1
|
Saunders PA, Muyle A. Sex Chromosome Evolution: Hallmarks and Question Marks. Mol Biol Evol 2024; 41:msae218. [PMID: 39417444 PMCID: PMC11542634 DOI: 10.1093/molbev/msae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Sex chromosomes are widespread in species with separate sexes. They have evolved many times independently and display a truly remarkable diversity. New sequencing technologies and methodological developments have allowed the field of molecular evolution to explore this diversity in a large number of model and nonmodel organisms, broadening our vision on the mechanisms involved in their evolution. Diverse studies have allowed us to better capture the common evolutionary routes that shape sex chromosomes; however, we still mostly fail to explain why sex chromosomes are so diverse. We review over half a century of theoretical and empirical work on sex chromosome evolution and highlight pending questions on their origins, turnovers, rearrangements, degeneration, dosage compensation, gene content, and rates of evolution. We also report recent theoretical progress on our understanding of the ultimate reasons for sex chromosomes' existence.
Collapse
Affiliation(s)
- Paul A Saunders
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Ohadi M, Arabfard M, Khamse S, Alizadeh S, Vafadar S, Bayat H, Tajeddin N, Maddi AMA, Delbari A, Khorram Khorshid HR. Novel crossover and recombination hotspots massively spread across primate genomes. Biol Direct 2024; 19:70. [PMID: 39169390 PMCID: PMC11340189 DOI: 10.1186/s13062-024-00508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The recombination landscape and subsequent natural selection have vast consequences forevolution and speciation. However, most of the crossover and recombination hotspots are yet to be discovered. We previously reported the relevance of C and G trinucleotide two-repeat units (CG-TTUs) in crossovers and recombination. METHODS On a genome-wide scale, here we mapped all combinations of A and T trinucleotide two-repeat units (AT-TTUs) in human, consisting of AATAAT, ATAATA, ATTATT, TTATTA, TATTAT, and TAATAA. We also compared a number of the colonies formed by the AT-TTUs (distance between consecutive AT-TTUs < 500 bp) in several other primates and mouse. RESULTS We found that the majority of the AT-TTUs (> 96%) resided in approximately 1.4 million colonies, spread throughout the human genome. In comparison to the CG-TTU colonies, the AT-TTU colonies were significantly more abundant and larger in size. Pure units and overlapping units of the pure units were readily detectable in the same colonies, signifying that the units were the sites of unequal crossover. We discovered dynamic sharedness of several of the colonies across the primate species studied, which mainly reached maximum complexity and size in human. CONCLUSIONS We report novel crossover and recombination hotspots of the finest molecular resolution, massively spread and shared across the genomes of human and several other primates. With respect to crossovers and recombination, these genomes are far more dynamic than previously envisioned.
Collapse
Affiliation(s)
- Mina Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Safoura Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Samira Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sara Vafadar
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hadi Bayat
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Biochemical Neuroendocrinology, Montreal Clinical and Research Institute (IRCM, affiliated to the McGill University, Montreal, QC, H2W 1R7, Canada
| | - Nahid Tajeddin
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali M A Maddi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamid R Khorram Khorshid
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| |
Collapse
|
3
|
Joseph J, Prentout D, Laverré A, Tricou T, Duret L. High prevalence of PRDM9-independent recombination hotspots in placental mammals. Proc Natl Acad Sci U S A 2024; 121:e2401973121. [PMID: 38809707 PMCID: PMC11161765 DOI: 10.1073/pnas.2401973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexandre Laverré
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
- Swiss Institute of Bioinformatics, LausanneCH-1015, Switzerland
| | - Théo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| |
Collapse
|
4
|
Charlesworth D, Qiu S, Bergero R, Gardner J, Keegan K, Yong L, Hastings A, Konczal M. Has recombination changed during the recent evolution of the guppy Y chromosome? Genetics 2024; 226:iyad198. [PMID: 37956094 DOI: 10.1093/genetics/iyad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Genome sequencing and genetic mapping of molecular markers have demonstrated nearly complete Y-linkage across much of the guppy (Poecilia reticulata) XY chromosome pair. Predominant Y-linkage of factors controlling visible male-specific coloration traits also suggested that these polymorphisms are sexually antagonistic (SA). However, occasional exchanges with the X are detected, and recombination patterns also appear to differ between natural guppy populations, suggesting ongoing evolution of recombination suppression under selection created by partially sex-linked SA polymorphisms. We used molecular markers to directly estimate genetic maps in sires from 4 guppy populations. The maps are very similar, suggesting that their crossover patterns have not recently changed. Our maps are consistent with