1
|
Sass G, Kethineni S, Stevens DA. Anti-Fungal ( Aspergillus fumigatus) Activity of Pseudomonas aeruginosa in Cystic Fibrosis Synthetic Sputum. Pathogens 2024; 13:875. [PMID: 39452746 PMCID: PMC11510391 DOI: 10.3390/pathogens13100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Aspergillus fumigatus (Af) and Pseudomonas aeruginosa (Pa) are pathogens inhabiting the lungs of persons with cystic fibrosis (CF), or immune-compromised patients, causing or aggravating disease. We previously investigated their microbial interaction as well as susceptibility to anti-fungal drugs using RPMI medium (contains undetectable iron concentrations), as is standard for susceptibility testing. Here we investigated microbial interaction in synthetic sputum medium (SSPM), a complex mixture designed to mimic the milieu in CF lungs. SSPM contains Fe2+. Pa laboratory strain PA14 or PA14 siderophore mutant planktonic culture filtrate, prepared in RPMI or SSPM, were compared for inhibition of Af biofilm formation. SSPM enhanced bacterial and fungal growth and the production of the Pa molecules pyoverdine, phenazines, and rhamnolipids. Af was more susceptible to these molecules in SSPM (with the exception of pyoverdine). SSPM interfered with fungal susceptibility to pyoverdine. Studies with the mutant helped to reveal that the reduced anti-fungal activity of pyoverdine in SSPM appears to be compensated by higher production of other anti-fungal molecules, e.g., rhamnolipids, phenazines, and PQS, and higher Af sensitivity to these molecules. In summary, SSPM better defines Pa-Af intermicrobial competition in the milieu of CF lungs.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (G.S.); (S.K.)
| | - Satya Kethineni
- California Institute for Medical Research, San Jose, CA 95128, USA; (G.S.); (S.K.)
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (G.S.); (S.K.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Diniz GDFD, Figueiredo JEF, Canuto KM, Cota LV, Souza ASDQ, Simeone MLF, Tinoco SMDS, Ribeiro PRV, Ferreira LVS, Marins MS, de Oliveira-Paiva CA, Dos Santos VL. Chemical and genetic characterization of lipopeptides from Bacillus velezensis and Paenibacillus ottowii with activity against Fusarium verticillioides. Front Microbiol 2024; 15:1443327. [PMID: 39252841 PMCID: PMC11381237 DOI: 10.3389/fmicb.2024.1443327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction The fungus Fusarium verticillioides significantly threatens maize crops in tropical soils. In light of this, biological control has emerged as a promising strategy to reduce fungicide costs and environmental risks. In this study, we aimed to test the antifungal activity of cell-free supernatant (CFS) from three Bacillus velezensis (CT02, IM14, and LIS05) and one Paenibacillus ottowii (LIS04) against F. verticillioides, thereby contributing to the development of effective biocontrol measures. Methods The research employed a comprehensive approach. The antifungal activity of the bacterial strains was tested using cell-free supernatant (CFS) from three Bacillus velezensis (CT02, IM14, and LIS05) and one Paenibacillus ottowii (LIS04). The UPLC-MS evaluated the CFS to identify the main bioactive molecules involved in the inhibitory effect on F. verticillioides. Scanning electron microscopy (SEM) was used to assess the impact of CFS on spores and hyphae, and genome sequencing was conducted to identify the genes involved in biological control. These robust methodologies ensure the reliability and validate our findings. Results The CFS of the four strains demonstrated significant inhibition of fungal growth. The UPLC-MS analysis revealed the presence of lipopeptides with antifungal activity, including surfactin and fengycins A and B expressed by the three strains of Bacillus velezensis and iturin A expressed by strains LIS05 and IM14. For Paenibacillus ottowii, fusaricidins, ABCDE, and five previously unreported lipopeptides were detected. Scanning electron microscopy (SEM) showed that treatments with CFS led to significant distortion and breakage of the F. verticillioides hyphae, in addition to the formation of cavities in the membrane. Genome mining confirmed the presence of genes coding for the lipopeptides identified by UPLC-MS, including the gene for iturin in CTO2. Genomic sequencing revealed that CT02, IM14, and LIS05 belong to different strains of Bacillus velezensis, and LIS04 belongs to Paenibacillus ottowii, a species recently described. Discussion The four bacterial strains, including three novel strains identified as Bacillus velezensis and one as the recently described species Paenibacillus ottowii, demonstrate significant potential as biocontrol agents for managing fungal disease. This finding underscores the novelty and potential impact of our research.
