1
|
Ghazanfari M, Abastabar M, Haghani I, Moazeni M, Hedayati S, Yaalimadad S, Nikoueian Shirvan B, Bongomin F, Hedayati MT. Azole-Containing Agar Plates and Antifungal Susceptibility Testing for the Detection of Azole-Resistant Aspergillus Species in Hospital Environmental Samples. Microb Drug Resist 2023; 29:561-567. [PMID: 37713303 DOI: 10.1089/mdr.2023.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
The indoor environment of hospitals should be considered as an important reservoir of azole resistant Aspergillus species. In this study, we evaluated azole-containing agar plates (ACAPs) and antifungal susceptibility testing (AFST) for the detection of azole-resistant Aspergillus species in hospital environmental samples. Between September 2021 and January 2022, environmental samples (108 instruments and 12 air) were collected from different wards of 4 educational hospitals in Mazandaran province, Iran. All samples were cultured using ACAPs. Recovered Aspergillus isolates were molecularly identified at species level using partial DNA sequencing of beta-tubulin gene. AFST of Aspergillus species was performed using the Clinical and Laboratory Standards Institute M38-A3 guideline. Screening for cyp51A mutations was also done. Overall, 18 (15.0%) isolates of Aspergillus species were recovered from ACAPs, of which Aspergillus tubingensis (50%) and Aspergillus fumigatus (38.9%) were the commonest species. No isolate of Aspergillus species grew on posaconazole (PCZ)-containing agar plates. Among the 18 Aspergillus isolated species from ACAPs, 83.3% were related to samples from instruments. Of the nine isolates of A. tubingensis, 22.2% and 44.4% isolates showed minimum inhibitory concentration (MIC) = 2 μg/mL against voriconazole (VCZ) and itraconazole, respectively; and 44.4% isolates showed MIC = 1 μg/mL against PCZ. Of the seven isolates of A. fumigatus, one (14.3%) was resistant to VCZ. This isolate showed F46Y, G54E, G138C, M172V, M220I, D255E, T289F, G432C, and G448S mutation in cyp51A. Our finding showed the emergence of high MICs in cryptic and non-fumigatus species of Aspergillus such as A. tubingensis and VCZ resistance in A. fumigatus in indoor environment of hospitals.
Collapse
Affiliation(s)
- Mona Ghazanfari
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Moazeni
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shakiba Hedayati
- Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sanaz Yaalimadad
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Bahador Nikoueian Shirvan
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Mohammad T Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Sen P, Gupta L, Vijay M, Vermani Sarin M, Shankar J, Hameed S, Vijayaraghavan P. 4-Allyl-2-methoxyphenol modulates the expression of genes involved in efflux pump, biofilm formation and sterol biosynthesis in azole resistant Aspergillus fumigatus. Front Cell Infect Microbiol 2023; 13:1103957. [PMID: 36816579 PMCID: PMC9929553 DOI: 10.3389/fcimb.2023.1103957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Antifungal therapy for aspergillosis is becoming problematic because of the toxicity of currently available drugs, biofilm formation on host surface, and increasing prevalence of azole resistance in Aspergillus fumigatus. Plants are rich source of bioactive molecules and antimicrobial activity of aromatic bioactive compounds draws attention because of its promising biological properties. The present study elucidated the antibiofilm activity of 4-allyl-2-methoxyphenol (eugenol) against azole-resistant environmental A. fumigatus isolates. Methods Soil samples were collected from agricultural fields across India; azole-resistant A. fumigatus (ARAF) were isolated followed by their molecular identification. Antibiofilm activity of eugenol was calculated via tetrazolium based-MTT assay. The expression of the multidrug efflux pumps genes MDR1, MDR4, transporters of the MFS gene, erg11A gene encoding 14α demethylase, and transcription regulatory genes, MedA, SomA and SrbA, involved in biofilm formation of A. fumigatus were calculated by quantitative real time PCR. Results Out of 89 A. fumigatus isolates, 10 were identified as azole resistant. Eugenol exhibited antibiofilm activity against ARAF isolates, ranging from 312 to 500 µg/mL. Confocal laser scanning microscopy analysis revealed absence of extracellular matrix of ARAF biofilm after eugenol treatment. The gene expression indicated significantly low expression of efflux pumps genes MDR1, MDR4, erg11A and MedA in eugenol treated ARAF isolates when compared with untreated isolates. Conclusions Our results demonstrate that eugenol effects the expression of efflux pump and biofilm associated genes as well as inhibits biofilm formation in azole resistant isolates of A. fumigatus.