population genomic results showing that variants within the terminal 5 Mb of the 26.5 Mb sex chromosome, chromosome 12, are most clearly associated with the maleness factor, albeit incompletely. We also confirmed occasional crossovers proximal to the male-determining region, defining a second, rarely recombining, pseudo-autosomal region, PAR2. This fish species may therefore have no completely male-specific region (MSY) more extensive than the male-determining factor. The positions of the few crossover events suggest a location for the male-determining factor within a physically small repetitive region. A sex-reversed XX male had few crossovers in PAR2, suggesting that this region's low crossover rate depends on the phenotypic, not the genetic, sex. Thus, rare individuals whose phenotypic and genetic sexes differ, and/or occasional PAR2 crossovers in males can explain the failure to detect fully Y-linked variants.
Collapse
Affiliation(s)
- Deborah Charlesworth
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Suo Qiu
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Roberta Bergero
- Scottish Rural Agricultural College, Peter Wilson Building, King's Buildings, W Mains Rd, Edinburgh EH9 3JG, UK
| | - Jim Gardner
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Karen Keegan
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
- South Carolina Department of Natural Resources, Marine Resources Research Institute, P.O. Box 12559 Charleston, SC 29422-2559, USA
| | - Abigail Hastings
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland
| |
Collapse
|
5
|
Burda K, Konczal M. Validation of machine learning approach for direct mutation rate estimation. Mol Ecol Resour 2023; 23:1757-1771. [PMID: 37486035 DOI: 10.1111/1755-0998.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Mutations are the primary source of all genetic variation. Knowledge about their rates is critical for any evolutionary genetic analyses, but for a long time, that knowledge has remained elusive and indirectly inferred. In recent years, parent-offspring comparisons have yielded the first direct mutation rate estimates. The analyses are, however, challenging due to high rate of false positives and no consensus regarding standardized filtering of candidate de novo mutations. Here, we validate the application of a machine learning approach for such a task and estimate the mutation rate for the guppy (Poecilia reticulata), a model species in eco-evolutionary studies. We sequenced 4 parents and 20 offspring, followed by screening their genomes for de novo mutations. The initial large number of candidate de novo mutations was hard-filtered to remove false-positive results. These results were compared with mutation rate estimated with a supervised machine learning approach. Both approaches were followed by molecular validation of all candidate de novo mutations and yielded similar results. The ML method uniquely identified three mutations, but overall required more hands-on curation and had higher rates of false positives and false negatives. Both methods concordantly showed no difference in mutation rates between families. Estimated here the guppy mutation rate is among the lowest directly estimated mutation rates in vertebrates; however, previous research has also found low estimated rates in other teleost fishes. We discuss potential explanations for such a pattern, as well as future utility and limitations of machine learning approaches.
Collapse
Affiliation(s)
- Katarzyna Burda
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Long X, Charlesworth D, Qi J, Wu R, Chen M, Wang Z, Xu L, Fu H, Zhang X, Chen X, He L, Zheng L, Huang Z, Zhou Q. Independent Evolution of Sex Chromosomes and Male Pregnancy-Related Genes in Two Seahorse Species. Mol Biol Evol 2022; 40:6964685. [PMID: 36578180 PMCID: PMC9851323 DOI: 10.1093/molbev/msac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Unlike birds and mammals, many teleosts have homomorphic sex chromosomes, and changes in the chromosome carrying the sex-determining locus, termed "turnovers", are common. Recent turnovers allow studies of several interesting questions. One question is whether the new sex-determining regions evolve to become completely non-recombining, and if so, how and why. Another is whether (as predicted) evolutionary changes that benefit one sex accumulate in the newly sex-linked region. To study these questions, we analyzed the genome sequences of two seahorse species of the Syngnathidae, a fish group in which many species evolved a unique structure, the male brood pouch. We find that both seahorse species have XY sex chromosome systems, but their sex chromosome pairs are not homologs, implying that at least one turnover event has occurred. The Y-linked regions occupy 63.9% and 95.1% of the entire sex chromosome of the two species and do not exhibit extensive sequence divergence with their X-linked homologs. We find evidence for occasional recombination between the extant sex chromosomes that may account for their homomorphism. We argue that these Y-linked regions did not evolve by recombination suppression after the turnover, but by the ancestral nature of the low crossover rates in these chromosome regions. With such an ancestral crossover landscape, a turnover can instantly create an extensive Y-linked region. Finally, we test for adaptive evolution of male pouch-related genes after they became Y-linked in the seahorse.
