1
|
Atkins E, Scialò E, Catalano C, Hernández CC, Wegel E, Hill L, Licciardello C, Peña L, Garcia-Lor A, Martin C, Butelli E. Distinctive acidity in citrus fruit is linked to loss of proanthocyanidin biosynthesis. iScience 2024; 27:110923. [PMID: 39398238 PMCID: PMC11467675 DOI: 10.1016/j.isci.2024.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
The distinctive acidity of citrus fruit is determined by a regulatory complex of MYB and bHLH transcription factors together with a WDR protein (MBW complex) which operates in the unique juice vesicles of the fruit. We describe a mutation affecting the MYB protein, named Nicole, in sweet orange and identify its target genes that determine hyperacidification, specifically. We propose that the acidity, typical of citrus fruits, was the result of a loss of the ability of Nicole to activate the gene encoding anthocyanidin reductase, an enzyme essential for the synthesis of proanthocyanidins, which are absent in citrus fruit.
Collapse
Affiliation(s)
| | | | | | | | - Eva Wegel
- John Innes Centre, Norwich NR4 7UH, UK
| | | | - Concetta Licciardello
- CREA, Research Center for Olive Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy
| | - Leandro Peña
- Instituto de Biologia Molecular y Celular de Plantas – Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Andrés Garcia-Lor
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | | | | |
Collapse
|
2
|
Zhao T, Li N, Kong J, Li X, Huang C, Wang Y, Zhang C, Li Y. An activator-represssor complex of VvWRKYs regulate proanthocyanidins biosynthesis through co-targeting VvLAR in grape. Int J Biol Macromol 2024; 281:136653. [PMID: 39423972 DOI: 10.1016/j.ijbiomac.2024.136653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Proanthocyanidins (PAs) are vital polyphenolic compounds in plants with various biological functions. Although WRKY transcription factors are known to play important roles, their specific involvement in regulating PAs metabolism in grapes remains underexplored. In this study, we identified six candidate WRKY genes potentially involved in PAs synthesis by transiently overexpressing them in Nicotiana tabacum leaves. Among these, VvWRKY57 was found to enhance PAs synthesis. Further functional analysis, achieved by overexpressing of VvWRKY57 in grape calli, confirmed its positive role in PAs biosynthesis. Using yeast one-hybrid (Y1H), dual-luciferase reporter (DLR) assays, and electrophoretic mobility shift assay (EMSA), we demonstrated that VvWRKY57 binds to the promoter of leucocyanidin reductase (VvLAR2) and stimulates its activity. Additionally, yeast two-hybrid (Y2H), bimolecular fluorescence complementary (BiFC), and pull-down assays revealed that VvWRKY57 forms heterodimers with VvWRKY20, while VvWTKY20 also forms homodimers. Interestingly, overexpression of VvWRKY20 was found to inhibit PAs synthesis. Y1H, DLR, and EMSA further showed that VvWRKY20 binds to the promoters of VvLAR1 and VvLAR2, repressing their transcription activity. When VvWRKY57 and VvWRKY20 were co-expressed, VvLAR2 promoter activity and PAs synthesis were suppressed. Moreover, we discovered that VvPUB26, an E3 ubiquitin ligase physically interacts with both VvWRKY57 and VvWRKY20. VvPUB26 mediated the degradation of VvWRKY20 but did not influence the degradation of VvWRKY57. In conclusion, this study highlights the regulatory interplay between WRKY transcription factors in PAs biosynthesis, offering insights into their distinct roles in modulating this important metabolic pathway in grapes.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Na Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jixiang Kong
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaohan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Congbo Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yuejin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Chaohong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Zhang Y, Hu L, Wang S, Gou X, Guo Q, Liang G. Genome-wide identification of R2R3-MYB family in Eriobotrya japonica and functional analysis of EjMYB5 involved in proanthocyanidin biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112198. [PMID: 39029629 DOI: 10.1016/j.plantsci.2024.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Loquat (Eriobotrya japonica Lindl.) is a popular fruit and medicinal plant. Proanthocyanidins (PAs), as one of the main types of flavonoids, are the key components of loquat fruit quality and medicinal properties. However, the identification of transcription factors (TFs) involved in PA accumulation in loquat remains limited. R2R3-MYB TFs play key regulatory role in PA accumulation in plants. In this study, 190 R2R3-MYB TFs were identified in loquat genome. Combined with transcriptome data, R2R3-MYB TF EjMYB5 involved in PA accumulation in loquat was isolated. EjMYB5 was transcriptional activator localized to nucleus. Expression of EjMYB5 was closely related to PA accumulation in loquat fruits. Heterogenous overexpression of EjMYB5 in tomato (Solanum lycopersicum) inhibited anthocyanin accumulation and promoted PA accumulation. Additionally, transient overexpression of EjMYB5 in tobacco (Nicotiana benthamiana) leaves promoted PA accumulation by upregulating flavonoid biosynthesis genes (NtDFR, NtANS, and NtLAR). Transcriptome analysis of EjMYB5-overexpressing tomato fruits suggested that EjMYB5 was involved in several biological pathways, including lipid metabolism, MAPK signaling, phenylpropanoid biosynthesis, and flavonoid biosynthesis. Collectively, our findings provided basic data for further analysis the function of R2R3-MYB TFs in loquat, and revealed that EjMYB5 functioned as PA accumulation in loquat.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Luyan Hu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Xiuhong Gou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China.