Collapse
Affiliation(s)
| | | | - Kirley Marques Canuto
- Multiuser Laboratory of Chemistry of Natural Products (LMQPN), Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | - Luciano Viana Cota
- Phytopathology Laboratory, Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil
| | - Ana Sheila de Queiroz Souza
- Multiuser Laboratory of Chemistry of Natural Products (LMQPN), Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | | | - Sylvia Morais de Sousa Tinoco
- Molecular Biology Laboratory, Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil
- Federal University of São João del-Rei, São João del Rei, MG, Brazil
| | | | | | - Mikaely Sousa Marins
- Department of Agricultural Microbiology, Federal University of Lavras, Lavras, MG, Brazil
| | | | - Vera Lúcia Dos Santos
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Dolan SK, Duong AT, Whiteley M. Convergent evolution in toxin detection and resistance provides evidence for conserved bacterial-fungal interactions. Proc Natl Acad Sci U S A 2024; 121:e2304382121. [PMID: 39088389 PMCID: PMC11317636 DOI: 10.1073/pnas.2304382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
Microbes rarely exist in isolation and instead form complex polymicrobial communities. As a result, microbes have developed intricate offensive and defensive strategies that enhance their fitness in these complex communities. Thus, identifying and understanding the molecular mechanisms controlling polymicrobial interactions is critical for understanding the function of microbial communities. In this study, we show that the gram-negative opportunistic human pathogen Pseudomonas aeruginosa, which frequently causes infection alongside a plethora of other microbes including fungi, encodes a genetic network which can detect and defend against gliotoxin, a potent, disulfide-containing antimicrobial produced by the ubiquitous filamentous fungus Aspergillus fumigatus. We show that gliotoxin exposure disrupts P. aeruginosa zinc homeostasis, leading to transcriptional activation of a gene encoding a previously uncharacterized dithiol oxidase (herein named as DnoP), which detoxifies gliotoxin and structurally related toxins. Despite sharing little homology to the A. fumigatus gliotoxin resistance protein (GliT), the enzymatic mechanism of DnoP from P. aeruginosa appears to be identical that used by A. fumigatus. Thus, DnoP and its transcriptional induction by low zinc represent a rare example of both convergent evolution of toxin defense and environmental cue sensing across kingdoms. Collectively, these data provide compelling evidence that P. aeruginosa has evolved to survive exposure to an A. fumigatus disulfide-containing toxin in the natural environment.
Collapse
Affiliation(s)
- Stephen K. Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC29634
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| | - Ashley T. Duong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| |
Collapse
|
4
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
5
|
Veras FF, Stincone P, Welke JE, Ritter AC, Siqueira FM, Varela APM, Mayer FQ, Brandelli A. Genome analysis of Pseudomonas strain 4B with broad antagonistic activity against toxigenic fungi. Braz J Microbiol 2024; 55:269-280. [PMID: 38228937 PMCID: PMC10920548 DOI: 10.1007/s42770-024-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Pseudomonas sp. 4B isolated from the effluent pond of a bovine abattoir was investigated as antifungal against toxigenic fungi. The complete genome of Pseudomonas 4B was sequenced using the Illumina MiSeq platform. Phylogenetic analysis and genome comparisons indicated that the strain belongs to the Pseudomonas aeruginosa group. In silico investigation revealed gene clusters associated with the biosynthesis of several antifungals, including pyocyanin, rhizomide, thanamycin, and pyochelin. This bacterium was investigated through antifungal assays, showing an inhibitory effect against all toxigenic fungi tested. Bacterial cells reduced the diameter of fungal colonies, colony growth rate, and sporulation of each indicator fungi in 10-day simultaneous growing tests. The co-incubation of bacterial suspension and fungal spores in yeast extract-sucrose broth for 48 h resulted in reduced spore germination. During simultaneous growth, decreased production of aflatoxin B1 and ochratoxin A by Aspergillus flavus and Aspergillus carbonarius, respectively, was observed. Genome analysis and in vitro studies showed the ability of P. aeruginosa 4B to reduce fungal growth parameters and mycotoxin levels, indicating the potential of this bacterium to control toxigenic fungi. The broad antifungal activity of this strain may represent a sustainable alternative for the exploration and subsequent use of its possible metabolites in order to control mycotoxin-producing fungi.