Collapse
Affiliation(s)
- Xin Long
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China,Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou 311100, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| | - Jianfei Qi
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ruiqiong Wu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinxin Chen
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Libin He
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | | | | | - Qi Zhou
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
7
|
Pinto BJ, Keating SE, Nielsen SV, Scantlebury DP, Daza JD, Gamble T. Chromosome-Level Genome Assembly Reveals Dynamic Sex Chromosomes in Neotropical Leaf-Litter Geckos (Sphaerodactylidae: Sphaerodactylus). J Hered 2022; 113:272-287. [PMID: 35363859 PMCID: PMC9270867 DOI: 10.1093/jhered/esac016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Sex determination is a critical element of successful vertebrate development, suggesting that sex chromosome systems might be evolutionarily stable across lineages. For example, mammals and birds have maintained conserved sex chromosome systems over long evolutionary time periods. Other vertebrates, in contrast, have undergone frequent sex chromosome transitions, which is even more amazing considering we still know comparatively little across large swaths of their respective phylogenies. One reptile group in particular, the gecko lizards (infraorder Gekkota), shows an exceptional lability with regard to sex chromosome transitions and may possess the majority of transitions within squamates (lizards and snakes). However, detailed genomic and cytogenetic information about sex chromosomes is lacking for most gecko species, leaving large gaps in our understanding of the evolutionary processes at play. To address this, we assembled a chromosome-level genome for a gecko (Sphaerodactylidae: Sphaerodactylus) and used this assembly to search for sex chromosomes among six closely related species using a variety of genomic data, including whole-genome re-sequencing, RADseq, and RNAseq. Previous work has identified XY systems in two species of Sphaerodactylus geckos. We expand upon that work to identify between two and four sex chromosome cis-transitions (XY to a new XY) within the genus. Interestingly, we confirmed two different linkage groups as XY sex chromosome systems that were previously unknown to act as sex chromosomes in tetrapods (syntenic with Gallus chromosome 3 and Gallus chromosomes 18/30/33), further highlighting a unique and fascinating trend that most linkage groups have the potential to act as sex chromosomes in squamates.
Collapse
Affiliation(s)
- Brendan J Pinto
- Address correspondence to B. J. Pinto at the address above, or e-mail:
| | - Shannon E Keating
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Stuart V Nielsen
- Department of Biological Sciences, Louisiana State University in Shreveport, Shreveport, LA 71115, USA,Division of Herpetology, Florida Museum of Natural History, Gainesville, FL 32611, USA
| | | | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - Tony Gamble
- Milwaukee Public Museum, Milwaukee, WI 53233, USA,Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA,Bell Museum of Natural History, University of Minnesota, St Paul, MN 55455, USA
| |
Collapse
|
8
|
Evolution of the Degenerated Y-Chromosome of the Swamp Guppy, Micropoecilia picta. Cells 2022; 11:cells11071118. [PMID: 35406682 PMCID: PMC8997885 DOI: 10.3390/cells11071118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler’s and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel.