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
4
|
Cao ZH, Song D, Hu Y, Liang M, Xu Q, Wang SH, Ye JL, Xie ZZ, Deng XX, Chai LJ. An S-locus F-box protein as pollen S determinant targets non-self S-RNase underlying self-incompatibility in Citrus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3891-3902. [PMID: 38486360 DOI: 10.1093/jxb/erae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/14/2024] [Indexed: 07/11/2024]
Abstract
Self-incompatibility (SI) is a crucial mechanism that prevents self-fertilization and inbreeding in flowering plants. Citrus exhibits SI regulated by a polymorphic S-locus containing an S-RNase gene and multiple S-locus F-box (SLF) genes. It has been documented that S-RNase functions as the pistil S determinant, but there is no direct evidence that the SLF genes closely linked with S-RNase function as pollen S determinants in Citrus. This study assembled the genomes of two pummelo (Citrus grandis) plants, obtained three novel complete and well-annotated S-haplotypes, and isolated 36 SLF or SLF-like alleles on the S-loci. Phylogenetic analysis of 138 SLFs revealed that the SLF genes were classified into 12 types, including six types with divergent or missing alleles. Furthermore, transformation experiments verified that the conserved S6-SLF7a protein can lead to the transition of SI to self-compatibility by recognizing non-self S8-RNase in 'Mini-Citrus' plants (S7S8 and S8S29, Fortunella hindsii), a model plant for citrus gene function studies. In vitro assays demonstrated interactions between SLFs of different S haplotypes and the Skp1-Cullin1-F-box subunit CgSSK1 protein. This study provides direct evidence that SLF controls the pollen function in Citrus, demonstrating its role in the 'non-self recognition' SI system.
Collapse
Affiliation(s)
- Zong-Hong Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Liang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shao-Hua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
| | - Jun-Li Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zong-Zhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiu-Xin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Li-Jun Chai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
5
|
Zhang Y, Jin J, Wang N, Sun Q, Feng D, Zhu S, Wang Z, Li S, Ye J, Chai L, Xie Z, Deng X. Cytochrome P450 CitCYP97B modulates carotenoid accumulation diversity by hydroxylating β-cryptoxanthin in Citrus. PLANT COMMUNICATIONS 2024; 5:100847. [PMID: 38379285 PMCID: PMC11211522 DOI: 10.1016/j.xplc.2024.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/21/2023] [Accepted: 02/18/2024] [Indexed: 02/22/2024]
Abstract
Carotenoids in plant foods provide health benefits by functioning as provitamin A. One of the vital provitamin A carotenoids, β-cryptoxanthin, is typically plentiful in citrus fruit. However, little is known about the genetic basis of β-cryptoxanthin accumulation in citrus. Here, we performed a widely targeted metabolomic analysis of 65 major carotenoids and carotenoid derivatives to characterize carotenoid accumulation in Citrus and determine the taxonomic profile of β-cryptoxanthin. We used data from 81 newly sequenced representative accessions and 69 previously sequenced Citrus cultivars to reveal the genetic basis of β-cryptoxanthin accumulation through a genome-wide association study. We identified a causal gene, CitCYP97B, which encodes a cytochrome P450 protein whose substrate and metabolic pathways in land plants were undetermined. We subsequently demonstrated that CitCYP97B functions as a novel monooxygenase that specifically hydroxylates the β-ring of β-cryptoxanthin in a heterologous expression system. In planta experiments provided further evidence that CitCYP97B negatively regulates β-cryptoxanthin content. Using the sequenced Citrus accessions, we found that two critical structural cis-element variations contribute to increased expression of CitCYP97B, thereby altering β-cryptoxanthin accumulation in fruit. Hybridization/introgression appear to have contributed to the prevalence of two cis-element variations in different Citrus types during citrus evolution. Overall, these findings extend our understanding of the regulation and diversity of carotenoid metabolism in fruit crops and provide a genetic target for production of β-cryptoxanthin-biofortified products.