Collapse
Affiliation(s)
- Flávio Fonseca Veras
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Paolo Stincone
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Carolina Ritter
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Franciele Maboni Siqueira
- Laboratório de Bacteriologia Veterinária, Departamento de Patologia Clínica Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | | | - Fabiana Quoos Mayer
- Departamento de Biologia Molecular E Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Adriano Brandelli
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
6
|
Juříková T, Mácha H, Lupjanová V, Pluháček T, Marešová H, Papoušková B, Luptáková D, Patil RH, Benada O, Grulich M, Palyzová A. The Deciphering of Growth-Dependent Strategies for Quorum-Sensing Networks in Pseudomonas aeruginosa. Microorganisms 2023; 11:2329. [PMID: 37764173 PMCID: PMC10534576 DOI: 10.3390/microorganisms11092329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudomonas aeruginosa is recognized as a significant cause of morbidity and mortality among nosocomial pathogens. In respiratory infections, P. aeruginosa acts not only as a single player but also collaborates with the opportunistic fungal pathogen Aspergillus fumigatus. This study introduced a QS molecule portfolio as a potential new biomarker that affects the secretion of virulence factors and biofilm formation. The quantitative levels of QS molecules, including 3-o-C12-HSL, 3-o-C8-HSL, C4-HSL, C6-HSL, HHQ, PQS, and PYO, measured using mass spectrometry in a monoculture, indicated metabolic changes during the transition from planktonic to sessile cells. In the co-cultures with A. fumigatus, the profile of abundant QS molecules was reduced to 3-o-C12-HSL, C4-HSL, PQS, and PYO. A decrease in C4-HSL by 50% to 170.6 ± 11.8 ng/mL and an increase 3-o-C12-HSL by 30% up to 784.4 ± 0.6 ng/mL were detected at the stage of the coverage of the hyphae with bacteria. Using scanning electron microscopy, we showed the morphological stages of the P. aeruginosa biofilm, such as cell aggregates, maturated biofilm, and cell dispersion. qPCR quantification of the genome equivalents of both microorganisms suggested that they exhibited an interplay strategy rather than antagonism. This is the first study demonstrating the quantitative growth-dependent appearance of QS molecule secretion in a monoculture of P. aeruginosa and a co-culture with A. fumigatus.
Collapse
Affiliation(s)
- Tereza Juříková
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Hynek Mácha
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Vanda Lupjanová
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Helena Marešová
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Barbora Papoušková
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Rutuja H. Patil
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Michal Grulich
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| |
Collapse
|
7
|
Debourgogne A, Monpierre L, Sy KA, Valsecchi I, Decousser JW, Botterel F. Interactions between Bacteria and Aspergillus fumigatus in Airways: From the Mycobiome to Molecular Interactions. J Fungi (Basel) 2023; 9:900. [PMID: 37755008 PMCID: PMC10533028 DOI: 10.3390/jof9090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Interactions between different kingdoms of microorganisms in humans are common but not well described. A recent analysis of the mycobiome has described the presence of different fungi and their positive and/or negative interactions with bacteria and other fungi. In chronic respiratory diseases, these different microorganisms form mixed biofilms to live inside. The interactions between Gram-negative bacteria and filamentous fungi in these biofilms have attracted more attention recently. In this review, we analyse the microbiota of the respiratory tract of healthy individuals and patients with chronic respiratory disease. Additionally, we describe the regulatory mechanisms that rule the mixed biofilms of Aspergillus fumigatus and Gram-negative bacteria and the effects of this biofilm on clinical presentations.
