1
|
Khairallah M, Abroug N, Smit D, Chee SP, Nabi W, Yeh S, Smith JR, Ksiaa I, Cunningham E. Systemic and Ocular Manifestations of Arboviral Infections: A Review. Ocul Immunol Inflamm 2024; 32:2190-2208. [PMID: 38441549 DOI: 10.1080/09273948.2024.2320724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE To provide an overview of pre-selected emerging arboviruses (arthropod-borne viruses) that cause ocular inflammation in humans. METHODS A comprehensive review of the literature published between 1997 and 2023 was conducted in PubMed database. We describe current insights into epidemiology, systemic and ocular manifestations, diagnosis, treatment, and prognosis of arboviral diseases including West Nile fever, Dengue fever, Chikungunya, Rift Valley fever, Zika, and Yellow fever. RESULTS Arboviruses refer to a group of ribonucleic acid viruses transmitted to humans by the bite of hematophagous arthropods, mainly mosquitoes. They mostly circulate in tropical and subtropical zones and pose important public health challenges worldwide because of rising incidence, expanding geographic range, and occurrence of prominent outbreaks as a result of climate change, travel, and globalization. The clinical signs associated with infection from these arboviruses are often inapparent, mild, or non-specific, but they may include serious, potentially disabling or life-threatening complications. A wide spectrum of ophthalmic manifestations has been described including conjunctival involvement, anterior uveitis, intermediate uveitis, various forms of posterior uveitis, maculopathy, optic neuropathy, and other neuro-ophthalmic manifestations. Diagnosis of arboviral diseases is confirmed with either real time polymerase chain reaction or serology. Management involves supportive care as there are currently no specific antiviral drug options. Corticosteroids are often used for the treatment of associated ocular inflammation. Most patients have a good visual prognosis, but there may be permanent visual impairment due to ocular structural complications in some. Community-based integrated mosquito management programs and personal protection measures against mosquito bites are the best ways to prevent human infection and disease. CONCLUSION Emerging arboviral diseases should be considered in the differential diagnosis of ocular inflammatory conditions in patients living in or returning from endemic regions. Early clinical consideration followed by confirmatory testing can limit or prevent unnecessary treatments for non-arboviral causes of ocular inflammation. Prevention of these infections is crucial.
Collapse
Affiliation(s)
- Moncef Khairallah
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Nesrine Abroug
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Derrick Smit
- Division of Ophthalmology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Soon-Phaik Chee
- Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Eye & Retina Surgeons, Singapore, Singapore
| | - Wijden Nabi
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Steven Yeh
- Department of Ophthalmology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Imen Ksiaa
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Emmett Cunningham
- The Department of Ophthalmology, California Pacific Medical Center, San Francisco, California, USA
- The Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- The Francis I. Proctor Foundation, UCSF School of Medicine, San Francisco, California, USA
| |
Collapse
|
2
|
Mahendradas P, Acharya I, Rana V, Bansal R, Ben Amor H, Khairallah M. Optical Coherence Tomography and Optical Coherence Tomography Angiography in Neglected Diseases. Ocul Immunol Inflamm 2024; 32:1427-1434. [PMID: 37205786 DOI: 10.1080/09273948.2023.2211161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/08/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
A group of self-limiting and frequently neglected diseases exist in the literature like Rickettsial disease, Malaria, Dengue fever, Chikungunya, West Nile virus infection, Rift Valley fever, Bartonellosis, or Lyme disease which are poorly understood due to lack of proper diagnostic testing. Currently, multimodal imaging has become a critical modality in the diagnosis and management of ocular diseases. Optical coherence tomography (OCT) is one such remarkable imaging modality in the field of ophthalmology providing high-resolution, cross-sectional images of the retina and choroid with the recent advances such as enhanced depth imaging and swept source OCT. Additionally, OCT angiography (OCTA) has further revolutionised dynamic imaging of retinal and choroidal vasculature non-invasively. This review article highlights the OCT and OCTA biomarkers in the diagnosis and prognosis of the aforementioned neglected diseases.