Collapse
Affiliation(s)
- Yingzi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajing Jin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenchao Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zexin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shunxin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Sun Q, He Z, Wei R, Yin Y, Ye J, Chai L, Xie Z, Guo W, Xu J, Cheng Y, Xu Q, Deng X. Transcription factor CsTT8 promotes fruit coloration by positively regulating the methylerythritol 4-phosphate pathway and carotenoid biosynthesis pathway in citrus ( Citrus spp.). HORTICULTURE RESEARCH 2023; 10:uhad199. [PMID: 38023480 PMCID: PMC10673655 DOI: 10.1093/hr/uhad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
Carotenoids directly influence citrus fruit color and nutritional value, which is critical to consumer acceptance. Elucidating the potential molecular mechanism underlying carotenoid metabolism is of great importance for improving fruit quality. Despite the well-established carotenoid biosynthetic pathways, the molecular regulatory mechanism underlying carotenoid metabolism remains poorly understood. Our previous studies have reported that the Myc-type basic helix-loop-helix (bHLH) transcription factor (TF) regulates citrus proanthocyanidin biosynthesis. Transgenic analyses further showed that overexpression of CsTT8 could significantly promote carotenoid accumulation in transgenic citrus calli, but its regulatory mechanism is still unclear. In the present study, we found that overexpression of CsTT8 enhances carotenoid content in citrus fruit and calli by increasing the expression of CsDXR, CsHDS, CsHDR, CsPDS, CsLCYE, CsZEP, and CsNCED2, which was accompanied by changes in the contents of abscisic acid and gibberellin. The in vitro and in vivo assays indicated that CsTT8 directly bound to the promoters of CsDXR, CsHDS, and CsHDR, the key metabolic enzymes of the methylerythritol 4-phosphate (MEP) pathway, thus providing precursors for carotenoid biosynthesis and transcriptionally activating the expression of these three genes. In addition, CsTT8 activated the promoters of four key carotenoid biosynthesis pathway genes, CsPDS, CsLCYE, CsZEP, and CsNCED2, directly promoting carotenoid biosynthesis. This study reveals a novel network of carotenoid metabolism regulated by CsTT8. Our findings will contribute to manipulating carotenoid metabolic engineering to improve the quality of citrus fruit and other crops.
Collapse
Affiliation(s)
- Quan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhengchen He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ranran Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingzi Yin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
Wang J, Xu R, Qiu S, Wang W, Zheng F. CsTT8 regulates anthocyanin accumulation in blood orange through alternative splicing transcription. HORTICULTURE RESEARCH 2023; 10:uhad190. [PMID: 37927409 PMCID: PMC10623405 DOI: 10.1093/hr/uhad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023]
Abstract
A homologous gene of basic-helix-loop-helix AtTT8 in Arabidopsis thaliana was identified in juice sac cells of pulp tissues from blood orange (Citrus sinensis cv 'Tarocco'), which was designated as CsTT8 in this study. Additionally, the mRNA levels of TT8 with the full-length open reading frame were significantly higher in 'Tarocco' than in mutant fruit lacking pigment in pulp or peel tissues. However, an alternative splicing transcript, Δ15-TT8, with the fourth exon skipped, was also identified from transcripts different in length from that in 'Tarocco'. The mRNA levels of Δ15-TT8 were higher in mutant fruit lacking pigment in pulp or peel tissues than in the wild type. Therefore, the TT8/Δ15-TT8 mRNA level ratio was found to be crucial for sufficient pigment in either pulp or peel tissues. TT8 from blood orange fruit demonstrated the capacity for nucleus localization and binding to other proteins. In contrast, Δ15-TT8, lacking the fourth exon, lost its ability to interact with RUBY1 and to localize at the nucleus. Using a dual luciferase reporter assay and transient overexpression in tobacco, we proved that two regulatory complexes formed by a functional TT8 with different MYB(v-myb avian myeloblastosis viral oncogene homolog)-type partners significantly promoted expression of an anthocyanin biosynthetic gene and a proton pumping gene, leading to anthocyanin and citrate production. Our findings suggest that TT8, rather than dysfunctional Δ15-TT8, is possibly involved in modulating anthocyanin biosynthesis and its transport into vacuoles by proton gradients. However, increased mRNA levels of the dysfunctional alternative splicing transcript may act as a negative feedback to downregulate TT8 expression and limit anthocyanin accumulation in blood oranges.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Zhang Lan Honors College, Chengdu University, Chengdu 610106, China
| | - Rui Xu
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shuangping Qiu
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Weichun Wang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fan Zheng
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Zhang Lan Honors College, Chengdu University, Chengdu 610106, China
| |
Collapse
|
8
|
Jin Y, Liao M, Li N, Ma X, Zhang H, Han J, Li D, Yang J, Lu X, Long G, Deng Z, Sheng L. Weighted gene coexpression correlation network analysis reveals the potential molecular regulatory mechanism of citrate and anthocyanin accumulation between postharvest 'Bingtangcheng' and 'Tarocco' blood orange fruit. BMC PLANT BIOLOGY 2023; 23:296. [PMID: 37268922 DOI: 10.1186/s12870-023-04309-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Organic acids and anthocyanins are the most important compounds for the flavor and nutritional quality of citrus fruit. However, there are few reports on the involvement of co-regulation of citrate and anthocyanin metabolism. Here, we performed a comparative transcriptome analysis to elucidate the genes and pathways involved in both citrate and anthocyanin accumulation in postharvest citrus fruit with 'Tarocco' blood orange (TBO; high accumulation) and 'Bingtangcheng' sweet orange (BTSO; low accumulation). RESULTS A robust core set of 825 DEGs were found to be temporally associated with citrate and anthocyanin accumulation throughout the storage period through transcriptome analysis. Further according to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise and brown module was highly positively correlated with both of the content of citrate and anthocyanin, and p-type ATPase (PH8), phosphoenolpyruvate carboxylase kinase (PEPCK), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H) and glutathione S transferase (GST) were considered key structural genes. Moreover, MYB family transcription factor (PH4), Zinc finger PHD-type transcription factor (CHR4, HAC12), Zinc finger SWIM-type transcription factor (FAR1) and Zinc finger C3H1-type transcription factor (ATC3H64) were considered hub genes related to these structural genes. Further qRT-PCR analysis verified that these transcription factors were highly expressed in TBO fruit and their expression profiles were significantly positively correlated with the structural genes of citrate and anthocyanin metabolism as well as the content of citrate and anthocyanin content. CONCLUSIONS The findings suggest that the CHR4, FAR1, ATC3H64 and HAC12 may be the new transcription regulators participate in controlling the level of citrate and anthocyanin in postharvest TBO fruit in addition to PH4. These results may providing new insight into the regulation mechanism of citrate and anthocyanin accumulation in citrus fruit.