Collapse
Affiliation(s)
- Pooja Sen
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Lovely Gupta
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Mukund Vijay
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Maansi Vermani Sarin
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Pooja Vijayaraghavan
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India,*Correspondence: Pooja Vijayaraghavan,
| |
Collapse
|
3
|
Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY, Tan PL. Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:3009. [PMID: 36432738 PMCID: PMC9697101 DOI: 10.3390/plants11223009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Aspergillus species consists of a group of opportunistic fungi that is virulent when the immunity of the host is compromised. Among the various species, Aspergillus fumigatus is the most prevalent species. However, the prevalence of fungal infections caused by non-fumigatus Aspergillus has been increasing. Polyenes, echinocandins and azoles are the three main classes of antifungal agents being used for the treatment of aspergillosis. Nevertheless, the incidence of resistance towards these three classes has been rising over the years among several Aspergillus spp. The side effects associated with these conventional antifungal agents have also limited their usage. This urges the need for the discovery of a safe and effective antifungal agent, which presents a major challenge in medicine today. Plants present a rich source of bioactive molecules which have been proven effective against a wide range of infections and conditions. Therefore, this present review intends to examine the current literature available regarding the efficacy and mechanism of action of plant extracts and their compounds against Aspergillus spp. In addition, novel drug delivery systems of plant extracts against Aspergillus spp. were also included in this review.
Collapse
Affiliation(s)
- Lee Fang Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vi Lien Yap
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Malarvili Selvaraja
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mun Yee Leong
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Puay Luan Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Bader O. Phylogenetic Distribution of csp1 Types in Aspergillus fumigatus and Their Correlates to Azole Antifungal Drug Resistance. Microbiol Spectr 2021; 9:e0121421. [PMID: 34787484 PMCID: PMC8597649 DOI: 10.1128/spectrum.01214-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
In Aspergillus fumigatus, the repetitive region of the csp1 gene is one of the most frequently used loci for intraspecies typing of this human pathogenic mold. Using PCR amplification and Sanger sequencing of only a single marker, csp1 typing is readily available to most laboratories and highly reproducible. Here, I evaluate the usefulness of the csp1 marker for resistance detection and epidemiologic stratification among A. fumigatus isolates. After resolving nomenclature conflicts from published studies and adding novel csp1 types, the number of known types now adds up to 38. Their distribution mostly correlates with A. fumigatus population structure, and they are also meaningful for narrowly defined cases of azole resistance phenotypes. Isolates carrying the pandemic resistance allele TR34/L98H show signs of interclade crossing of strains with t02 or t04A, into the t11 clade. Furthermore, absolute differences in voriconazole MIC values between t02/t04B versus t11 TR34/L98H isolates indicate that the genetic background of resistance mutations may have a pivotal role in cross-resistance phenotypes and, thus, clinical outcome and environmental selection. Despite the general genetic similarity of isolates with identical csp1 types, outcrossing into other clades is also observed. The csp1 type alone, therefore, does not sufficiently discriminate genetic clades to be used as the sole marker in epidemiologic studies. IMPORTANCE Aspergillus fumigatus is a ubiquitously distributed saprophytic mold and a leading cause of invasive aspergillosis in human hosts. Pandemic azole-resistant strains have emerged on a global scale, which are thought to be propagated through use of azole-based fungicides in agriculture. To perform epidemiologic studies, genetic typing of large cohorts is key. Here, I evaluate the usefulness of the frequently used csp1 marker for resistance detection and epidemiologic stratification among A. fumigatus isolates. The phylogenetic distribution of csp1 types mostly correlates with A. fumigatus population structure and is also meaningful for narrowly defined cases of azole resistance phenotypes. Nevertheless, outcrossing of csp1 into other clades is also observed. The csp1 type alone, therefore, does not sufficiently discriminate genetic clades and should not be used as the sole marker in epidemiologic studies.