Collapse
Affiliation(s)
| | - Isha Acharya
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bengaluru, India
| | - Vipin Rana
- Department of Vitreo-Retina, Advanced Eye Centre, PGIMER, Chandigarh, India
| | - Reema Bansal
- Department of Vitreo-Retina, Advanced Eye Centre, PGIMER, Chandigarh, India
| | - Hager Ben Amor
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
- Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Moncef Khairallah
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
- Faculty of Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
3
|
Waisberg E, Ong J, Lee AG. El Niño and eye health: ophthalmic manifestations of changes in climate. Eye (Lond) 2024; 38:1233-1234. [PMID: 38177489 PMCID: PMC11076481 DOI: 10.1038/s41433-023-02907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK.
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
4
|
Curran EH, Devine MD, Hartley CD, Huang Y, Conrady CD, Debiec MR, Justin GA, Thomas J, Yeh S. Ophthalmic implications of biological threat agents according to the chemical, biological, radiological, nuclear, and explosives framework. Front Med (Lausanne) 2024; 10:1349571. [PMID: 38293299 PMCID: PMC10824978 DOI: 10.3389/fmed.2023.1349571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
As technology continues to evolve, the possibility for a wide range of dangers to people, organizations, and countries escalate globally. The United States federal government classifies types of threats with the capability of inflicting mass casualties and societal disruption as Chemical, Biological, Radiological, Nuclear, and Energetics/Explosives (CBRNE). Such incidents encompass accidental and intentional events ranging from weapons of mass destruction and bioterrorism to fires or spills involving hazardous or radiologic material. All of these have the capacity to inflict death or severe physical, neurological, and/or sensorial disabilities if injuries are not diagnosed and treated in a timely manner. Ophthalmic injury can provide important insight into understanding and treating patients impacted by CBRNE agents; however, improper ophthalmic management can result in suboptimal patient outcomes. This review specifically addresses the biological agents the Center for Disease Control and Prevention (CDC) deems to have the greatest capacity for bioterrorism. CBRNE biological agents, encompassing pathogens and organic toxins, are further subdivided into categories A, B, and C according to their national security threat level. In our compendium of these biological agents, we address their respective CDC category, systemic and ophthalmic manifestations, route of transmission and personal protective equipment considerations as well as pertinent vaccination and treatment guidelines.
Collapse
Affiliation(s)
- Emma H. Curran
- Creighton University School of Medicine, Omaha, NE, United States
| | - Max D. Devine
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Caleb D. Hartley
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ye Huang
- Department of Ophthalmology, University of Illinois-Chicago, Chicago, IL, United States
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew R. Debiec
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Grant A. Justin
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Joanne Thomas
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Steven Yeh
- Department of Ophthalmology and Visual Sciences, Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, United States
- National Strategic Research Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Ahmad F, Deshmukh N, Webel A, Johnson S, Suleiman A, Mohan RR, Fraunfelder F, Singh PK. Viral infections and pathogenesis of glaucoma: a comprehensive review. Clin Microbiol Rev 2023; 36:e0005723. [PMID: 37966199 PMCID: PMC10870729 DOI: 10.1128/cmr.00057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, caused by the gradual degeneration of retinal ganglion cells and their axons. While glaucoma is primarily considered a genetic and age-related disease, some inflammatory conditions, such as uveitis and viral-induced anterior segment inflammation, cause secondary or uveitic glaucoma. Viruses are predominant ocular pathogens and can impose both acute and chronic pathological insults to the human eye. Many viruses, including herpes simplex virus, varicella-zoster virus, cytomegalovirus, rubella virus, dengue virus, chikungunya virus, Ebola virus, and, more recently, Zika virus (ZIKV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have been associated with sequela of either primary or secondary glaucoma. Epidemiological and clinical studies suggest the association between these viruses and subsequent glaucoma development. Despite this, the ocular manifestation and sequela of viral infections are not well understood. In fact, the association of viruses with glaucoma is considered relatively uncommon in part due to underreporting and/or lack of long-term follow-up studies. In recent years, literature on the pathological spectrum of emerging viral infections, such as ZIKV and SARS-CoV-2, has strengthened this proposition and renewed research activity in this area. Clinical studies from endemic regions as well as laboratory and preclinical investigations demonstrate a strong link between an infectious trigger and development of glaucomatous pathology. In this article, we review the current understanding of the field with a particular focus on viruses and their association with the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nikhil Deshmukh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Aaron Webel
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Sandra Johnson
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Ayman Suleiman
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Rajiv R. Mohan
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Frederick Fraunfelder
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Pawan Kumar Singh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
6
|
Raj A, Kaur H, Mangla L, Madaan S. Coexisting bilateral ciliochoroidal effusion syndrome and an isolated cytotoxic corpus callosum lesion in dengue fever. BMJ Case Rep 2023; 16:e253147. [PMID: 38056924 PMCID: PMC10711856 DOI: 10.1136/bcr-2022-253147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Dengue fever is a major health concern in India. There are various reports in the literature regarding the ocular manifestations of this febrile illness. We are reporting a rare case of a woman in her late 30s who developed coexisting bilateral ciliochoroidal effusion syndrome with an isolated cytotoxic corpus callosum lesion associated with dengue febrile illness. To the best of our knowledge, this is the first case of its kind. It opens the avenues for neurological and radioimaging attention for such cases with bilateral ciliochoroidal effusion syndrome.