Collapse
Affiliation(s)
- Yan Jin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Manyu Liao
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Na Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaoqian Ma
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Huimin Zhang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Jian Han
- Hunan Horticultural Research Institute, Changsha, CS, China
| | - Dazhi Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Junfeng Yang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaopeng Lu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Guiyou Long
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ziniu Deng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ling Sheng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China.
| |
Collapse
|
9
|
Zhang Y, Jin J, Zhu S, Sun Q, Zhang Y, Xie Z, Ye J, Deng X. Citrus β-carotene hydroxylase 2 (BCH2) participates in xanthophyll synthesis by catalyzing the hydroxylation of β-carotene and compensates for BCH1 in citrus carotenoid metabolism. HORTICULTURE RESEARCH 2023; 10:uhac290. [PMID: 36938563 PMCID: PMC10018782 DOI: 10.1093/hr/uhac290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
As an essential horticultural crop, Citrus has carotenoid diversity, which affects its aesthetic and nutritional values. β,β-Xanthophylls are the primary carotenoids accumulated in citrus fruits, and non-heme di-iron carotene hydroxylase (BCH) enzymes are mainly responsible for β,β-xanthophyll synthesis. Previous studies have focused on the hydroxylation of BCH1, but the role of its paralogous gene in citrus, BCH2, remains largely unknown. In this study, we revealed the β-hydroxylation activity of citrus BCH2 (CsBCH2) for the first time through the functional complementation assay using Escherichia coli, although CsBCH2 exhibited a lower activity in hydroxylating β-carotene into β-cryptoxanthin than citrus BCH1 (CsBCH1). Our results showed that overexpression of CsBCH2 in citrus callus increased xanthophyll proportion and plastoglobule size with feedback regulation of carotenogenic gene expression. This study revealed the distinct expression patterns and functional characteristics of two paralogous genes, CsBCH1 and CsBCH2, and illustrated the backup compensatory role of CsBCH2 for CsBCH1 in citrus xanthophyll biosynthesis. The independent function of CsBCH2 and its cooperative function with CsBCH1 in β-cryptoxanthin biosynthesis suggested the potential of CsBCH2 to be employed for expanding the synthetic biology toolkit in carotenoid engineering.
Collapse
Affiliation(s)
- Yingzi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiajing Jin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenchao Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | | |
Collapse
|
10
|
Characterization of Highbush Blueberry ( Vaccinium corymbosum L.) Anthocyanin Biosynthesis Related MYBs and Functional Analysis of VcMYB Gene. Curr Issues Mol Biol 2023; 45:379-399. [PMID: 36661513 PMCID: PMC9857026 DOI: 10.3390/cimb45010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
As one of the most important transcription factors regulating plant anthocyanin biosynthesis, MYB has attracted great attentions. In this study, we identified fifteen candidate anthocyanin biosynthesis related MYB (ABRM) proteins, including twelve R2R3-MYBs and three 1R-MYBs, from highbush blueberry. The subcellular localization prediction results showed that, with the exception of VcRVE8 (localized in chloroplast and nucleus), all of the blueberry ABRMs were nucleus-localized. The gene structure analysis revealed that the exon numbers of the blueberry ABRM genes varied greatly, ranging between one and eight. There are many light-responsive, phytohormone-responsive, abiotic stress-responsive and plant growth and development related cis-acting elements in the promoters of the blueberry ABRM genes. It is noteworthy that almost all of their promoters contain light-, ABA- and MeJA-responsive elements, which is consistent with the well-established results that anthocyanin accumulation and the expression of MYBs are influenced significantly by many factors, such as light, ABA and JA. The gene expression analysis revealed that VcMYB, VcMYB6, VcMYB23, VcMYBL2 and VcPH4 are expressed abundantly in blueberry fruits, and VcMYB is expressed the highest in the red, purple and blue fruits among all blueberry ABRMs. VcMYB shared high similarity with functionally proven ABRMs from many other plant species. The gene cloning results showed that VcMYB had three variable transcripts, but only the transient overexpression of VcMYB-1 promoted anthocyanin accumulation in the green fruits. Our study can provide a basis for future research on the anthocyanin biosynthesis related MYBs in blueberry.