Collapse
Affiliation(s)
- Oliver Bader
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
Affiliation(s)
- Kevin J. Doughty
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| | - Helge Sierotzki
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland;
| | - Martin Semar
- BASF SE, Speyerer Strasse 2, 67117 Limburgerhof, Germany;
| | - Andreas Goertz
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| |
Collapse
|
6
|
Jørgensen KM, Helleberg M, Hare RK, Jørgensen LN, Arendrup MC. Dissection of the Activity of Agricultural Fungicides against Clinical Aspergillus Isolates with and without Environmentally and Medically Induced Azole Resistance. J Fungi (Basel) 2021; 7:jof7030205. [PMID: 33799556 PMCID: PMC8001900 DOI: 10.3390/jof7030205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Azole resistance is an emerging problem in patients with aspergillosis. The role of fungicides for resistance development and occurrence is not fully elucidated. EUCAST reference MICs of 17 fungicides (11 azoles and 6 others), five azole fungicide metabolites and four medical triazoles were examined against two reference and 28 clinical isolates of A. fumigatus, A. flavus and A. terreus with (n = 12) and without (n = 16) resistance mutations. Eight/11 azole fungicides were active against wild-type A. fumigatus, A. flavus and A. terreus, including four (metconazole, prothioconazole-desthio, prochloraz and imazalil) with low MIC50 (≤2 mg/L) against all three species and epoxiconazole, propiconazole, tebuconazole and difenoconazole also against wild-type A. terreus. Mefentrifluconazole, azole metabolites and non-azole fungicides MICs were >16 mg/L against A. fumigatus although partial growth inhibition was found with mefentrifluconazole. Moreover, mefentrifluconazole and axozystrobin were active against wild-type A. terreus. Increased MICs (≥3 dilutions) were found for TR34/L98H, TR34(3)/L98H, TR46/Y121F/T289A and G432S compared to wild-type A. fumigatus for epoxiconazole, propiconazole, tebuconazole, difenoconazole, prochloraz, imazalil and metconazole (except G432S), and for prothioconazole-desthio against TR46/Y121F/T289A, specifically. Increased MICs were found in A. fumigatus harbouring G54R, M220K and M220R alterations for five, one and one azole fungicides, respectively, compared to MICs against wild-type A. fumigatus. Similarly, increased MICs wer found for A. terreus with G51A, M217I and Y491H alterations for five, six and two azole fungicides, respectively. Azole fungicides showed activity against wild-type A. fumigatus, A. terreus and A. flavus, but not against all mutant isolates, suggesting the environmental route of azole resistance may have a role for all three species.
Collapse
Affiliation(s)
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Rasmus Krøger Hare
- Unit for Mycology, Statens Serum Institut, 2300 Copenhagen, Denmark; (K.M.J.); (R.K.H.)
| | - Lise Nistrup Jørgensen
- Department of Agroecology—Crop Health, Aarhus University-Flakkebjerg, 4200 Slagelse, Denmark;
| | - Maiken Cavling Arendrup
- Unit for Mycology, Statens Serum Institut, 2300 Copenhagen, Denmark; (K.M.J.); (R.K.H.)
- Department of Clinical Medicine, Copenhagen University, 2100 Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
7
|
Characterization of Aspergillus fumigatus cross-resistance between clinical and DMI azole drugs. Appl Environ Microbiol 2021; 87:AEM.02539-20. [PMID: 33355104 PMCID: PMC8090891 DOI: 10.1128/aem.02539-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drug resistance poses a serious threat to human health and agricultural production. Azole drugs are the largest group of 14-α sterol demethylation inhibitor fungicides that are used both in agriculture and in clinical practice. As plant pathogenic molds share their natural environment with fungi that cause opportunistic infections in humans, both are exposed to a strong and persistent pressure of demethylase inhibitor (DMI) fungicides, including imidazole and triazole drugs. As a result, a loss of efficacy has occurred for this drug class in several species. In the clinical setting, Aspergillus fumigatus azole resistance is a growing public health problem and finding the source of this resistance has gained much attention. It is urgent to determine if there is a direct link between the agricultural use of azole compounds and the different A. fumigatus resistance mechanisms described for clinical triazoles. In this work we have performed A. fumigatus susceptibility testing to clinical triazoles and crop protection DMIs using a collection of azole susceptible and resistant strains which harbor most of the described azole resistance mechanisms. Various DMI susceptibility profiles have been found in the different A. fumigatus populations groups based on their azole resistance mechanism and previous WGS analysis, which suggests that the different resistance mechanisms have different origins and are specifically associated to the local use of a particular DMI.Importance Due to the worldwide emergence of A. fumigatus azole resistance, this opportunistic pathogen poses a serious health threat and, therefore, it has been included in the Watch List of the CDC 2019 Antimicrobial Resistance Threats Report. Azoles play a critical role in the control and management of fungal diseases, not only in the clinical setting but also in agriculture. Thus, azole resistance leads to a limited therapeutic arsenal which reduces the treatment options for aspergillosis patients, increasing their mortality risk. Evidence is needed to understand whether A. fumigatus azole resistance is emerging from an agricultural source due to the extended use of demethylase inhibitors as fungicides, or whether it is coming from somewhere else such as the clinical setting. If the environmental route is demonstrated, the current use and management of azole antifungal compounds might be forced to change in the forthcoming years.