Collapse
|
9
|
Paris JR, Whiting JR, Daniel MJ, Ferrer Obiol J, Parsons PJ, van der Zee MJ, Wheat CW, Hughes KA, Fraser BA. A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy. Nat Commun 2022; 13:1233. [PMID: 35264556 PMCID: PMC8907176 DOI: 10.1038/s41467-022-28895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male colour patterns of the Trinidadian guppy (Poecilia reticulata) are typified by extreme variation governed by both natural and sexual selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been hypothesised that many of the colour trait genes must be physically linked to sex determining loci as a ‘supergene’ on the sex chromosome. Here, we phenotype and genotype four guppy ‘Iso-Y lines’, where colour was inherited along the patriline for 40 generations. Using an unbiased phenotyping method, we confirm the breeding design was successful in creating four distinct colour patterns. We find that genetic differentiation among the Iso-Y lines is repeatedly associated with a diverse haplotype on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype exhibits elevated linkage disequilibrium and evidence of sex-specific diversity in the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis. Extreme colour pattern variation in male Trinidadian guppies are influenced by natural selection and sexual selection. Here, the authors phenotype and genotype four guppy lineages finding that colour pattern is associated with a diverse haplotype on an autosome.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - James R Whiting
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Mitchel J Daniel
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Joan Ferrer Obiol
- Departament de Microbiologia, Genètica i Estadística and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Paul J Parsons
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.,NERC Environmental Omics Facility, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mijke J van der Zee
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | | | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Bonnie A Fraser
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
10
|
On the genetic architecture of rapidly adapting and convergent life history traits in guppies. Heredity (Edinb) 2022; 128:250-260. [PMID: 35256765 PMCID: PMC8986872 DOI: 10.1038/s41437-022-00512-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
The genetic basis of traits shapes and constrains how adaptation proceeds in nature; rapid adaptation can proceed using stores of polygenic standing genetic variation or hard selective sweeps, and increasing polygenicity fuels genetic redundancy, reducing gene re-use (genetic convergence). Guppy life history traits evolve rapidly and convergently among natural high- and low-predation environments in northern Trinidad. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use four independent F2 QTL crosses to examine the genetic basis of seven (five female, two male) guppy life history phenotypes and discuss how these genetic architectures may facilitate or constrain rapid adaptation and convergence. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many loci of small-effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid, repeatable phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but subsequent genetic redundancy may limit gene re-use across populations, in agreement with an absence of strong signatures of genetic convergence from recent analyses of wild guppies.
Collapse
|
11
|
Kirkpatrick M, Sardell JM, Pinto BJ, Dixon G, Peichel CL, Schartl M. Evolution of the canonical sex chromosomes of the guppy and its relatives. G3 (BETHESDA, MD.) 2022; 12:jkab435. [PMID: 35100353 PMCID: PMC9335935 DOI: 10.1093/g3journal/jkab435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022]
Abstract
The sex chromosomes of the guppy, Poecilia reticulata, and its close relatives are of particular interest: they are much younger than the highly degenerate sex chromosomes of model systems such as humans and Drosophila melanogaster, and they carry many of the genes responsible for the males' dramatic coloration. Over the last decade, several studies have analyzed these sex chromosomes using a variety of approaches including sequencing genomes and transcriptomes, cytology, and linkage mapping. Conflicting conclusions have emerged, in particular concerning the history of the sex chromosomes and the evolution of suppressed recombination between the X and Y. Here, we address these controversies by reviewing the evidence and reanalyzing data. We find no evidence of a nonrecombining sex-determining region or evolutionary strata in P. reticulata. Furthermore, we find that the data most strongly support the hypothesis that the sex-determining regions of 2 close relatives of the guppy, Poecilia wingei and Micropoecilia picta, evolved independently after their lineages diverged. We identify possible causes of conflicting results in previous studies and suggest best practices going forward.