Collapse
|
11
|
Huang D, Xu S, Qin Y, Li Y, Ming R, Huang R, Wang J, Tan Y. Comparative transcriptomic analysis identifies KcMYB1 as a R2R3-MYB anthocyanin activator in Kadsura coccinea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111458. [PMID: 36084765 DOI: 10.1016/j.plantsci.2022.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Fruit color, as an important appearance attribute, is crucial for attracting consumers. However, the underlying mechanism regulating mature fruit color formation in Kadsura coccinea remains unclear. Here, a comprehensive metabolomics and transcriptomics analysis was performed to investigate the molecular mechanisms of anthocyanin accumulation between two K. coccinea cultivars with different mature fruit colors-'Dahong No. 1' (red) and 'Jinhu' (yellow). Targeted metabolomic analysis revealed high anthocyanin levels, most of which were cyanidin and delphinidin derivatives, in 'Dahong No. 1' mature fruit peel. The SNP analysis indicated that the two different cultivars had similar genetic background. Moreover, comparative transcriptomic analysis demonstrated that differentially expressed genes (DEGs) were related to flavonoid biosynthesis and metabolic process in the two K. coccinea cultivars. Gene expression profiling data showed that the structural and regulatory genes associated with anthocyanin biosynthesis were significantly upregulated in 'Dahong No. 1' mature fruit peel, which was verified by quantitative real-time polymerase chain reaction (qRT-PCR). Notably, the key anthocyanin activator KcMYB1 was identified, which was significantly upregulated in 'Dahong No. 1' compared with 'Jinhu'. We further confirmed that KcMYB1 actively regulated the accumulation of anthocyanin by ectopic expression in vivo. Furthermore, allelic constitution of KcMYB1 in K. coccinea were investigated. The present study can provide insights for understanding the regulatory mechanisms of anthocyanin differential accumulation in the mature fruits of K. coccinea.
Collapse
Affiliation(s)
- Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhong Qin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yingjie Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
12
|
Huang H, Gao X, Gao X, Zhang S, Zheng Y, Zhang N, Hong B, Zhao X, Gu Z. Flower color mutation, pink to orange, through CmGATA4 - CCD4a-5 module regulates carotenoids degradation in chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111290. [PMID: 35753140 DOI: 10.1016/j.plantsci.2022.111290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The carotenoids biosynthesis pathway in plants has been studied extensively, yet little is known about the regulatory mechanisms underlying this process, especially for ornamental horticulture plants. In this study, a natural variation of chrysanthemum with orange coloration was identified and compared with the wild type with pink coloration; the content and component of carotenoids were largely enriched in the mutant with orange coloration. CmCCD4a-5, the DNA sequence in both 'Pink yan' and the mutant, was identified and shown to function as a carotenoid degradation enzyme. Compared with 'Pink yan', the mutant shows lower expression level of CmCCD4a-5. Furthermore, CmGATA4 was found to have an opposite expression trend to CmCCD4a-5, and it could directly bind with the CmCCD4a-5 promoter. Taken together, this study demonstrates that CmGATA4 acts as a negative regulator of CmCCD4a-5 and, furthermore, low expression of CmCCD4a-5 resulted in carotenoid accumulation in the mutant.
Collapse
Affiliation(s)
- Hongfeng Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xuekai Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shiqi Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ying Zheng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ning Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xin Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhaoyu Gu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Lu Z, Huang Y, Mao S, Wu F, Liu Y, Mao X, Adhikari PB, Xu Y, Wang L, Zuo H, Rao MJ, Xu Q. The high-quality genome of pummelo provides insights into the tissue-specific regulation of citric acid and anthocyanin during domestication. HORTICULTURE RESEARCH 2022; 9:uhac175. [PMID: 36238347 PMCID: PMC9552194 DOI: 10.1093/hr/uhac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Citric acid and anthocyanin contents were co-selected during Citrus domestication. Pummelo is a founding species in the Citrus genus, but the domestication of pummelo has not been well studied. Here, we compared the citric acid and anthocyanin contents of a low citric acid pummelo (Citrus maxima LCA) and its high citric acid variety (HCA) from the same cultivation area in China. Our study revealed that, unlike the LCA type, the HCA variety accumulated anthocyanin in the pericarp early in fruit development. To investigate the genetic basis of acid and anthocyanin enrichment in HCA pulp and pericarp, respectively, we generated a chromosome-scale HCA genome using long-read sequence reads and Hi-C sequencing data. Transcriptome analysis and transient overexpression assays showed that the accumulation of citric acid and anthocyanin was associated with high expression of CgANTHOCYANIN1 (CgAN1), and two different MYBs transcription factors (CgPH4 and CgRuby1), respectively. Moreover, the CgAN1 promoter was more methylated in the LCA pulp than in the HCA pulp. Treatment with a DNA methylation inhibitor, 5-azacytidine, alleviated the CgAN1 promoter hypermethylation in the LCA pulp, leading to increased CgAN1 expression and citric acid content. This study provides a new high-quality pummelo genome and insight into the molecular mechanism behind the change in tissue-specific citric acid and anthocyanin accumulation during pummelo domestication and provides a conceptual basis for precise genetic manipulation in fruit flavor breeding.