Collapse
Affiliation(s)
- Anne Debourgogne
- UR 7300, Stress Immunité Pathogène, Université de Lorraine, 54000 Vandoeuvre les Nancy, France;
| | - Lorra Monpierre
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), 94000 Créteil, France;
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| | - Khadeeja Adam Sy
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
- Institut National de la Santé et de la Recherche Médicale (Inserm) U955, 94010 Créteil, France
| | - Isabel Valsecchi
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| | - Jean-Winoc Decousser
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
- Department of Infection Control, University Hospital Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94000 Créteil, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), 94000 Créteil, France;
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| |
Collapse
|
8
|
Mello TP, Barcellos IC, Lackner M, Branquinha MH, Santos ALS. Scedosporium/Lomentospora Species Induce the Production of Siderophores by Pseudomonas aeruginosa in a Cystic Fibrosis Mimic Environment. J Fungi (Basel) 2023; 9:jof9050502. [PMID: 37233213 DOI: 10.3390/jof9050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Over the last years, the interkingdom microbial interactions concerning bacteria and fungi cohabiting and/or responsible for human pathologies have been investigated. In this context, the Gram-negative bacterium Pseudomonas aeruginosa and fungal species belonging to the Scedosporium/Lomentospora genera are widespread, multidrug-resistant, emergent, opportunistic pathogens that are usually co-isolated in patients with cystic fibrosis. The available literature reports that P. aeruginosa can inhibit the in vitro growth of Scedosporium/Lomentospora species; however, the complex mechanisms behind this phenomenon are mostly unknown. In the present work, we have explored the inhibitory effect of bioactive molecules secreted by P. aeruginosa (3 mucoid and 3 non-mucoid strains) on S. apiospermum (n = 6 strains), S. minutisporum (n = 3), S. aurantiacum (n = 6) and L. prolificans (n = 6) under cultivation in a cystic fibrosis mimic environment. It is relevant to highlight that all bacterial and fungal strains used in the present study were recovered from cystic fibrosis patients. The growth of Scedosporium/Lomentospora species was negatively affected by the direct interaction with either mucoid or non-mucoid strains of P. aeruginosa. Moreover, the fungal growth was inhibited by the conditioned supernatants obtained from bacteria-fungi co-cultivations and by the conditioned supernatants from the bacterial pure cultures. The interaction with fungal cells induced the production of pyoverdine and pyochelin, 2 well-known siderophores, in 4/6 clinical strains of P. aeruginosa. The inhibitory effects of these four bacterial strains and their secreted molecules on fungal cells were partially reduced with the addition of 5-flucytosine, a classical repressor of pyoverdine and pyochelin production. In sum, our results demonstrated that distinct clinical strains of P. aeruginosa can behave differently towards Scedosporium/Lomentospora species, even when isolated from the same cystic fibrosis patient. Additionally, the production of siderophores by P. aeruginosa was induced when co-cultivated with Scedosporium/Lomentospora species, indicating competition for iron and deprivation of this essential nutrient, leading to fungal growth inhibition.
Collapse
Affiliation(s)
- Thaís P Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Iuri C Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Maracanã, Rio de Janeiro 20270-021, RJ, Brazil
| | - Michaela Lackner
- Institute for Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
9
|
Secondary Metabolites Produced during Aspergillus fumigatus and Pseudomonas aeruginosa Biofilm Formation. mBio 2022; 13:e0185022. [PMID: 35856657 PMCID: PMC9426470 DOI: 10.1128/mbio.01850-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cystic fibrosis (CF), mucus plaques are formed in the patient's lungs, creating a hypoxic condition and a propitious environment for colonization and persistence of many microorganisms. There is clinical evidence showing that Aspergillus fumigatus can cocolonize CF patients with Pseudomonas aeruginosa, which has been associated with lung function decline. P. aeruginosa produces several compounds with inhibitory and antibiofilm effects against A. fumigatus in vitro; however, little is known about the fungal compounds produced in counterattack. Here, we annotated fungal and bacterial secondary metabolites (SM) produced in mixed biofilms under normoxia and hypoxia conditions. We detected nine SM produced by P. aeruginosa. Phenazines and different analogs of pyoverdin were the main compounds produced by P. aeruginosa, and their secretion levels were increased by the fungal presence. The roles of the two operons responsible for phenazine production (phzA1 and phzA2) were also investigated, and mutants lacking one of those operons were able to produce partial sets of phenazines. We detected a total of 20 SM secreted by A. fumigatus either in monoculture or in coculture with P. aeruginosa. All these compounds were secreted during biofilm formation in either normoxia or hypoxia. However, only eight compounds (demethoxyfumitremorgin C, fumitremorgin, ferrichrome, ferricrocin, triacetylfusigen, gliotoxin, gliotoxin E, and pyripyropene A) were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa under normoxia and hypoxia conditions. Overall, we showed how diverse SM secretion is during A. fumigatus and P. aeruginosa mixed culture and how this can affect biofilm formation in normoxia and hypoxia. IMPORTANCE The interaction between Pseudomonas aeruginosa and Aspergillus fumigatus has been well characterized in vitro. In this scenario, the bacterium exerts a strong inhibitory effect against the fungus. However, little is known about the metabolites produced by the fungus to counterattack the bacteria. Our work aimed to annotate secondary metabolites (SM) secreted during coculture between P. aeruginosa and A. fumigatus during biofilm formation in both normoxia and hypoxia. The bacterium produces several different types of phenazines and pyoverdins in response to presence of the fungus. In contrast, we were able to annotate 29 metabolites produced during A. fumigatus biofilm formation, but only 8 compounds were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa upon either normoxia or hypoxia. In conclusion, we detected many SM secreted during A. fumigatus and P. aeruginosa biofilm formation. This analysis provides several opportunities to understand the interactions between these two species.
