1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Valencia-Montoya WA, Pierce NE, Bellono NW. Evolution of Sensory Receptors. Annu Rev Cell Dev Biol 2024; 40:353-379. [PMID: 38985841 PMCID: PMC11526382 DOI: 10.1146/annurev-cellbio-120123-112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
| |
Collapse
|
3
|
Smith C. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease. Inflammopharmacology 2024; 32:2219-2233. [PMID: 38926297 PMCID: PMC11300644 DOI: 10.1007/s10787-024-01511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Immune-mediated inflammatory disease (IMID) prevalence is estimated at 3-7% for Westernised populations, with annual incidence reported at almost 1 in 100 people globally. More recently, drug discovery approaches have been evolving towards more targeted therapies with an improved long-term safety profile, while the requirement for individualisation of medicine in complex conditions such as IMIDs, is acknowledged. However, existing preclinical models-such as cellular and in vivo mammalian models-are not ideal for modern drug discovery model requirements, such as real-time in vivo visualisation of drug effects, logistically feasible safety assessment over the course of a lifetime, or dynamic assessment of physiological changes during disease development. Zebrafish share high homology with humans in terms of proteins and disease-causing genes, with high conservation of physiological processes at organ, tissue, cellular and molecular level. These and other unique attributes, such as high fecundity, relative transparency and ease of genetic manipulation, positions zebrafish as the next major role player in IMID drug discovery. This review provides a brief overview of the suitability of this organism as model for human inflammatory disease and summarises the range of approaches used in zebrafish-based drug discovery research. Strengths and limitations of zebrafish as model organism, as well as important considerations in research study design, are discussed. Finally, under-utilised avenues for investigation in the IMID context are highlighted.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Group, Department of Medicine, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
4
|
Zhang T, Jing H, Wang J, Zhao L, Liu Y, Rossiter SJ, Lu H, Li G. Evolution of olfactory receptor superfamily in bats based on high throughput molecular modelling. Mol Ecol Resour 2024; 24:e13958. [PMID: 38567648 DOI: 10.1111/1755-0998.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The origin of flight and laryngeal echolocation in bats is likely to have been accompanied by evolutionary changes in other aspects of their sensory biology. Of all sensory modalities in bats, olfaction is perhaps the least well understood. Olfactory receptors (ORs) function in recognizing odour molecules, with crucial roles in evaluating food, as well as in processing social information. Here we compare OR repertoire sizes across taxa and apply a new pipeline that integrates comparative genome data with protein structure modelling and then we employ molecular docking techniques with small molecules to analyse OR functionality based on binding energies. Our results suggest a sharp contraction in odorant recognition of the functional OR repertoire during the origin of bats, consistent with a reduced dependence on olfaction. We also compared bat lineages with contrasting different ecological characteristics and found evidence of differences in OR gene expansion and contraction, and in the composition of ORs with different tuning breadths. The strongest binding energies of ORs in non-echolocating fruit-eating bats were seen to correspond to ester odorants, although we did not detect a quantitative advantage of functional OR repertoires in these bats compared with echolocating insectivorous species. Overall, our findings based on molecular modelling and computational docking suggest that bats have undergone olfactory evolution linked to dietary adaptation. Our results from extant and ancestral bats help to lay the groundwork for targeted experimental functional tests in the future.
Collapse
Affiliation(s)
- Tianmin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Le Zhao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, UK
| | - Huimeng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
5
|
Grossi G, Scarano N, Musumeci F, Tonelli M, Kanov E, Carbone A, Fossa P, Gainetdinov RR, Cichero E, Schenone S. Discovery of a Novel Chemo-Type for TAAR1 Agonism via Molecular Modeling. Molecules 2024; 29:1739. [PMID: 38675561 PMCID: PMC11052455 DOI: 10.3390/molecules29081739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The search for novel effective TAAR1 ligands continues to draw great attention due to the wide range of pharmacological applications related to TAAR1 targeting. Herein, molecular docking studies of known TAAR1 ligands, characterized by an oxazoline core, have been performed in order to identify novel promising chemo-types for the discovery of more active TAAR1 agonists. In particular, the oxazoline-based compound S18616 has been taken as a reference compound for the computational study, leading to the development of quite flat and conformationally locked ligands. The choice of a "Y-shape" conformation was suggested for the design of TAAR1 ligands, interacting with the protein cavity delimited by ASP103 and aromatic residues such as PHE186, PHE195, PHE268, and PHE267. The obtained results allowed us to preliminary in silico screen an in-house series of pyrimidinone-benzimidazoles (1a-10a) as a novel scaffold to target TAAR1. Combined ligand-based (LBCM) and structure based (SBCM) computational methods suggested the biological evaluation of compounds 1a-10a, leading to the identification of derivatives 1a-3a (hTAAR1 EC50 = 526.3-657.4 nM) as promising novel TAAR1 agonists.
