1
|
Jarmukhanov Z, Mukhanbetzhanov N, Kozhakhmetov S, Nurgaziyev M, Sailybayeva A, Bekbossynova M, Kushugulova A. The association between the gut microbiota metabolite trimethylamine N-oxide and heart failure. Front Microbiol 2024; 15:1440241. [PMID: 39391607 PMCID: PMC11464299 DOI: 10.3389/fmicb.2024.1440241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
This systematic review explores the relationship between the gut microbiota metabolite trimethylamine N-oxide (TMAO) and heart failure (HF), given the significant impact of TMAO on cardiovascular health. A systematic search and meta-analysis of peer-reviewed studies published from 2013 to 2024 were conducted, focusing on adult patients with heart failure and healthy controls. The review found that elevated levels of TMAO are associated with atherosclerosis, endothelial dysfunction, and increased cardiovascular disease risk, all of which can exacerbate heart failure. The analysis also highlights that high TMAO levels are linked to reduced left ventricular ejection fraction (LVEF) and glomerular filtration rate (GFR), further supporting TMAO's role as a biomarker in heart failure assessment. The findings suggest that interventions targeting gut microbiota to reduce TMAO could potentially benefit patients with heart failure, although further research is needed to evaluate the effectiveness of such approaches.
Collapse
Affiliation(s)
- Zharkyn Jarmukhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Nurislam Mukhanbetzhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Madiyar Nurgaziyev
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Almagul Kushugulova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
2
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Guivala SJ, Bode KA, Okun JG, Kartal E, Schwedhelm E, Pohl LV, Werner S, Erbs S, Thiele H, Büttner P. Interactions between the gut microbiome, associated metabolites and the manifestation and progression of heart failure with preserved ejection fraction in ZSF1 rats. Cardiovasc Diabetol 2024; 23:299. [PMID: 39143579 PMCID: PMC11325580 DOI: 10.1186/s12933-024-02398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is associated with systemic inflammation, obesity, metabolic syndrome, and gut microbiome changes. Increased trimethylamine-N-oxide (TMAO) levels are predictive for mortality in HFpEF. The TMAO precursor trimethylamine (TMA) is synthesized by the intestinal microbiome, crosses the intestinal barrier and is metabolized to TMAO by hepatic flavin-containing monooxygenases (FMO). The intricate interactions of microbiome alterations and TMAO in relation to HFpEF manifestation and progression are analyzed here. METHODS Healthy lean (L-ZSF1, n = 12) and obese ZSF1 rats with HFpEF (O-ZSF1, n = 12) were studied. HFpEF was confirmed by transthoracic echocardiography, invasive hemodynamic measurements, and detection of N-terminal pro-brain natriuretic peptide (NT-proBNP). TMAO, carnitine, symmetric dimethylarginine (SDMA), and amino acids were measured using mass-spectrometry. The intestinal epithelial barrier was analyzed by immunohistochemistry, in-vitro impedance measurements and determination of plasma lipopolysaccharide via ELISA. Hepatic FMO3 quantity was determined by Western blot. The fecal microbiome at the age of 8, 13 and 20 weeks was assessed using 16s rRNA amplicon sequencing. RESULTS Increased levels of TMAO (+ 54%), carnitine (+ 46%) and the cardiac stress marker NT-proBNP (+ 25%) as well as a pronounced amino acid imbalance were observed in obese rats with HFpEF. SDMA levels in O-ZSF1 were comparable to L-ZSF1, indicating stable kidney function. Anatomy and zonula occludens protein density in the intestinal epithelium remained unchanged, but both impedance measurements and increased levels of LPS indicated an impaired epithelial barrier function. FMO3 was decreased (- 20%) in the enlarged, but histologically normal livers of O-ZSF1. Alpha diversity, as indicated by the Shannon diversity index, was comparable at 8 weeks of age, but decreased by 13 weeks of age, when HFpEF manifests in O-ZSF1. Bray-Curtis dissimilarity (Beta-Diversity) was shown to be effective in differentiating L-ZSF1 from O-ZSF1 at 20 weeks of age. Members of the microbial families Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae and Lachnospiraceae were significantly differentially abundant in O-ZSF1 and L-ZSF1 rats. CONCLUSIONS In the ZSF1 HFpEF rat model, increased dietary intake is associated with alterations in gut microbiome composition and bacterial metabolites, an impaired intestinal barrier, and changes in pro-inflammatory and health-predictive metabolic profiles. HFpEF as well as its most common comorbidities obesity and metabolic syndrome and the alterations described here evolve in parallel and are likely to be interrelated and mutually reinforcing. Dietary adaption may have a positive impact on all entities.