Collapse
Affiliation(s)
- Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Jason M Sardell
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Brendan J Pinto
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Catherine L Peichel
- Institute of Ecology and Evolution, University of Bern, Bern 3012, Switzerland
| | - Manfred Schartl
- Developmental Biochemistry, University of Würzburg, Würzburg97074, Germany
- Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
12
|
Benites LF, Bucchini F, Sanchez-Brosseau S, Grimsley N, Vandepoele K, Piganeau G. Evolutionary Genomics of Sex-Related Chromosomes at the Base of the Green Lineage. Genome Biol Evol 2021; 13:6380139. [PMID: 34599324 PMCID: PMC8557840 DOI: 10.1093/gbe/evab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although sex is now accepted as a ubiquitous and ancestral feature of eukaryotes, direct observation of sex is still lacking in most unicellular eukaryotic lineages. Evidence of sex is frequently indirect and inferred from the identification of genes involved in meiosis from whole genome data and/or the detection of recombination signatures from genetic diversity in natural populations. In haploid unicellular eukaryotes, sex-related chromosomes are named mating-type (MTs) chromosomes and generally carry large genomic regions where recombination is suppressed. These regions have been characterized in Fungi and Chlorophyta and determine gamete compatibility and fusion. Two candidate MT+ and MT− alleles, spanning 450–650 kb, have recently been described in Ostreococcus tauri, a marine phytoplanktonic alga from the Mamiellophyceae class, an early diverging branch in the green lineage. Here, we investigate the architecture and evolution of these candidate MT+ and MT− alleles. We analyzed the phylogenetic profile and GC content of MT gene families in eight different genomes whose divergence has been previously estimated at up to 640 Myr, and found evidence that the divergence of the two MT alleles predates speciation in the Ostreococcus genus. Phylogenetic profiles of MT trans-specific polymorphisms in gametologs disclosed candidate MTs in two additional species, and possibly a third. These Mamiellales MT candidates are likely to be the oldest mating-type loci described to date, which makes them fascinating models to investigate the evolutionary mechanisms of haploid sex determination in eukaryotes.
Collapse
Affiliation(s)
- Luis Felipe Benites
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sophie Sanchez-Brosseau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Gwenaël Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
13
|
Fraser BA, Whiting JR, Paris JR, Weadick CJ, Parsons PJ, Charlesworth D, Bergero R, Bemm F, Hoffmann M, Kottler VA, Liu C, Dreyer C, Weigel D. Improved Reference Genome Uncovers Novel Sex-Linked Regions in the Guppy (Poecilia reticulata). Genome Biol Evol 2021; 12:1789-1805. [PMID: 32853348 PMCID: PMC7643365 DOI: 10.1093/gbe/evaa187] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Theory predicts that the sexes can achieve greater fitness if loci with sexually antagonistic polymorphisms become linked to the sex determining loci, and this can favor the spread of reduced recombination around sex determining regions. Given that sex-linked regions are frequently repetitive and highly heterozygous, few complete Y chromosome assemblies are available to test these ideas. The guppy system (Poecilia reticulata) has long been invoked as an example of sex chromosome formation resulting from sexual conflict. Early genetics studies revealed that male color patterning genes are mostly but not entirely Y-linked, and that X-linkage may be most common in low-predation populations. More recent population genomic studies of guppies have reached varying conclusions about the size and placement of the Y-linked region. However, this previous work used a reference genome assembled from short-read sequences from a female guppy. Here, we present a new guppy reference genome assembly from a male, using long-read PacBio single-molecule real-time sequencing and chromosome contact information. Our new assembly sequences across repeat- and GC-rich regions and thus closes gaps and corrects mis-assemblies found in the short-read female-derived guppy genome. Using this improved reference genome, we then employed broad population sampling to detect sex differences across the genome. We identified two small regions that showed consistent male-specific signals. Moreover, our results help reconcile the contradictory conclusions put forth by past population genomic studies of the guppy sex chromosome. Our results are consistent with a small Y-specific region and rare recombination in male guppies.