Collapse
|
10
|
Blomquist A, Inghammar M, Al Shakirchi M, Ericson P, Krantz C, Svedberg M, Lindblad A, Påhlman LI. Persistent Aspergillus fumigatus infection in cystic fibrosis: impact on lung function and role of treatment of asymptomatic colonization-a registry-based case-control study. BMC Pulm Med 2022; 22:263. [PMID: 35790954 PMCID: PMC9258124 DOI: 10.1186/s12890-022-02054-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aspergillus fumigatus is the most common filamentous fungus isolated from the airways of people with cystic fibrosis (CF). The aim of this study was to investigate how chronic A. fumigatus colonization affects lung function in people with CF, to identify risk factors for colonization, and to evaluate antifungal treatment of asymptomatic Aspergillus colonization.
Methods Data from 2014–2018 was collected from the Swedish CF registry and medical records. Baseline data before the start of A. fumigatus colonization was compared with the two succeeding years to evaluate how colonization and treatment affected lung function and other clinical aspects.
Results A total of 437 patients were included, of which 64 (14.6%) became colonized with A. fumigatus during the study period. Inhaled antibiotics was associated with A. fumigatus colonization (adjusted OR 3.1, 95% CI 1.6–5.9, p < 0.05). Fungal colonization was not associated with a more rapid lung function decline or increased use of IV-antibiotics compared to the non-colonized group, but patients with A. fumigatus had more hospital days, a higher increase of total IgE, and higher eosinophil counts. In the Aspergillus group, 42 patients were considered to be asymptomatic. Of these, 19 patients received antifungal treatment. Over the follow up period, the treated group had a more pronounced decrease in percent predicted Forced Expiratory Volume in one second (ppFEV1) compared to untreated patients (− 8.7 vs − 1.4 percentage points, p < 0.05). Conclusion Inhaled antibiotics was associated with A. fumigatus colonization, but no association was found between persistent A. fumigatus and subsequent lung function decline. No obvious benefits of treating asymptomatic A. fumigatus colonization were demonstrated.
Collapse
Affiliation(s)
- Axel Blomquist
- Department of Clinical Sciences Lund, Section for Infection Medicine, Skåne University Hospital, Lund University, BMC B14, 221 84, Lund, Sweden
| | - Malin Inghammar
- Department of Clinical Sciences Lund, Section for Infection Medicine, Skåne University Hospital, Lund University, BMC B14, 221 84, Lund, Sweden
| | - Mahasin Al Shakirchi
- Stockholm Cystic Fibrosis Centre, Karolinska University Hospital Huddinge, Department of Clinical Science, Intervention and Technology, Division of Paediatrics, Karolinska Institute, Stockholm, Sweden
| | - Petrea Ericson
- Department of Respiratory Medicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Christina Krantz
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Marcus Svedberg
- Department of Paediatrics, Institute of Clinical Science at The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindblad
- Department of Paediatrics, Institute of Clinical Science at The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisa I Påhlman
- Department of Clinical Sciences Lund, Section for Infection Medicine, Skåne University Hospital, Lund University, BMC B14, 221 84, Lund, Sweden. .,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Sass G, Marsh JJ, Shrestha P, Sabino R, Stevens DA. Synergy Between Pseudomonas aeruginosa Filtrates And Voriconazole Against Aspergillus fumigatus Biofilm Is Less for Mucoid Isolates From Persons With Cystic Fibrosis. Front Cell Infect Microbiol 2022; 12:817315. [PMID: 35493738 PMCID: PMC9047052 DOI: 10.3389/fcimb.2022.817315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Persons with cystic fibrosis (CF) frequently suffer from Pseudomonas aeruginosa and Aspergillus fumigatus co-infections. There is evidence that co-infections with these interacting pathogens cause airway inflammation and aggravate deterioration of lung function. We recently showed that P. aeruginosa laboratory isolates synergistically interact with the anti-fungal azole voriconazole (VCZ), inhibiting biofilm metabolism of several A. fumigatus laboratory strains. Interaction was usually mediated via pyoverdine, but also via pyocyanin or pyochelin. Here we used planktonic filtrates of 7 mucoid and 9 non-mucoid P. aeruginosa isolates from CF patients, as well as 8 isolates without CF origin, and found that all of these isolates interacted with VCZ synergistically at their IC50 as well as higher dilutions. CF mucoid isolates showed the weakest interactive effects. Four non-mucoid P. aeruginosa CF isolates produced no or very low levels of pyoverdine and did not reach an IC50 against forming A. fumigatus biofilm; interaction with VCZ still was synergistic. A VCZ-resistant A. fumigatus strain showed the same level of susceptibility for P. aeruginosa anti-fungal activity as a VCZ-susceptible reference strain. Filtrates of most Pseudomonas isolates were able to increase anti-fungal activity of VCZ on a susceptible A. fumigatus strain. This was also possible for the VCZ-resistant strain. In summary these data show that clinical P. aeruginosa isolates, at varying degrees, synergistically interact with VCZ, and that pyoverdine is not the only molecule responsible. These data also strengthen the idea that during co-infections of A. fumigatus and P. aeruginosa lower concentrations of VCZ might be sufficient to control fungal growth.