Collapse
Affiliation(s)
- Salmina J Guivala
- Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Konrad A Bode
- Department Molecular Diagnostics, Laboratory Dr. Limbach and Colleagues, Am Breitspiel 15, 69126, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children's Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Ece Kartal
- Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Luca V Pohl
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Sarah Werner
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Sandra Erbs
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Holger Thiele
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Petra Büttner
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| |
Collapse
|
4
|
Martins D, Silva C, Ferreira AC, Dourado S, Albuquerque A, Saraiva F, Batista AB, Castro P, Leite-Moreira A, Barros AS, Miranda IM. Unravelling the Gut Microbiome Role in Cardiovascular Disease: A Systematic Review and a Meta-Analysis. Biomolecules 2024; 14:731. [PMID: 38927134 PMCID: PMC11201797 DOI: 10.3390/biom14060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
A notable shift in understanding the human microbiome's influence on cardiovascular disease (CVD) is underway, although the causal association remains elusive. A systematic review and meta-analysis were conducted to synthesise current knowledge on microbial taxonomy and metabolite variations between healthy controls (HCs) and those with CVD. An extensive search encompassing three databases identified 67 relevant studies (2012-2023) covering CVD pathologies from 4707 reports. Metagenomic and metabolomic data, both qualitative and quantitative, were obtained. Analysis revealed substantial variability in microbial alpha and beta diversities. Moreover, specific changes in bacterial populations were shown, including increased Streptococcus and Proteobacteria and decreased Faecalibacterium in patients with CVD compared with HC. Additionally, elevated trimethylamine N-oxide levels were reported in CVD cases. Biochemical parameter analysis indicated increased fasting glucose and triglycerides and decreased total cholesterol and low- and high-density lipoprotein cholesterol levels in diseased individuals. This study revealed a significant relationship between certain bacterial species and CVD. Additionally, it has become clear that there are substantial inconsistencies in the methodologies employed and the reporting standards adhered to in various studies. Undoubtedly, standardising research methodologies and developing extensive guidelines for microbiome studies are crucial for advancing the field.
Collapse
Affiliation(s)
- Diana Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cláudia Silva
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António Carlos Ferreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sara Dourado
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Albuquerque
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Francisca Saraiva
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Beatriz Batista
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Pedro Castro
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Neurology, São João Hospital Center, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António S. Barros
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isabel M. Miranda
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Zhang J, Zhu P, Li S, Gao Y, Xing Y. From heart failure and kidney dysfunction to cardiorenal syndrome: TMAO may be a bridge. Front Pharmacol 2023; 14:1291922. [PMID: 38074146 PMCID: PMC10703173 DOI: 10.3389/fphar.2023.1291922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 10/23/2024] Open
Abstract
The study of trimethylamine oxide (TMAO), a metabolite of gut microbiota, and heart failure and chronic kidney disease has made preliminary achievements and been summarized by many researchers, but its research in the field of cardiorenal syndrome is just beginning. TMAO is derived from the trimethylamine (TMA) that is produced by the gut microbiota after consumption of carnitine and choline and is then transformed by flavin-containing monooxygenase (FMO) in the liver. Numerous research results have shown that TMAO not only participates in the pathophysiological progression of heart and renal diseases but also significantly affects outcomes in chronic heart failure (CHF) and chronic kidney disease (CKD), besides influencing the general health of populations. Elevated circulating TMAO levels are associated with adverse cardiovascular events such as HF, myocardial infarction, and stroke, patients with CKD have a poor prognosis as well. However, no study has confirmed an association between TMAO and cardiorenal syndrome (CRS). As a syndrome in which heart and kidney diseases intersect, CRS is often overlooked by clinicians. Here, we summarize the research on TMAO in HF and kidney disease and review the existing biomarkers of CRS. At the same time, we introduced the relationship between exercise and gut microbiota, and appropriately explored the possible mechanisms by which exercise affects gut microbiota. Finally, we discuss whether TMAO can serve as a biomarker of CRS, with the aim of providing new strategies for the detection, prognostic, and treatment evaluation of CRS.