Collapse
|
7
|
Adidam Venkata S, Hakobyan N, Lerner DP, Sundar R, Kay A. West Nile Virus (WNV) Infection-Associated Acute Flaccid Paralysis With Ophthalmoplegia. Cureus 2023; 15:e38137. [PMID: 37252502 PMCID: PMC10214308 DOI: 10.7759/cureus.38137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Infection with West Nile virus (WNV) is often characterized by a mild febrile illness, but it can progress to meningitis, encephalitis, flaccid paralysis, and respiratory failure. The neuro-ophthalmological manifestations of this disease are uncommonly discussed. This case describes a 49-year-old undomiciled male who developed WNV flaccid paralysis with ophthalmoplegia. His symptoms began with difficulty in walking and progressed over several days to flaccid paralysis and ophthalmoplegia. Cerebrospinal fluid was positive for WNV immunoglobulin M antibodies and electromyography demonstrated acute denervation in several muscle groups. This is an unusual case of neuro-invasive WNV presenting with flaccid paralysis and ophthalmoplegia.
Collapse
Affiliation(s)
| | - Narek Hakobyan
- Internal Medicine, Brookdale University Hospital Medical Center, New York City, USA
| | - David P Lerner
- Neurology, Brookdale University Hospital Medical Center, New York City, USA
| | - Ramaswami Sundar
- Neurology, Brookdale University Hospital Medical Center, New York City, USA
| | - Arthur Kay
- Neurology, Brookdale University Hospital Medical Center, New York City, USA
| |
Collapse
|
8
|
de Carvalho AC, Dias CSB, Coimbra LD, Rocha RPF, Borin A, Fontoura MA, Carvalho M, Proost P, Nogueira ML, Consonni SR, Sesti-Costa R, Marques RE. Characterization of Systemic Disease Development and Paw Inflammation in a Susceptible Mouse Model of Mayaro Virus Infection and Validation Using X-ray Synchrotron Microtomography. Int J Mol Sci 2023; 24:4799. [PMID: 36902230 PMCID: PMC10003659 DOI: 10.3390/ijms24054799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 03/06/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging arthropod-borne virus endemic in Latin America and the causative agent of arthritogenic febrile disease. Mayaro fever is poorly understood; thus, we established an in vivo model of infection in susceptible type-I interferon receptor-deficient mice (IFNAR-/-) to characterize the disease. MAYV inoculations in the hind paws of IFNAR-/- mice result in visible paw inflammation, evolve into a disseminated infection and involve the activation of immune responses and inflammation. The histological analysis of inflamed paws indicated edema at the dermis and between muscle fibers and ligaments. Paw edema affected multiple tissues and was associated with MAYV replication, the local production of CXCL1 and the recruitment of granulocytes and mononuclear leukocytes to muscle. We developed a semi-automated X-ray microtomography method to visualize both soft tissue and bone, allowing for the quantification of MAYV-induced paw edema in 3D with a voxel size of 69 µm3. The results confirmed early edema onset and spreading through multiple tissues in inoculated paws. In conclusion, we detailed features of MAYV-induced systemic disease and the manifestation of paw edema in a mouse model extensively used to study infection with alphaviruses. The participation of lymphocytes and neutrophils and expression of CXCL1 are key features in both systemic and local manifestations of MAYV disease.