Collapse
|
8
|
Campbell CA, Osaigbovo II, Oladele RO. Triazole susceptibility of Aspergillus species: environmental survey in Lagos, Nigeria and review of the rest of Africa. Ther Adv Infect Dis 2021; 8:20499361211044330. [PMID: 34532039 PMCID: PMC8438939 DOI: 10.1177/20499361211044330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Triazole resistance is an emerging problem in the management of human aspergillosis globally and can arise in Aspergillus species which have been exposed to azole fungicides in the environment. We surveyed local government and council development areas in Lagos, Nigeria, to determine the distribution of Aspergillus species in the environment and their susceptibility to locally available triazole antifungal agents. We also reviewed the literature on the subject from the rest of Africa. METHODS A total of 168 soil samples from six locations in Lagos, Nigeria were processed and cultured on Saboraud dextrose agar impregnated with chloramphenicol to isolate Aspergillus species. Isolates were tested for susceptibility to itraconazole and voriconazole by microbroth dilution according to the European Committee on Antimicrobial Susceptibility Testing reference method. Relevant databases were searched to identify published work pertaining to triazole susceptibility of Aspergillus species in Africa. RESULTS A total of 117 Aspergillus species were isolated. Aspergillus niger was the most frequently isolated species (42.7%). Other species isolated were Aspergillus flavus, 37 (31.6%), Aspergillus terreus, 20 (17.1%), Aspergillus fumigatus, 5 (4.3%) and Aspergillus nidulans, 5 (4.3%). All isolates were susceptible to itraconazole and voriconazole. The literature review showed documented evidence of triazole-resistant Aspergillus species from East and West Africa. CONCLUSIONS We found no triazole resistance in environmental isolates of Aspergillus in Lagos, Nigeria. Nevertheless, regular surveillance in clinical and environmental isolates is necessary in the light of findings from other African studies.
Collapse
Affiliation(s)
- Cynthia Abosede Campbell
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Iriagbonse Iyabo Osaigbovo
- Department of Medical Microbiology, School of Medicine, College of Medical Sciences, University of Benin, Benin City, Nigeria
- Department of Medical Microbiology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Rita Okeoghene Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Medical Microbiology and Parasitology, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
9
|
Duong TMN, Nguyen PT, Le TV, Nguyen HLP, Nguyen BNT, Nguyen BPT, Nguyen TA, Chen SCA, Barrs VR, Halliday CL, Sorrell TC, Day JN, Beardsley J. Drug-Resistant Aspergillus flavus Is Highly Prevalent in the Environment of Vietnam: A New Challenge for the Management of Aspergillosis? J Fungi (Basel) 2020; 6:jof6040296. [PMID: 33217930 PMCID: PMC7711995 DOI: 10.3390/jof6040296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 01/10/2023] Open
Abstract
The burden of aspergillosis, especially Chronic Pulmonary Aspergillosis, is increasingly recognized, and the increasing presence of azole-resistant environmental Aspergillus fumigatus has been highlighted as a health risk. However, a sizable minority of aspergillosis is caused by Aspergillus flavus, which is assumed to be sensitive to azoles but is infrequently included in surveillance. We conducted environmental sampling at 150 locations in a rural province of southern Vietnam. A. flavus isolates were identified morphologically, their identity was confirmed by sequencing of the beta-tubulin gene, and then they were tested for susceptibility to azoles and amphotericin B according to EUCAST methodologies. We found that over 85% of A. flavus isolates were resistant to at least one azole, and half of them were resistant to itraconazole. This unexpectedly high prevalence of resistance demands further investigation to determine whether it is linked to agricultural azole use, as has been described for A. fumigatus. Clinical correlation is required, so that guidelines can be adjusted to take this information into account.