Collapse
Affiliation(s)
| | | | | | | | | | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Margarete Hoffmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Verena A Kottler
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Chang Liu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Christine Dreyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
14
|
Perrin N. Sex-chromosome evolution in frogs: what role for sex-antagonistic genes? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200094. [PMID: 34247502 PMCID: PMC8273499 DOI: 10.1098/rstb.2020.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sex-antagonistic (SA) genes are widely considered to be crucial players in the evolution of sex chromosomes, being instrumental in the arrest of recombination and degeneration of Y chromosomes, as well as important drivers of sex-chromosome turnovers. To test such claims, one needs to focus on systems at the early stages of differentiation, ideally with a high turnover rate. Here, I review recent work on two families of amphibians, Ranidae (true frogs) and Hylidae (tree frogs), to show that results gathered so far from these groups provide no support for a significant role of SA genes in the evolutionary dynamics of their sex chromosomes. The findings support instead a central role for neutral processes and deleterious mutations. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Charlesworth D, Bergero R, Graham C, Gardner J, Keegan K. How did the guppy Y chromosome evolve? PLoS Genet 2021; 17:e1009704. [PMID: 34370728 PMCID: PMC8376059 DOI: 10.1371/journal.pgen.1009704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/19/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
The sex chromosome pairs of many species do not undergo genetic recombination, unlike the autosomes. It has been proposed that the suppressed recombination results from natural selection favouring close linkage between sex-determining genes and mutations on this chromosome with advantages in one sex, but disadvantages in the other (these are called sexually antagonistic mutations). No example of such selection leading to suppressed recombination has been described, but populations of the guppy display sexually antagonistic mutations (affecting male coloration), and would be expected to evolve suppressed recombination. In extant close relatives of the guppy, the Y chromosomes have suppressed recombination, and have lost all the genes present on the X (this is called genetic degeneration). However, the guppy Y occasionally recombines with its X, despite carrying sexually antagonistic mutations. We describe evidence that a new Y evolved recently in the guppy, from an X chromosome like that in these relatives, replacing the old, degenerated Y, and explaining why the guppy pair still recombine. The male coloration factors probably arose after the new Y evolved, and have already evolved expression that is confined to males, a different way to avoid the conflict between the sexes. We report new findings concerning the long-studied the guppy XY pair, which has remained somewhat mystifying. We show that it can be understood as a case of a recent sex chromosome turnover event in which an older, highly degenerated Y chromosome was lost, and creation of a new sex chromosome from the ancestral X. This chromosome acquired a male-determining factor, possibly by a mutation in (or a duplication of) a previously X-linked gene, or (less likely) by movement of an ancestral Y-linked maleness factor onto the X. We relate the findings to theoretical models of such events, and argue that the proposed change was free from factors thought to impede such turnovers. The change resulted in the intriguing situation where the X chromosome is old and the Y is much younger, and we discuss some other species where a similar change seems likely to have occurred.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chay Graham
- University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Court Road, Cambridge, United Kingdom
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Keegan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Salmón P, Jacobs A, Ahrén D, Biard C, Dingemanse NJ, Dominoni DM, Helm B, Lundberg M, Senar JC, Sprau P, Visser ME, Isaksson C. Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nat Commun 2021; 12:2983. [PMID: 34016968 PMCID: PMC8137928 DOI: 10.1038/s41467-021-23027-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/01/2021] [Indexed: 02/03/2023] Open
Abstract
Urbanisation is increasing worldwide, and there is now ample evidence of phenotypic changes in wild organisms in response to this novel environment. Yet, the genetic changes and genomic architecture underlying these adaptations are poorly understood. Here, we genotype 192 great tits (Parus major) from nine European cities, each paired with an adjacent rural site, to address this major knowledge gap in our understanding of wildlife urban adaptation. We find that a combination of polygenic allele frequency shifts and recurrent selective sweeps are associated with the adaptation of great tits to urban environments. While haplotypes under selection are rarely shared across urban populations, selective sweeps occur within the same genes, mostly linked to neural function and development. Collectively, we show that urban adaptation in a widespread songbird occurs through unique and shared selective sweeps in a core-set of behaviour-linked genes.