Collapse
Affiliation(s)
- Zhihao Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sangyin Mao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fangfang Wu
- Science and Technology Innovation Research Center of Majia Pummelo, Guangfeng, Shangrao, Jiangxi 334000, China
| | - Yong Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiangqing Mao
- Service Center for Agriculture and Rural Area, Guangfeng, Shangrao, Jiangxi 334000, China
| | - Prakash Babu Adhikari
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Zuo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | | |
Collapse
|
14
|
He J, Xu Y, Huang D, Fu J, Liu Z, Wang L, Zhang Y, Xu R, Li L, Deng X, Xu Q. TRIPTYCHON-LIKE regulates aspects of both fruit flavor and color in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3610-3624. [PMID: 35263759 DOI: 10.1093/jxb/erac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 05/24/2023]
Abstract
Deciphering the genetic basis of organoleptic traits is critical for improving the quality of fruits, which greatly shapes their appeal to consumers. Here, we characterize the citrus R3-MYB transcription factor TRIPTYCHON-LIKE (CitTRL), which is closely associated with the levels of citric acid, proanthocyanidins (PAs), and anthocyanins. Overexpression of CitTRL lowered acidity levels and PA contents in citrus calli as well as anthocyanin and PA contents in Arabidopsis leaves and seeds. CitTRL interacts with the two basic helix-loop-helix (bHLH) proteins CitbHLH1 and ANTHOCYANIN 1 (CitAN1) to regulate fruit quality. We show that CitTRL competes with the R2R3-MYB CitRuby1 for binding to CitbHLH1 or CitAN1, thereby repressing their activation of anthocyanin structural genes. CitTRL also competes with a second R2R3-MYB, CitPH4, for binding to CitAN1, thus altering the expression of the vacuolar proton-pump gene PH5 and Leucoanthocyanidin reductase, responsible for vacuolar acidification and proanthocyanidins biosynthesis, respectively. Moreover, CitPH4 activates CitTRL transcription, thus forming an activator-repressor loop to prevent the overaccumulation of citric acid and PAs. Overall, this study demonstrates that CitTRL acts as a repressor of the accumulation of citric acid, PAs, and anthocyanins by a cross-regulation mechanism. Our results provide an opportunity to simultaneously manipulate these key traits as a means to produce citrus fruits that are both visually and organoleptically appealing.
Collapse
Affiliation(s)
- Jiaxian He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ding Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ziang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rangwei Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY 14853, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
15
|
Wu Y, Wen J, Xia Y, Zhang L, Du H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. HORTICULTURE RESEARCH 2022; 9:uhac058. [PMID: 35591925 PMCID: PMC9113232 DOI: 10.1093/hr/uhac058] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 05/31/2023]
Abstract
R2R3-MYB genes (R2R3-MYBs) form one of the largest transcription factor gene families in the plant kingdom, with substantial structural and functional diversity. However, the evolutionary processes leading to this amazing functional diversity have not yet been clearly established. Recently developed genomic and classical molecular technologies have provided detailed insights into the evolutionary relationships and functions of plant R2R3-MYBs. Here, we review recent genome-level and functional analyses of plant R2R3-MYBs, with an emphasis on their evolution and functional diversification. In land plants, this gene family underwent a large expansion by whole genome duplications and small-scale duplications. Along with this population explosion, a series of functionally conserved or lineage-specific subfamilies/groups arose with roles in three major plant-specific biological processes: development and cell differentiation, specialized metabolism, and biotic and abiotic stresses. The rapid expansion and functional diversification of plant R2R3-MYBs are highly consistent with the increasing complexity of angiosperms. In particular, recently derived R2R3-MYBs with three highly homologous intron patterns (a, b, and c) are disproportionately related to specialized metabolism and have become the predominant subfamilies in land plant genomes. The evolution of plant R2R3-MYBs is an active area of research, and further studies are expected to improve our understanding of the evolution and functional diversification of this gene family.
Collapse
Affiliation(s)
- Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
16
|
Albert NW, Lafferty DJ, Moss SMA, Davies KM. Flavonoids - flowers, fruit, forage and the future. J R Soc N Z 2022; 53:304-331. [PMID: 39439482 PMCID: PMC11459809 DOI: 10.1080/03036758.2022.2034654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Flavonoids are plant-specific secondary metabolites that arose early during land-plant colonisation, most likely evolving for protection from UV-B and other abiotic stresses. As plants increased in complexity, so too did the diversity of flavonoid compounds produced and their physiological roles. The most conspicuous are the pigments, including yellow aurones and chalcones, and the red/purple/blue anthocyanins, which provide colours to flowers, fruits and foliage. Anthocyanins have been particularly well studied, prompted by the ease of identifying mutants of genes involved in biosynthesis or regulation, providing an important model system to study fundamental aspects of genetics, gene regulation and biochemistry. This has included identifying the first plant transcription factor, and later resolving how multiple classes of transcription factor coordinate in regulating the production of various flavonoid classes - each with different activities and produced at differing developmental stages. In addition, dietary flavonoids from fruits/vegetables and forage confer human- and animal-health benefits, respectively. This has prompted strong interest in generating new plant varieties with increased flavonoid content through both traditional breeding and plant biotechnology. Gene-editing technologies provide new opportunities to study how flavonoids are regulated and produced and to improve the flavonoid content of flowers, fruits, vegetables and forages.