Collapse
Affiliation(s)
- Jialun Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peining Zhu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Siyu Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yufei Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Xing
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Büttner P, Werner S, Böttner J, Ossmann S, Schwedhelm E, Thiele H. Systemic Effects of Homoarginine Supplementation on Arginine Metabolizing Enzymes in Rats with Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2023; 24:14782. [PMID: 37834229 PMCID: PMC10572665 DOI: 10.3390/ijms241914782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
A restoration of low homoarginine (hArg) levels in obese ZSF1 rats (O-ZSF1) before (S1-ZSF1) and after (S2-ZSF1) the manifestation of heart failure with preserved ejection fraction (HFpEF) did not affect the worsening of cardiac HFpEF characteristics. Here, potential regulation of key enzymes of arginine metabolism in other organs was analyzed. Arginase 2 (ARG2) was reduced >35% in the kidney and small intestine of hArg-supplemented rats compared to O-ZSF1. Glycine amidinotransferase (GATM) was 29% upregulated in the kidneys of S1-ZSF1. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) levels were reduced >50% in the livers of O-ZSF1 but restored in S2-ZSF1 compared to healthy rats (L-ZSF1). In the skeletal muscle, iNOS was lower in O-ZSF1 and further decreased in S1-ZSF1 and S2-ZSF1 compared to L-ZSF1. iNOS levels were lower in the liver of the S2-ZSF1 group but higher in the kidneys of S1-ZSF1 compared to L-ZSF1. Supplementation with hArg in an in vivo HFpEF model resulted in the inhibition of renal ARG2 and an increase in GATM expression. This supplementation might contribute to the stabilization of intestinal iNOS and ARG2 imbalances, thereby enhancing barrier function. Additionally, it may offer protective effects in skeletal muscle by downregulating iNOS. In the conceptualization of hArg supplementation studies, the current disease progression stage as well as organ-specific enzyme regulation should be considered.
Collapse
Affiliation(s)
- Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Julia Böttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Susann Ossmann
- Department of Cardiac Surgery, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| |
Collapse
|
7
|
Paraskevaidis I, Xanthopoulos A, Tsougos E, Triposkiadis F. Human Gut Microbiota in Heart Failure: Trying to Unmask an Emerging Organ. Biomedicines 2023; 11:2574. [PMID: 37761015 PMCID: PMC10526035 DOI: 10.3390/biomedicines11092574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
There is a bidirectional relationship between the heart and the gut. The gut microbiota, the community of gut micro-organisms themselves, is an excellent gut-homeostasis keeper since it controls the growth of potentially harmful bacteria and protects the microbiota environment. There is evidence suggesting that a diet rich in fatty acids can be metabolized and converted by gut microbiota and hepatic enzymes to trimethyl-amine N-oxide (TMAO), a product that is associated with atherogenesis, platelet dysfunction, thrombotic events, coronary artery disease, stroke, heart failure (HF), and, ultimately, death. HF, by inducing gut ischemia, congestion, and, consequently, gut barrier dysfunction, promotes the intestinal leaking of micro-organisms and their products, facilitating their entrance into circulation and thus stimulating a low-grade inflammation associated with an immune response. Drugs used for HF may alter the gut microbiota, and, conversely, gut microbiota may modify the pharmacokinetic properties of the drugs. The modification of lifestyle based mainly on exercise and a Mediterranean diet, along with the use of pre- or probiotics, may be beneficial for the gut microbiota environment. The potential role of gut microbiota in HF development and progression is the subject of this review.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| |
Collapse
|
8
|
Aziz F, Tripolt NJ, Pferschy PN, Kolesnik E, Mangge H, Curcic P, Hermann M, Meinitzer A, von Lewinski D, Sourij H. Alterations in trimethylamine-N-oxide in response to Empagliflozin therapy: a secondary analysis of the EMMY trial. Cardiovasc Diabetol 2023; 22:184. [PMID: 37475009 PMCID: PMC10357596 DOI: 10.1186/s12933-023-01920-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION The relationship between sodium glucose co-transporter 2 inhibitors (SGLT2i) and trimethylamine N-oxide (TMAO) following acute myocardial infarction (AMI) is not yet explored. METHODS In this secondary analysis of the EMMY trial (ClinicalTrials.gov registration: NCT03087773), changes in serum TMAO levels were investigated in response to 26-week Empagliflozin treatment following an AMI compared to the standard post-MI treatment. Additionally, the association of TMAO changes with clinical risk factors and cardiorenal biomarkers was assessed. RESULTS The mean age of patients (N = 367) was 57 ± 9 years, 82% were males, and 14% had type 2 diabetes. In the Empagliflozin group, the median TMAO value was 2.62 µmol/L (IQR: 1.81) at baseline, 3.74 µmol/L (2.81) at 6 weeks, and 4.20 µmol/L (3.14) at 26 weeks. In the placebo group, the median TMAO value was 2.90 µmol/L (2.17) at baseline, 3.23 µmol/L (1.90) at 6 weeks, and 3.35 µmol/L (2.50) at 26 weeks. The serum TMAO levels increased significantly from baseline to week 6 (coefficient: 0.233; 95% confidence interval 0.149-0.317, p < 0.001) and week 26 (0.320, 0.236-0.405, p < 0.001). The average increase in TMAO levels over time (pinteraction = 0.007) was significantly higher in the Empagliflozin compared to the Placebo group. Age was positively associated with TMAO, whereas eGFR and LVEF were negatively associated with TMAO. CONCLUSIONS Our results are contrary to existing experimental studies that showed the positive impact of SGLT2i on TMAO precursors and cardiovascular events. Therefore, we recommend further research investigating the impact of SGLT2i therapy on acute and long-term changes in TMAO in cardiovascular cohorts.