Collapse
Affiliation(s)
- Pablo Salmón
- Department of Biology, Lund University, Lund, Sweden.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Dag Ahrén
- Department of Biology, Lund University, Lund, Sweden
| | - Clotilde Biard
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Écologie et des Sciences de l'Environnement de Paris, iEES Paris, F-75005, Paris, France
| | - Niels J Dingemanse
- Department of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- GELIFES - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | | | - Philipp Sprau
- Department of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | | |
Collapse
|
17
|
Lisachov A, Andreyushkova D, Davletshina G, Prokopov D, Romanenko S, Galkina S, Saifitdinova A, Simonov E, Borodin P, Trifonov V. Amplified Fragments of an Autosome-Borne Gene Constitute a Significant Component of the W Sex Chromosome of Eremias velox (Reptilia, Lacertidae). Genes (Basel) 2021; 12:779. [PMID: 34065205 PMCID: PMC8160951 DOI: 10.3390/genes12050779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023] Open
Abstract
Heteromorphic W and Y sex chromosomes often experience gene loss and heterochromatinization, which is frequently viewed as their "degeneration". However, the evolutionary trajectories of the heterochromosomes are in fact more complex since they may not only lose but also acquire new sequences. Previously, we found that the heterochromatic W chromosome of a lizard Eremias velox (Lacertidae) is decondensed and thus transcriptionally active during the lampbrush stage. To determine possible sources of this transcription, we sequenced DNA from a microdissected W chromosome sample and a total female DNA sample and analyzed the results of reference-based and de novo assembly. We found a new repetitive sequence, consisting of fragments of an autosomal protein-coding gene ATF7IP2, several SINE elements, and sequences of unknown origin. This repetitive element is distributed across the whole length of the W chromosome, except the centromeric region. Since it retained only 3 out of 10 original ATF7IP2 exons, it remains unclear whether it is able to produce a protein product. Subsequent studies are required to test the presence of this element in other species of Lacertidae and possible functionality. Our results provide further evidence for the view of W and Y chromosomes as not just "degraded" copies of Z and X chromosomes but independent genomic segments in which novel genetic elements may arise.
Collapse
Affiliation(s)
- Artem Lisachov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia;
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
| | - Daria Andreyushkova
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Guzel Davletshina
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Dmitry Prokopov
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Svetlana Galkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7–9, 199034 Saint Petersburg, Russia;
| | - Alsu Saifitdinova
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University of Russia, Moyka Emb. 48, 191186 Saint Petersburg, Russia;
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia;
| | - Pavel Borodin
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
- Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
- Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Whiting JR, Paris JR, van der Zee MJ, Parsons PJ, Weigel D, Fraser BA. Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies. PLoS Genet 2021; 17:e1009566. [PMID: 34029313 PMCID: PMC8177651 DOI: 10.1371/journal.pgen.1009566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/04/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023] Open
Abstract
Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.
Collapse
Affiliation(s)
- James R. Whiting
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | | | - Paul J. Parsons
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bonnie A. Fraser
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Charlesworth D, Bergero R, Graham C, Gardner J, Yong L. Locating the Sex Determining Region of Linkage Group 12 of Guppy ( Poecilia reticulata). G3 (BETHESDA, MD.) 2020; 10:3639-3649. [PMID: 32753367 PMCID: PMC7534449 DOI: 10.1534/g3.120.401573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023]
Abstract
Despite over 100 years of study, the location of the fully sex-linked region of the guppy (Poecilia reticulata) carrying the male-determining locus, and the regions where the XY pair recombine, remain unclear. Previous population genomics studies to determine these regions used small samples from recently bottlenecked captive populations, which increase the false positive rate of associations between individuals' sexes and SNPs. Using new data from multiple natural populations, we show that a recently proposed candidate for this species' male-determining gene is probably not completely sex-linked, leaving the maleness factor still unidentified. Variants in the chromosome 12 region carrying the candidate gene sometimes show linkage disequilibrium with the sex-determining factor, but no consistently male-specific variant has yet been found. Our genetic mapping with molecular markers spread across chromosome 12 confirms that this is the guppy XY pair. We describe two families with recombinants between the X and Y chromosomes, which confirm that the male-determining locus is in the region identified by all previous studies, near the terminal pseudo-autosomal region (PAR), which crosses over at a very high rate in males. We correct the PAR marker order, and assign two unplaced scaffolds to the PAR. We also detect a duplication, with one copy in the male-determining region, explaining signals of sex linkage in a more proximal region.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Chay Graham
- University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Ct Rd, Cambridge CB2 1GA, UK
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, University of Exeter, Penryn, Falmouth, Cornwall, TR10 9FE, UK
| |
Collapse
|