Collapse
Affiliation(s)
- Gabriele Sass
- Infectious Disease Research Laboratory, California Institute for Medical Research, San Jose, CA, United States
- *Correspondence: Gabriele Sass,
| | - Julianne J. Marsh
- Infectious Disease Research Laboratory, California Institute for Medical Research, San Jose, CA, United States
| | - Pallabi Shrestha
- Infectious Disease Research Laboratory, California Institute for Medical Research, San Jose, CA, United States
| | - Raquel Sabino
- Department of Infectious Diseases, National Institute of Health, ‘Dr. Ricardo Jorge’, Lisbon, Portugal
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - David A. Stevens
- Infectious Disease Research Laboratory, California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Sass G, Nazik H, Chatterjee P, Shrestha P, Groleau MC, Déziel E, Stevens DA. Altered Pseudomonas Strategies to Inhibit Surface Aspergillus Colonies. Front Cell Infect Microbiol 2021; 11:734296. [PMID: 34746024 PMCID: PMC8570168 DOI: 10.3389/fcimb.2021.734296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus infections frequently co-localize in lungs of immunocompromised patients and individuals with cystic fibrosis (CF). The antifungal activity of P. aeruginosa has been described for its filtrates. Pyoverdine and pyocyanin are the principal antifungal P. aeruginosa molecules active against A. fumigatus biofilm metabolism present in iron-limited or iron-replete planktonic P. aeruginosa culture filtrates, respectively. Using various P. aeruginosa laboratory wild-type strains (PA14, PAO1, PAK), we found antifungal activity against Aspergillus colonies on agar. Comparing 36 PA14 and 7 PAO1 mutants, we found that mutants lacking both major siderophores, pyoverdine and pyochelin, display higher antifungal activity on agar than their wild types, while quorum sensing mutants lost antifungal activity. Addition of ferric iron, but not calcium or magnesium, reduced the antifungal effects of P. aeruginosa on agar, whereas iron-poor agar enhanced antifungal effects. Antifungal activity on agar was mediated by PQS and HHQ, via MvfR. Among the MvfR downstream factors, rhamnolipids and elastase were produced in larger quantities by pyoverdine–pyochelin double mutants and showed antifungal activity on agar. In summary, antifungal factors produced by P. aeruginosa on agar differ from those produced by bacteria grown in liquid cultures, are dependent on quorum sensing, and are downregulated by the availability of ferric iron. Rhamnolipids and elastase seem to be major mediators of Pseudomonas’ antifungal activity on a solid surface.
Collapse
Affiliation(s)
- Gabriele Sass
- Infectious Disease Research Laboratory, San Jose, CA, United States
| | - Hasan Nazik
- Infectious Disease Research Laboratory, San Jose, CA, United States
| | | | - Pallabi Shrestha
- Infectious Disease Research Laboratory, San Jose, CA, United States
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institute National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institute National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - David A Stevens
- Infectious Disease Research Laboratory, San Jose, CA, United States.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Dobiáš R, Škríba A, Pluháček T, Petřík M, Palyzová A, Káňová M, Čubová E, Houšť J, Novák J, Stevens DA, Mitulovič G, Krejčí E, Hubáček P, Havlíček V. Noninvasive Combined Diagnosis and Monitoring of Aspergillus and Pseudomonas Infections: Proof of Concept. J Fungi (Basel) 2021; 7:jof7090730. [PMID: 34575768 PMCID: PMC8471143 DOI: 10.3390/jof7090730] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
In acutely ill patients, particularly in intensive care units or in mixed infections, time to a microbe-specific diagnosis is critical to a successful outcome of therapy. We report the application of evolving technologies involving mass spectrometry to diagnose and monitor a patient’s course. As proof of this concept, we studied five patients and used two rat models of mono-infection and coinfection. We report the noninvasive combined monitoring of Aspergillus fumigatus and Pseudomonas aeruginosa infection. The invasive coinfection was detected by monitoring the fungal triacetylfusarinine C and ferricrocin siderophore levels and the bacterial metabolites pyoverdin E, pyochelin, and 2-heptyl-4-quinolone, studied in the urine, endotracheal aspirate, or breath condensate. The coinfection was monitored by mass spectrometry followed by isotopic data filtering. In the rat infection model, detection indicated 100-fold more siderophores in urine compared to sera, indicating the diagnostic potential of urine sampling. The tools utilized in our studies can now be examined in large clinical series, where we could expect the accuracy and speed of diagnosis to be competitive with conventional methods and provide advantages in unraveling the complexities of mixed infections.