Collapse
Affiliation(s)
- Tra My N. Duong
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
| | - Phuong Tuyen Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
| | - Thanh Van Le
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
| | | | - Bich Ngoc T. Nguyen
- National Lung Hospital, Hanoi 10000, Vietnam;
- Tuberculosis and Lung Diseases Department, Hanoi Medical University, Hanoi 10000, Vietnam
| | | | - Thu Anh Nguyen
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Woolcock Institute of Medical Research, Hanoi 10000, Vietnam;
| | - Sharon C.-A. Chen
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Sydney 2145, Australia
| | - Vanessa R. Barrs
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Catriona L. Halliday
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Sydney 2145, Australia
| | - Tania C. Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Westmead Institute for Medical Research, Westmead, Sydney 2145, Australia
| | - Jeremy N. Day
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Justin Beardsley
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2145, Australia; (T.M.N.D.); (T.A.N.); (S.C.-A.C.); (V.R.B.); (C.L.H.); (T.C.S.)
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam; (P.T.N.); (T.V.L.); (J.N.D.)
- Westmead Institute for Medical Research, Westmead, Sydney 2145, Australia
- Correspondence: ; Tel.: +61-8627-3402
| |
Collapse
|
10
|
Rybak JM, Fortwendel JR, Rogers PD. Emerging threat of triazole-resistant Aspergillus fumigatus. J Antimicrob Chemother 2020; 74:835-842. [PMID: 30561652 DOI: 10.1093/jac/dky517] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Invasive aspergillosis is a leading cause of morbidity and mortality among immunocompromised populations and is predicted to cause more than 200 000 life-threatening infections each year. Aspergillus fumigatus is the most prevalent pathogen isolated from patients with invasive aspergillosis, accounting for more than 60% of all cases. Currently, the only antifungal agents available with consistent activity against A. fumigatus are the mould-active triazoles and amphotericin B, of which the triazoles commonly represent both front-line and salvage therapeutic options. Unfortunately, the treatment of infections caused by A. fumigatus has recently been further complicated by the global emergence of triazole resistance among both clinical and environmental isolates. Mutations in the A. fumigatus sterol-demethylase gene cyp51A, overexpression of cyp51A and overexpression of efflux pump genes are all known to contribute to resistance, yet much of the triazole resistance among A. fumigatus still remains unexplained. Also lacking is clinical experience with therapeutic options for the treatment of triazole-resistant A. fumigatus infections and mortality associated with these infections remains unacceptably high. Thus, further research is greatly needed to both better understand the emerging threat of triazole-resistant A. fumigatus and to develop novel therapeutic strategies to combat these resistant infections.
Collapse
Affiliation(s)
- Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
11
|
Elevated Prevalence of Azole-Resistant Aspergillus fumigatus in Urban versus Rural Environments in the United Kingdom. Antimicrob Agents Chemother 2019; 63:AAC.00548-19. [PMID: 31235621 DOI: 10.1128/aac.00548-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
Azole resistance in the opportunistic pathogen Aspergillus fumigatus is increasing, dominated primarily by the following two environmentally associated resistance alleles: TR34/L98H and TR46/Y121F/T289A. By sampling soils across the South of England, we assess the prevalence of azole-resistant A. fumigatus (ARAf) in samples collected in both urban and rural locations. We characterize the susceptibility profiles of the resistant isolates to three medical azoles, identify the underlying genetic basis of resistance, and investigate their genetic relationships. ARAf was detected in 6.7% of the soil samples, with a higher prevalence in urban (13.8%) than rural (1.1%) locations. Twenty isolates were confirmed to exhibit clinical breakpoints for resistance to at least one of three medical azoles, with 18 isolates exhibiting resistance to itraconazole, 6 to voriconazole, and 2 showing elevated minimum inhibitory concentrations to posaconazole. Thirteen of the resistant isolates harbored the TR34/L98H resistance allele, and six isolates carried the TR46/Y121F/T289A allele. The 20 azole-resistant isolates were spread across five csp1 genetic subtypes, t01, t02, t04B, t09, and t18 with t02 being the predominant subtype. Our study demonstrates that ARAf can be easily isolated in the South of England, especially in urban city centers, which appear to play an important role in the epidemiology of environmentally linked drug-resistant A. fumigatus.