Collapse
Affiliation(s)
- Faisal Aziz
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Norbert J Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Pero Curcic
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Hermann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria.
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Lupu VV, Adam Raileanu A, Mihai CM, Morariu ID, Lupu A, Starcea IM, Frasinariu OE, Mocanu A, Dragan F, Fotea S. The Implication of the Gut Microbiome in Heart Failure. Cells 2023; 12:1158. [PMID: 37190067 PMCID: PMC10136760 DOI: 10.3390/cells12081158] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Heart failure is a worldwide health problem with important consequences for the overall wellbeing of affected individuals as well as for the healthcare system. Over recent decades, numerous pieces of evidence have demonstrated that the associated gut microbiota represent an important component of human physiology and metabolic homeostasis, and can affect one's state of health or disease directly, or through their derived metabolites. The recent advances in human microbiome studies shed light on the relationship between the gut microbiota and the cardiovascular system, revealing its contribution to the development of heart failure-associated dysbiosis. HF has been linked to gut dysbiosis, low bacterial diversity, intestinal overgrowth of potentially pathogenic bacteria and a decrease in short chain fatty acids-producing bacteria. An increased intestinal permeability allowing microbial translocation and the passage of bacterial-derived metabolites into the bloodstream is associated with HF progression. A more insightful understanding of the interactions between the human gut microbiome, HF and the associated risk factors is mandatory for optimizing therapeutic strategies based on microbiota modulation and offering individualized treatment. The purpose of this review is to summarize the available data regarding the influence of gut bacterial communities and their derived metabolites on HF, in order to obtain a better understanding of this multi-layered complex relationship.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Anca Adam Raileanu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | | | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Iuliana Magdalena Starcea
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Otilia Elena Frasinariu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Adriana Mocanu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (I.M.S.)
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Silvia Fotea
- Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| |
Collapse
|
10
|
Yu W, Jiang Y, Xu H, Zhou Y. The Interaction of Gut Microbiota and Heart Failure with Preserved Ejection Fraction: From Mechanism to Potential Therapies. Biomedicines 2023; 11:biomedicines11020442. [PMID: 36830978 PMCID: PMC9953339 DOI: 10.3390/biomedicines11020442] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a disease for which there is no definite and effective treatment, and the number of patients is more than 50% of heart failure (HF) patients. Gut microbiota (GMB) is a general term for a group of microbiota living in humans' intestinal tracts, which has been proved to be related to cardiovascular diseases, including HFpEF. In HFpEF patients, the composition of GMB is significantly changed, and there has been a tendency toward dysbacteriosis. Metabolites of GMB, such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs) and bile acids (BAs) mediate various pathophysiological mechanisms of HFpEF. GMB is a crucial influential factor in inflammation, which is considered to be one of the main causes of HFpEF. The role of GMB in its important comorbidity-metabolic syndrome-also mediates HFpEF. Moreover, HF would aggravate intestinal barrier impairment and microbial translocation, further promoting the disease progression. In view of these mechanisms, drugs targeting GMB may be one of the effective ways to treat HFpEF. This review focuses on the interaction of GMB and HFpEF and analyzes potential therapies.
