arabidopsis seed number comprised of silique number and seed number per silique (SNS). Comparing seed development and weight, determinants of seed number remain largely uncharacterized. In this study, taking advantage of 107 available Arabidopsis accessions, genome-wide association analysis (GWAS) was employed to identify the candidate genes regulating SNS. GWAS-based genotype and phenotype association analysis identified 38 most significant SNPs marker sites that were mapped to specific chromosomal positions and allowed us to screen for dozens of candidate genes. One of them (PIN3) was selected for functional validation based on gene expression analysis. It is a positive regulator of Arabidopsis SNS. Although silique length of PIN3 loss of function mutant was not significantly changed, its SNS and seed density (SD) were significantly reduced as compared with the wild type. Notably, PIN3 overexpression lines driven by a placenta-specific promoter STK exhibited significantly shorter siliques, slightly reduced SNS, but significant increased SD compared with wild type, suggesting that PIN3 positively regulates SD through inducing ovule primordia initiation regardless of the placenta size. Ovule initiation determines the maximal possibility of SNS, and new genes and mechanism regulating SNS through modulating ovule initiation is worth further investigated.
Collapse
|