Collapse
|
12
|
Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J Fungi (Basel) 2019; 5:jof5030067. [PMID: 31330862 PMCID: PMC6787706 DOI: 10.3390/jof5030067] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/13/2023] Open
Abstract
The landscape of clinical mycology is constantly changing. New therapies for malignant and autoimmune diseases have led to new risk factors for unusual mycoses. Invasive candidiasis is increasingly caused by non-albicans Candida spp., including C. auris, a multidrug-resistant yeast with the potential for nosocomial transmission that has rapidly spread globally. The use of mould-active antifungal prophylaxis in patients with cancer or transplantation has decreased the incidence of invasive fungal disease, but shifted the balance of mould disease in these patients to those from non-fumigatus Aspergillus species, Mucorales, and Scedosporium/Lomentospora spp. The agricultural application of triazole pesticides has driven an emergence of azole-resistant A. fumigatus in environmental and clinical isolates. The widespread use of topical antifungals with corticosteroids in India has resulted in Trichophyton mentagrophytes causing recalcitrant dermatophytosis. New dimorphic fungal pathogens have emerged, including Emergomyces, which cause disseminated mycoses globally, primarily in HIV infected patients, and Blastomyceshelicus and B. percursus, causes of atypical blastomycosis in western parts of North America and in Africa, respectively. In North America, regions of geographic risk for coccidioidomycosis, histoplasmosis, and blastomycosis have expanded, possibly related to climate change. In Brazil, zoonotic sporotrichosis caused by Sporothrix brasiliensis has emerged as an important disease of felines and people.
Collapse
|
13
|
Thammahong A, Dhingra S, Bultman KM, Kerkaert JD, Cramer RA. An Ssd1 Homolog Impacts Trehalose and Chitin Biosynthesis and Contributes to Virulence in Aspergillus fumigatus. mSphere 2019; 4:e00244-19. [PMID: 31068436 PMCID: PMC6506620 DOI: 10.1128/msphere.00244-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022] Open
Abstract
Regulation of fungal cell wall biosynthesis is critical to maintain cell wall integrity in dynamic fungal infection microenvironments. Genes involved in this response that impact fungal fitness and host immune responses remain to be fully defined. In this study, we observed that a yeast ssd1 homolog, ssdA, in the filamentous fungus Aspergillus fumigatus is involved in trehalose and cell wall homeostasis. An ssdA null mutant strain exhibited an increase in trehalose levels and a reduction in fungal colony growth rate. In contrast, overexpression of ssdA perturbed trehalose biosynthesis and reduced germination of conidia. The ssdA null mutant strain was more resistant to cell wall-perturbing agents, while overexpression of ssdA increased sensitivity. Overexpression of ssdA significantly increased chitin levels, and both loss and overexpression of ssdA altered subcellular localization of the class V chitin synthase CsmA. Strikingly, overexpression of ssdA abolished adherence to abiotic surfaces and severely attenuated the virulence of A. fumigatus in a murine model of invasive pulmonary aspergillosis. Despite the severe in vitro fitness defects observed upon loss of ssdA, neither surface adherence nor murine survival was impacted. In conclusion, A. fumigatus SsdA plays a critical role in cell wall homeostasis impacting A. fumigatus-host interactions.IMPORTANCE The incidence of life-threatening infections caused by the filamentous fungus Aspergillus fumigatus is increasing along with an increase in the number of fungal strains resistant to contemporary antifungal therapies. The fungal cell wall and the associated carbohydrates required for its synthesis and maintenance are attractive drug targets given that many genes encoding proteins involved in cell wall biosynthesis and integrity are absent in humans. Importantly, genes and associated cell wall biosynthesis and homeostasis regulatory pathways remain to be fully defined in A. fumigatus In this report, we identify SsdA as an important component of trehalose and fungal cell wall biosynthesis in A. fumigatus that consequently impacts the host immune response and fungal virulence in animal models of infection.