Collapse
Affiliation(s)
- Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Declan J. Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sarah M. A. Moss
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
17
|
Wang Y, Yang X, Chen Z, Zhang J, Si K, Xu R, He Y, Zhu F, Cheng Y. Function and transcriptional regulation of CsKCS20 in the elongation of very-long-chain fatty acids and wax biosynthesis in Citrus sinensis flavedo. HORTICULTURE RESEARCH 2022; 9:uhab027. [PMID: 35039844 PMCID: PMC8824539 DOI: 10.1093/hr/uhab027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/18/2022] [Accepted: 09/15/2021] [Indexed: 05/05/2023]
Abstract
Cuticular wax on plant aerial surfaces plays a vital role in the defense against various stresses, and the genes related to wax metabolism have been well documented in several model plants. However, there is very limited research on the key enzymes and transcription factors (TFs) associated with carbon chain distribution and wax biosynthesis in citrus fruit. In this study, an analysis of wax metabolites indicated that even carbon-chain (C24-C28) metabolites are the dominant wax components in citrus fruit, and a 3-ketoacyl-CoA synthase (KCS) family gene (CsKCS20) plays an important role in the carbon chain distribution during wax biosynthesis in a wax-deficient mutant (MT). Expression of CsKCS20 in yeast indicated that CsKCS20 can catalyze the biosynthesis of C22 and C24 very-long-chain fatty acids (VLCFAs). In addition, transcriptome and sequence analysis indicated that the differential expression of CsKCS20 between the wild-type (WT) and MT fruit can be partly attributed to the regulation of CsMYB96, which was further confirmed by yeast one-hybrid (Y1H) assays, electrophoretic mobility shift assays (EMSAs) and dual luciferase assays. The functions of CsMYB96 and CsKCS20 in wax biosynthesis were further validated by heterologous expression in Arabidopsis. In summary, this study elucidates the important roles of CsKCS20 and CsMYB96 in regulating VLCFA elongation and cuticular wax biosynthesis, which provides new directions for the improvement of citrus fruit wax quality in genetic breeding programs.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhaoxing Chen
- Institute of Citrus Science Research of Ganzhou, Ganzhou 341000, China
| | - Jin Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Si
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Rangwei Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yizhong He
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Identification, Characterization and Expression Analysis of Anthocyanin Biosynthesis-related bHLH Genes in Blueberry ( Vaccinium corymbosum L.). Int J Mol Sci 2021; 22:ijms222413274. [PMID: 34948071 PMCID: PMC8708680 DOI: 10.3390/ijms222413274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Basic helix-loop-helix proteins (bHLHs) play very important roles in the anthocyanin biosynthesis of many plant species. However, the reports on blueberry anthocyanin biosynthesis-related bHLHs were very limited. In this study, six anthocyanin biosynthesis-related bHLHs were identified from blueberry genome data through homologous protein sequence alignment. Among these blueberry bHLHs, VcAN1, VcbHLH42-1, VcbHLH42-2 and VcbHLH42-3 were clustered into one group, while VcbHLH1-1 and VcbHLH1-2 were clustered into the other group. All these bHLHs were of the bHLH-MYC_N domain, had DNA binding sites and reported conserved amino acids in the bHLH domain, indicating that they were all G-box binding proteins. Protein subcellular location prediction result revealed that all these bHLHs were nucleus-located. Gene structure analysis showed that VcAN1 gDNA contained eight introns, while all the others contained seven introns. Many light-, phytohormone-, stress- and plant growth and development-related cis-acting elements and transcription factor binding sites (TFBSs) were identified in their promoters, but the types and numbers of cis-elements and TFBSs varied greatly between the two bHLH groups. Quantitative real-time PCR results showed that VcAN1 expressed highly in old leaf, stem and blue fruit, and its expression increased as the blueberry fruit ripened. Its expression in purple podetium and old leaf was respectively significantly higher than in green podetium and young leaf, indicating that VcAN1 plays roles in anthocyanin biosynthesis regulation not only in fruit but also in podetium and leaf. VcbHLH1-1 expressed the highest in young leaf and stem, and the lowest in green fruit. The expression of VcbHLH1-1 also increased as the fruit ripened, and its expression in blue fruit was significantly higher than in green fruit. VcbHLH1-2 showed high expression in stem but low expression in fruit, especially in red fruit. Our study indicated that the anthocyanin biosynthesis regulatory functions of these bHLHs showed certain spatiotemporal specificity. Additionally, VcAN1 might be a key gene controlling the anthocyanin biosynthesis in blueberry, whose function is worth exploring further for its potential applications in plant high anthocyanin breeding.