Collapse
Affiliation(s)
- Ana Carolina de Carvalho
- Brazilian National Biosciences Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, R. Giuseppe Máximo Scolfaro, 10000-Bosque das Palmeiras, Campinas 13083-100, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Bertrand Russel, Campinas 13083-970, Brazil
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven (KU Leuven), Herestraat 49 Box 1042, 3000 Leuven, Belgium
| | - Carlos Sato B. Dias
- Institut Für Photonenforschung und Synchrotronstrahlung (IPS), Karlsruher Institut Für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Laís D. Coimbra
- Brazilian National Biosciences Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, R. Giuseppe Máximo Scolfaro, 10000-Bosque das Palmeiras, Campinas 13083-100, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Bertrand Russel, Campinas 13083-970, Brazil
| | - Rebeca P. F. Rocha
- Brazilian National Biosciences Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, R. Giuseppe Máximo Scolfaro, 10000-Bosque das Palmeiras, Campinas 13083-100, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Bertrand Russel, Campinas 13083-970, Brazil
| | - Alexandre Borin
- Brazilian National Biosciences Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, R. Giuseppe Máximo Scolfaro, 10000-Bosque das Palmeiras, Campinas 13083-100, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Bertrand Russel, Campinas 13083-970, Brazil
| | - Marina A. Fontoura
- Brazilian National Biosciences Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, R. Giuseppe Máximo Scolfaro, 10000-Bosque das Palmeiras, Campinas 13083-100, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, s/n, Campinas 13083-970, Brazil
| | - Murilo Carvalho
- Brazilian National Biosciences Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, R. Giuseppe Máximo Scolfaro, 10000-Bosque das Palmeiras, Campinas 13083-100, Brazil
- Brazilian Synchrotron Light Laboratory—LNLS, Brazilian Center for Research in Energy and Materials—CNPEM, R. Giuseppe Máximo Scolfaro, 10000-Bosque das Palmeiras, Campinas 13083-100, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven (KU Leuven), Herestraat 49 Box 1042, 3000 Leuven, Belgium
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), São José do Rio Preto Medical School (FAMERP), Av. Brigadeiro Faria Lima, 5416-Vila São Pedro, São José do Rio Preto 15090-000, Brazil
| | - Sílvio R. Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, s/n, Campinas 13083-970, Brazil
| | - Renata Sesti-Costa
- Brazilian National Biosciences Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, R. Giuseppe Máximo Scolfaro, 10000-Bosque das Palmeiras, Campinas 13083-100, Brazil
| | - Rafael Elias Marques
- Brazilian National Biosciences Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, R. Giuseppe Máximo Scolfaro, 10000-Bosque das Palmeiras, Campinas 13083-100, Brazil
| |
Collapse
|
9
|
Ocular Manifestations of Chikungunya Infection: A Systematic Review. Pathogens 2022; 11:pathogens11040412. [PMID: 35456087 PMCID: PMC9028588 DOI: 10.3390/pathogens11040412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
The Chikungunya virus (CHIKV) can cause long lasting symptoms and manifestations. However, there is little information on which ocular ones are most frequent following infection. We performed a systematic review (registered in the International Prospective Register of Systematic Reviews; no CRD42020171928) to establish the most frequent ocular manifestations of CHIKV infection and their associations with gender and age. Articles published until September 2020 were selected from PubMed, Scielo, Cochrane and Scopus databases. Only studies with CHIKV-infected patients and eye alterations were included. Reviews, descriptive studies, or those not investigating the human ocular manifestations of CHIKV, those with patients with other diseases and infections, abstracts and studies without relevant data were excluded. Twenty-five studies were selected for inclusion. Their risk of bias was evaluated by a modified Newcastle-Ottawa scale. The most frequent ocular symptoms of CHIKV infection included ocular pain, inflammation and reduced visual acuity, whilst conjunctivitis and optic neuritis were the most common manifestations of the disease. These occurred mostly in individuals of 42 ± 9.5 years of age and woman. The few available reports on CHIKV-induced eye manifestations highlight the need for further research in the field to gather more substantial evidence linking CHIKV infection, the eye and age/gender. Nonetheless, the data emphasizes that ocular alterations are meaningful occurrences of CHIKV infection which can substantially affect quality of life.