Collapse
Affiliation(s)
- Arsa Thammahong
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine M Bultman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua D Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Tsitsopoulou A, Posso R, Vale L, Bebb S, Johnson E, White PL. Determination of the Prevalence of Triazole Resistance in Environmental Aspergillus fumigatus Strains Isolated in South Wales, UK. Front Microbiol 2018; 9:1395. [PMID: 29997605 PMCID: PMC6028733 DOI: 10.3389/fmicb.2018.01395] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022] Open
Abstract
Background/Objectives: Azole resistance in Aspergillus fumigatus associated with the TR34/L98H mutations in the cyp51A gene have been increasingly reported. Determining the environmental resistance rate has been deemed important when considering front-line therapy for invasive aspergillosis. The aim of the study was to determine prevalence of azole resistance in environmental A. fumigatus isolates across South Wales. Methods: Over 5 months in 2015, 513 A. fumigatus isolates were cultured from 671 soil and 44 air samples and were screened for azole resistance using VIPcheck™ agar plates containing itraconazole, voriconazole and posaconazole. Resistance was confirmed by the CLSI M38-A2 methodology. The mechanism of resistance was investigated using the PathoNostics AsperGenius® Assay. Results: Screening by VIPcheck™ plate identified azole-resistance in 30 isolates, most of which (28/30) harbored the TR34/L98H mutation, generating a prevalence of 6.0%. Twenty-five isolates had a MIC of ≥2 mg/L with itraconazole, 23 isolates had a MIC of ≥2 mg/L with voriconazole and seven isolates had a MIC ≥0.25 mg/L with posaconazole. All isolates deemed resistant by VIPcheck™ plates were resistant to at least one azole by reference methodology. Conclusions: There is significant environmental azole resistance (6%) in South Wales, in close proximity to patients susceptible to aspergillosis. Given this environmental reservoir, azole resistance should be routinely screened for in clinical practice and environmental monitoring continued.
Collapse
Affiliation(s)
- Alexandra Tsitsopoulou
- Regional Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, Cardiff, United Kingdom
| | - Raquel Posso
- Regional Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, Cardiff, United Kingdom
| | - Lorna Vale
- Regional Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, Cardiff, United Kingdom
| | - Scarlett Bebb
- Regional Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, Cardiff, United Kingdom
| | - Elizabeth Johnson
- National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - P L White
- Regional Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, Cardiff, United Kingdom
| |
Collapse
|
15
|
Molecular Tools for the Detection and Deduction of Azole Antifungal Drug Resistance Phenotypes in Aspergillus Species. Clin Microbiol Rev 2017; 30:1065-1091. [PMID: 28903985 DOI: 10.1128/cmr.00095-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The incidence of azole resistance in Aspergillus species has increased over the past years, most importantly for Aspergillus fumigatus. This is partially attributable to the global spread of only a few resistance alleles through the environment. Secondary resistance is a significant clinical concern, as invasive aspergillosis with drug-susceptible strains is already difficult to treat, and exclusion of azole-based antifungals from prophylaxis or first-line treatment of invasive aspergillosis in high-risk patients would dramatically limit drug choices, thus increasing mortality rates for immunocompromised patients. Management options for invasive aspergillosis caused by azole-resistant A. fumigatus strains were recently reevaluated by an international expert panel, which concluded that drug resistance testing of cultured isolates is highly indicated when antifungal therapy is intended. In geographical regions with a high environmental prevalence of azole-resistant strains, initial therapy should be guided by such analyses. More environmental and clinical screening studies are therefore needed to generate the local epidemiologic data if such measures are to be implemented on a sound basis. Here we propose a first workflow for evaluating isolates from screening studies, and we compile the MIC values correlating with individual amino acid substitutions in the products of cyp51 genes for interpretation of DNA sequencing data, especially in the absence of cultured isolates.
Collapse
|
16
|
Abstract
Aspergillus species are ubiquitous fungal saprophytes found in diverse ecological niches worldwide. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis with high mortality rates in some immunocompromised hosts. Azoles are the first-line drugs in treating diseases caused by Aspergillus spp. However, increasing reports in A. fumigatus azole resistance, both in the clinical setting and in the environment, are threatening the effectiveness of clinical and agricultural azole drugs. The azole target is the 14-α sterol demethylase encoded by cyp51A gene and the main mechanisms of resistance involve the integration of tandem repeats in its promoter and/or single point mutations in this gene. In A. fumigatus, azole resistance can emerge in two different scenarios: a medical route in which azole resistance is generated during long periods of azole treatment in the clinical setting and a route of resistance derived from environmental origin due to extended use of demethylation inhibitors in agriculture. The understanding of A. fumigatus azole resistance development and its evolution is needed in order to prevent or minimize its impact. In this article, we review the current situation of azole resistance epidemiology and the predominant molecular mechanisms described based on the resistance acquisition routes. In addition, the clinical implications of A. fumigatus azole resistance and future research are discussed.
Collapse
|