Collapse
|
19
|
Zhang Y, Zhang Y, Sun Q, Lu S, Chai L, Ye J, Deng X. Citrus transcription factor CsHB5 regulates abscisic acid biosynthetic genes and promotes senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:151-168. [PMID: 34414618 DOI: 10.1111/tpj.15431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Senescence is a gradual physiological process involving the integration of numerous internal and environmental signals. Abscisic acid (ABA) is a well-known inducer of senescence. However, the regulatory mechanisms underlying ABA-mediated senescence remain largely unknown. Here, we report that the citrus homeodomain leucine zipper I (HD-ZIP I) transcription factor CsHB5 functions as a regulator of ABA-triggered senescence. CsHB5 acts as a nucleus-localized transcriptional activator, the expression of which appeared to be closely associated with citrus senescence. Overexpression of CsHB5 in citrus calli upregulated the expression of ABA- and reactive oxygen species (ROS)-related genes, and significantly increased the content of ABA and hydrogen peroxide (H2 O2 ), whereas silencing CsHB5 in citrus calli downregulated the expression of ABA-related genes. Additionally, heterogenous overexpression of CsHB5 in Solanum lycopersicum (tomato) and Arabidopsis thaliana (Arabidopsis) leads to early leaf yellowing under dark-induced senescence conditions. Meanwhile, the levels of ABA and H2 O2 in transgenic tomatoes increased significantly and the lycopene content decreased. Transcriptome analysis of CsHB5-overexpressing citrus calli and tomato showed that CsHB5 was involved in multiple senescence-associated processes, including chlorophyll degradation, nutrient compound biosynthesis and transport, as well as ABA and ROS signal transduction. The results of yeast one-hybrid assays, electrophoretic mobility shift assays and dual luciferase assays indicated that CsHB5 directly binds to the promoters of ABA biosynthetic genes, including β-carotene hydroxylase 1 (BCH1) and 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), thereby activating their transcription. Our findings revealed that CsHB5 participates in senescence, at least partly, by directly controlling ABA accumulation. Our work provides insight into the regulatory mechanisms underlying ABA-mediated senescence.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingzi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Suwen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants. Foods 2020; 9:foods9121774. [PMID: 33265960 PMCID: PMC7759826 DOI: 10.3390/foods9121774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins are colorless flavonoid polymers condensed from flavan-3-ol units. They are essential secondary plant metabolites that contribute to the nutritional value and sensory quality of many fruits and the related processed products. Mounting evidence has shown that the accumulation of proanthocyanidins is associated with the resistance of plants against a broad spectrum of abiotic and biotic stress conditions. The biosynthesis of proanthocyanidins has been examined extensively, allowing for identifying and characterizing the key regulators controlling the biosynthetic pathway in many plants. New findings revealed that these specific regulators were involved in the proanthocyanidins biosynthetic network in response to various environmental conditions. This paper reviews the current knowledge regarding the control of key regulators in the underlying proanthocyanidins biosynthetic and molecular mechanisms in response to environmental stress. Furthermore, it discusses the directions for future research on the metabolic engineering of proanthocyanidins production to improve food and fruit crop quality.
Collapse
|
21
|
Wen W, Alseekh S, Fernie AR. Conservation and diversification of flavonoid metabolism in the plant kingdom. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:100-108. [PMID: 32422532 DOI: 10.1016/j.pbi.2020.04.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Flavonoids are by far the largest class of polyphenols with huge structural and functional diversity. However, the mystery regarding the exact evolutionary pressures which lead to the amazing diversity in plant flavonoids has yet to be completely uncovered. Here we review recent advances in understanding the conservation and diversification of flavonoid pathway from algae and early land plants to vascular plants including the model plant Arabidopsis and economically important species such as cereals, legumes, and medicinal plants. Studies on the origin and evolution of R2R3-MYB regulatory system demonstrated its highly conserved function of regulating flavonoid production in land plants and this innovation appears to have been crucial in boosting the overall levels of these compounds in land plants. Convergent evolution has occurred as different flavonoids independently which emerged in distant taxa resulting in similar defense and tolerance characteristics against environmental stresses. Future studies on an increasing number of plant species taking advantage of newly developed genomic and metabolite profiling technologies are envisaged to provide comprehensive insight into flavonoid biosynthesis as well as pathway diversification and the underlying evolutionary mechanisms.
Collapse
Affiliation(s)
- Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
22
|
Citrus Taste Modification Potentials by Genetic Engineering. Int J Mol Sci 2019; 20:ijms20246194. [PMID: 31817978 PMCID: PMC6940753 DOI: 10.3390/ijms20246194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Citrus fruits are mainly consumed as fresh fruit and processed juice products. They serve as nutritional and a tasty diet in our daily life. However, the formidable bitterness and delayed bitterness significantly impact the citrus industry attributable to the two major bitter compounds naringin and limonin. The extremely sour and acidic also negatively affects the sensory quality of citrus products. Citrus breeding programs have developed different strategies to improve citrus quality and a wealth of studies have aimed to uncover the genetic and biochemical basis of citrus flavor. In this minireview, we outline the major genes characterized to be involved in pathways shaping the sweet, bitter, or sour taste in citrus, and discuss briefly about the possible approaches to modify citrus taste by genetic engineering.
Collapse
|