Collapse
Affiliation(s)
- Wei Yu
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Yufeng Jiang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Hui Xu
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
- Correspondence: ; Tel./Fax: 86-512-65955057
| |
Collapse
|
11
|
Crisci G, Israr MZ, Cittadini A, Bossone E, Suzuki T, Salzano A. Heart failure and trimethylamine N-oxide: time to transform a 'gut feeling' in a fact? ESC Heart Fail 2023; 10:1-7. [PMID: 36237140 PMCID: PMC9871667 DOI: 10.1002/ehf2.14205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Giulia Crisci
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy.,Italian Clinical Outcome Research and Reporting Program (I-CORRP), Naples, 80131, Italy
| | - Muhammad Zubair Israr
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Groby road, Leicester, LE3 9QP, United Kingdom
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy.,Italian Clinical Outcome Research and Reporting Program (I-CORRP), Naples, 80131, Italy
| | - Eduardo Bossone
- Department of Public Health, Federico II University, Naples, 80138, Italy
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Groby road, Leicester, LE3 9QP, United Kingdom
| | - Andrea Salzano
- IRCCS Synlab SDN, Diagnostic and Nuclear Research Institute, Via E Gianturco 113, Naples, 80143, Italy
| |
Collapse
|
12
|
Zhen J, Zhou Z, He M, Han HX, Lv EH, Wen PB, Liu X, Wang YT, Cai XC, Tian JQ, Zhang MY, Xiao L, Kang XX. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne) 2023; 14:1085041. [PMID: 36824355 PMCID: PMC9941174 DOI: 10.3389/fendo.2023.1085041] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Morbidity and mortality of cardiovascular diseases (CVDs) are exceedingly high worldwide. Researchers have found that the occurrence and development of CVDs are closely related to intestinal microecology. Imbalances in intestinal microecology caused by changes in the composition of the intestinal microbiota will eventually alter intestinal metabolites, thus transforming the host physiological state from healthy mode to pathological mode. Trimethylamine N-oxide (TMAO) is produced from the metabolism of dietary choline and L-carnitine by intestinal microbiota, and many studies have shown that this important product inhibits cholesterol metabolism, induces platelet aggregation and thrombosis, and promotes atherosclerosis. TMAO is directly or indirectly involved in the pathogenesis of CVDs and is an important risk factor affecting the occurrence and even prognosis of CVDs. This review presents the biological and chemical characteristics of TMAO, and the process of TMAO produced by gut microbiota. In particular, the review focuses on summarizing how the increase of gut microbial metabolite TMAO affects CVDs including atherosclerosis, heart failure, hypertension, arrhythmia, coronary artery disease, and other CVD-related diseases. Understanding the mechanism of how increases in TMAO promotes CVDs will potentially facilitate the identification and development of targeted therapy for CVDs.
Collapse
Affiliation(s)
- Jing Zhen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng He
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai-Xiang Han
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - En-Hui Lv
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Ting Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xun-Chao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jia-Qi Tian
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Ying Zhang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Xiao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
- *Correspondence: Xing-Xing Kang, ; Lei Xiao,
| | - Xing-Xing Kang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Xing-Xing Kang, ; Lei Xiao,
| |
Collapse
|
13
|
The heart and gut relationship: a systematic review of the evaluation of the microbiome and trimethylamine-N-oxide (TMAO) in heart failure. Heart Fail Rev 2022; 27:2223-2249. [PMID: 35726110 DOI: 10.1007/s10741-022-10254-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
There is an expanding body of research on the bidirectional relationship of the human gut microbiome and cardiovascular disease, including heart failure (HF). Researchers are examining the microbiome and gut metabolites, primarily trimethylamine-N-oxide (TMAO), to understand clinically observed outcomes. This systematic review explored the current state of the science on the evaluation and testing of the gut biome in persons with HF. Using electronic search methods of Medline, Embase, CINAHL, and Web of Science, until December 2021, we identified 511 HF biome investigations between 2014 and 2021. Of the 30 studies included in the review, six were 16S rRNA and nineteen TMAO, and three both TMAO and 16S rRNA, and two bacterial cultures. A limited range of study designs were represented, the majority involving single cohorts (n = 10) and comparing individuals with HF to controls (n = 15). Patients with HF had less biodiversity in fecal samples compared to controls. TMAO is associated with age, BNP, eGFR, HF severity, and poor outcomes including hospitalizations and mortality. Inconsistent across studies was the ability of TMAO to predict HF development, the independent prognostic value of TMAO when controlling for renal indices, and the relationship of TMAO to LVEF and CRP. Gut microbiome dysbiosis is associated with HF diagnosis, disease severity, and prognostication related to hospitalizations and mortality. Gut microbiome research in patients with HF is developing. Further longitudinal and multi-centered studies are required to inform interventions to promote clinical decision-making and improved patient outcomes.
Collapse
|
14
|
Alam MJ, Puppala V, Uppulapu SK, Das B, Banerjee SK. Human microbiome and cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:231-279. [DOI: 10.1016/bs.pmbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|