Collapse
|
10
|
Katta M, Sandanalakshmi R. Simultaneous tropical disease identification with PZT-5H piezoelectric material including molecular mass biosensor microcantilever collection. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Norbury AJ, Calvert JK, Al-Shujairi WH, Cabezas-Falcon S, Tang V, Ong LC, Alonso SL, Smith JR, Carr JM. Dengue virus infects the mouse eye following systemic or intracranial infection and induces inflammatory responses. J Gen Virol 2020; 101:79-85. [PMID: 31774391 DOI: 10.1099/jgv.0.001354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dengue virus (DENV) infection is associated with clinical ocular presentations and here DENV infection of the eye was assessed in mice. In an AG129 mouse model of antibody-dependent enhancement of DENV infection, DENV RNA was detected in the eye and vascular changes were present in the retinae. Intraocular CD8 and IFN-γ mRNA were increased in mice born to DENV-naïve, but not DENV-immune mothers, while TNF-α mRNA was induced and significantly higher in mice born to DENV-immune than DENV-naïve mothers. DENV RNA was detected in the eye following intracranial DENV infection and CD8 mRNA but not IFN-γ nor TNF-α were induced. In all models, viperin was increased following DENV infection. Thus, DENV in the circulation or the brain can infect the eye and stimulate innate immune responses, with induction of viperin as one response that consistently occurs in multiple DENV eye-infection models in both an IFN-dependent and independent manner.
Collapse
Affiliation(s)
- Aidan J Norbury
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Julie K Calvert
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Wisam H Al-Shujairi
- Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Hilla 51002, Iraq.,Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Sheila Cabezas-Falcon
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Victoria Tang
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Li Ching Ong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Sylvie L Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Justine R Smith
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Jillian M Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| |
Collapse
|
12
|
Javelle E, Lesueur A, Pommier de Santi V, de Laval F, Lefebvre T, Holweck G, Durand GA, Leparc-Goffart I, Texier G, Simon F. The challenging management of Rift Valley Fever in humans: literature review of the clinical disease and algorithm proposal. Ann Clin Microbiol Antimicrob 2020; 19:4. [PMID: 31969141 PMCID: PMC6977312 DOI: 10.1186/s12941-020-0346-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/12/2020] [Indexed: 01/01/2023] Open
Abstract
Rift Valley Fever (RVF) is an emerging zoonotic arbovirus with a complex cycle of transmission that makes difficult the prediction of its expansion. Recent outbreaks outside Africa have led to rediscover the human disease but it remains poorly known. The wide spectrum of acute and delayed manifestations with potential unfavorable outcome much complicate the management of suspected cases and prediction of morbidity and mortality during an outbreak. We reviewed literature data on bio-clinical characteristics and treatments of RVF human illness. We identified gaps in the field and provided a practical algorithm to assist clinicians in the cases assessment, determination of setting of care and prolonged follow-up.
Collapse
Affiliation(s)
- Emilie Javelle
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France. .,IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.
| | - Alexandre Lesueur
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France
| | - Vincent Pommier de Santi
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.,French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France
| | - Franck de Laval
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France.,INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Aix Marseille Univ, Marseille, France
| | - Thibault Lefebvre
- French Military Health Service, RSMA Medical Unit, Paris, Mayotte, France
| | - Guillaume Holweck
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France
| | - Guillaume André Durand
- French Armed Forces Biomedical Research Institute (IRBA)-CNR des arbovirus-IHU Méditerranée Infection, Marseille, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| | - Isabelle Leparc-Goffart
- French Armed Forces Biomedical Research Institute (IRBA)-CNR des arbovirus-IHU Méditerranée Infection, Marseille, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| | - Gaëtan Texier
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.,French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France
| | - Fabrice Simon
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW There are an increasing number of publications related to dengue ophthalmic manifestations and multimodality imaging related to dengue. This review summarizes the current literature, describe ocular manifestations, current using of ocular imaging/investigations, and management of ocular dengue. RECENT FINDINGS Ocular manifestations of dengue can be present in many stages of dengue fever including after the resolution of systemic disease. Most cases of ocular dengue will exhibit an improvement in vision spontaneously over time. Multimodal imaging such as optical coherence tomography, optical coherence tomography angiography, near-infrared imaging, and microperimetry plays an important role in the diagnosis, follow-up, quantitative measure, and help to understand the disease progression. SUMMARY Dengue fever can lead to a variety of ocular manifestations. The mechanisms underlying dengue-related ocular complications remain unclear. Immune-mediated mechanisms and direct viral invasion are thought to play an important role. Ophthalmologists should carefully assess patients with dengue-related ophthalmic disease because some patients may have poor visual acuity and exhibit refractoriness to treatment. Treatment with systemic corticosteroids may benefit those patients with poor presenting visual acuity, progressive ocular symptoms, and lesions involving the optic nerve and/or threatening the macula.
Collapse
|