Collapse
Affiliation(s)
- Radim Dobiáš
- Department of Bacteriology and Mycology, Public Health Institute in Ostrava, 702 00 Ostrava, Czech Republic; (R.D.); (E.K.)
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic
| | - Anton Škríba
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.Š.); (T.P.); (A.P.); (J.H.); (J.N.)
| | - Tomáš Pluháček
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.Š.); (T.P.); (A.P.); (J.H.); (J.N.)
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Miloš Petřík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.Š.); (T.P.); (A.P.); (J.H.); (J.N.)
| | - Marcela Káňová
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ostrava, 708 00 Ostrava, Czech Republic;
- Institute of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Eva Čubová
- Department of Internal Medicine, Ostrava City Hospital, 728 80 Ostrava, Czech Republic;
| | - Jiří Houšť
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.Š.); (T.P.); (A.P.); (J.H.); (J.N.)
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Jiří Novák
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.Š.); (T.P.); (A.P.); (J.H.); (J.N.)
| | - David A. Stevens
- Infectious Disease Research Laboratory, California Institute for Medical Research, San Jose, CA 95128, USA;
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 95128, USA
| | - Goran Mitulovič
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University of Vienna, A-1090 Wien, Austria;
| | - Eva Krejčí
- Department of Bacteriology and Mycology, Public Health Institute in Ostrava, 702 00 Ostrava, Czech Republic; (R.D.); (E.K.)
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic
| | - Petr Hubáček
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.Š.); (T.P.); (A.P.); (J.H.); (J.N.)
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
14
|
Wurster S, Sass G, Albert ND, Nazik H, Déziel E, Stevens DA, Kontoyiannis DP. Live imaging and quantitative analysis of Aspergillus fumigatus growth and morphology during inter-microbial interaction with Pseudomonas aeruginosa. Virulence 2021; 11:1329-1336. [PMID: 33017225 PMCID: PMC7549912 DOI: 10.1080/21505594.2020.1827885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (PA) and Aspergillus fumigatus (AF) chronically colonize the airways of patients with cystic fibrosis or chronic immunosuppression and mutually affect each other’s pathogenesis. Here, we evaluated IncuCyte time-lapse imaging and NeuroTrackTM (NT) analysis (Wurster et al., 2019, mBio) as a toolbox to study mycelial expansion and morphogenesis of AF during interaction with PA. Co-incubation of AF with supernatant filtrates of wild-type (WT) PA strains strongly inhibited hyphal growth and branching. Consonant with prior metabolic studies, pyoverdine-deficient PA mutants had significantly attenuated inhibitory capacity. Accordingly, purified PA products pyoverdine and pyocyanin suppressed mycelial expansion of AF in a concentration-dependent way. Using fluorescence-guided tracking of GFP-AF293 mycelia during co-culture with live WT PA cells, we found significant inoculum-dependent mycelial growth inhibition and robust precision of the NT algorithm. Collectively, our experiments position IncuCyte NT as an efficient platform for longitudinal analysis of fungal growth and morphogenesis during bacterial co-infection.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Gabriele Sass
- California Institute for Medical Research , San Jose, CA, USA
| | - Nathaniel D Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Hasan Nazik
- California Institute for Medical Research , San Jose, CA, USA
| | - Eric Déziel
- INRS-Centre Armand-Frappier Santé Biotechnologie , Laval, Quebec, Canada
| | - David A Stevens
- California Institute for Medical Research , San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
15
|
Nazik H, Sass G, Williams P, Déziel E, Stevens DA. Molecular Modifications of the Pseudomonas Quinolone Signal in the Intermicrobial Competition with Aspergillus. J Fungi (Basel) 2021; 7:jof7050343. [PMID: 33925067 PMCID: PMC8146305 DOI: 10.3390/jof7050343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
The Pseudomonas quinolone signal (PQS) is an important quorum-sensing molecule for Pseudomonas aeruginosa that regulates virulence factors, chelates iron, and is an important factor in interactions with eukaryotes, including fungi and mammalian hosts. It was previously shown to inhibit or boost Aspergillus, depending on the milieu iron concentration. We studied several molecular modifications of the PQS molecule, and their effects on Aspergillus biofilm metabolism and growth in vitro, and the effects of iron supplementation. We found that most molecules inhibited Aspergillus at concentrations similar to that of PQS, but with relatively flat dose-responses, and all were less potent than PQS. The inhibition was reversible by iron, suggesting interference with fungal iron metabolism. Stimulation of Aspergillus was not noted. We conclude that the critical Aspergillus-inhibiting moeities of the PQS molecule were partially, but not completely, interfered with by molecular modifications at several sites on the PQS molecule. The mechanism, as with PQS, appears to relate to fungal iron metabolism.
Collapse
Affiliation(s)
- Hasan Nazik
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Gabriele Sass
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC H7V 1B7, Canada;
| | - David A. Stevens
- Infectious Diseases Research Laboratory, California Institute for Medical Research, San Jose, CA 95128, USA; (H.N.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
16
|
Nazik H, Kotta-Loizou I, Sass G, Coutts RHA, Stevens DA. Virus Infection of Aspergillus fumigatus Compromises the Fungus in Intermicrobial Competition. Viruses 2021; 13:v13040686. [PMID: 33923408 PMCID: PMC8073786 DOI: 10.3390/v13040686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Aspergillus and Pseudomonas compete in nature, and are the commonest bacterial and fungal pathogens in some clinical settings, such as the cystic fibrosis lung. Virus infections of fungi occur naturally. Effects on fungal physiology need delineation. A common reference Aspergillus fumigatus strain, long studied in two (of many) laboratories, was found infected with the AfuPmV-1 virus. One isolate was cured of virus, producing a virus-free strain. Virus from the infected strain was purified and used to re-infect three subcultures of the virus-free fungus, producing six fungal strains, otherwise isogenic. They were studied in intermicrobial competition with Pseudomonasaeruginosa. Pseudomonas culture filtrates inhibited forming or preformed Aspergillus biofilm from infected strains to a greater extent, also seen when Pseudomonas volatiles were assayed on Aspergillus. Purified iron-chelating Pseudomonas molecules, known inhibitors of Aspergillus biofilm, reproduced these differences. Iron, a stimulus of Aspergillus, enhanced the virus-free fungus, compared to infected. All infected fungal strains behaved similarly in assays. We show an important consequence of virus infection, a weakening in intermicrobial competition. Viral infection may affect the outcome of bacterial–fungal competition in nature and patients. We suggest that this occurs via alteration in fungal stress responses, the mechanism best delineated here is a result of virus-induced altered Aspergillus iron metabolism.
Collapse
Affiliation(s)
- Hasan Nazik
- California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Gabriele Sass
- California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - David A. Stevens
- California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; (H.N.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 95128, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
17
|
Nazik H, Sass G, Déziel E, Stevens DA. Aspergillus Is Inhibited by Pseudomonas aeruginosa Volatiles. J Fungi (Basel) 2020; 6:jof6030118. [PMID: 32722412 PMCID: PMC7557479 DOI: 10.3390/jof6030118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) compete with each other for nutrients and survival in natural environments, and have been extensively studied because of their intermicrobial interactions in the human microbiome. These are the principal microbes infecting immunocompromised patients and persons with cystic fibrosis, particularly the airways. These intermicrobial studies have largely been conducted in liquid medium or on agar, and thus focus on soluble or diffusible microbial products. Several key inhibitory molecules were defined in such studies. Methods: in the present report, we examine several methodologies which can be conveniently used to study the interaction of microbial volatiles, including capture methods and kinetics. Results: Pa volatiles inhibit Af, and the inhibitory mechanism appears to be the incorporation of the inhibitory molecules into the substrate nourishing the Af, rather than directly onto Af structures. We define by mass spectroscopy some specific volatile Pa products that can inhibit Af. Some of these molecules are selected for interest by the study of gene deletion mutants, producing a few Pa strains that were impaired in inhibition. We presumed the volatiles of these latter strains could be excluded from the search for inhibitors. Conclusion: the Pa inhibition of Af via a gaseous phase could be critical components in their competition, particularly in airways, where more direct contact may not be extensive.
Collapse
Affiliation(s)
- Hasan Nazik
- California Institute for Medical Research, San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Eric Déziel
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval, QC H7V 1B7, Canada;
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (H.N.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|