Collapse
Affiliation(s)
- Giancarlo Grossi
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Evgeny Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna Carbone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| |
Collapse
|
6
|
Shang P, Rong N, Jiang JJ, Cheng J, Zhang MH, Kang D, Qi L, Guo L, Yang GM, Liu Q, Zhou Z, Li XB, Zhu KK, Meng QB, Han X, Yan W, Kong Y, Yang L, Wang X, Lei D, Feng X, Liu X, Yu X, Wang Y, Li Q, Shao ZH, Yang F, Sun JP. Structural and signaling mechanisms of TAAR1 enabled preferential agonist design. Cell 2023; 186:5347-5362.e24. [PMID: 37963465 DOI: 10.1016/j.cell.2023.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) senses a spectrum of endogenous amine-containing metabolites (EAMs) to mediate diverse psychological functions and is useful for schizophrenia treatment without the side effects of catalepsy. Here, we systematically profiled the signaling properties of TAAR1 activation and present nine structures of TAAR1-Gs/Gq in complex with EAMs, clinical drugs, and synthetic compounds. These structures not only revealed the primary amine recognition pocket (PARP) harboring the conserved acidic D3.32 for conserved amine recognition and "twin" toggle switch for receptor activation but also elucidated that targeting specific residues in the second binding pocket (SBP) allowed modulation of signaling preference. In addition to traditional drug-induced Gs signaling, Gq activation by EAM or synthetic compounds is beneficial to schizophrenia treatment. Our results provided a structural and signaling framework for molecular recognition by TAAR1, which afforded structural templates and signal clues for TAAR1-targeted candidate compounds design.
Collapse
Affiliation(s)
- Pan Shang
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Naikang Rong
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Jing-Jing Jiang
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jie Cheng
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Ming-Hui Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, China
| | - Lei Qi
- Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China; Biomedical Research Center for Structural Analysis, Shandong University, No.44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Lulu Guo
- Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Gong-Ming Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qun Liu
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, China
| | - Xiao-Bing Li
- Medical Science and Technology Innovation Center, Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Kong-Kai Zhu
- Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China
| | - Qing-Biao Meng
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Han
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wenqi Yan
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yalei Kong
- Songjiang Institute and Shanghai Songjiang District Central Hospital, Center for Brain Science in Shanghai Children's Medical Center, Department of Anatomy and Physiology, Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lejin Yang
- Department of Psychology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dapeng Lei
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xin Feng
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, China
| | - Xiao Yu
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yue Wang
- Medical Science and Technology Innovation Center, Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Qian Li
- Songjiang Institute and Shanghai Songjiang District Central Hospital, Center for Brain Science in Shanghai Children's Medical Center, Department of Anatomy and Physiology, Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Fan Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China.
| | - Jin-Peng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute and Meili Lake Translational Research Park, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Nicoli A, Weber V, Bon C, Steuer A, Gustincich S, Gainetdinov RR, Lang R, Espinoza S, Di Pizio A. Structure-Based Discovery of Mouse Trace Amine-Associated Receptor 5 Antagonists. J Chem Inf Model 2023; 63:6667-6680. [PMID: 37847527 PMCID: PMC10647090 DOI: 10.1021/acs.jcim.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 10/18/2023]
Abstract
Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | - Verena Weber
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Institute
for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine
(INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany
- Faculty
of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen, 52062 Germany
| | - Carlotta Bon
- Istituto
Italiano di Tecnologia, 16163 Genova, Italy
| | - Alexandra Steuer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | | | - Raul R. Gainetdinov
- Institute
of Translational Biomedicine and Saint Petersburg University Hospital,
Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Roman Lang
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
| | - Stefano Espinoza
- Istituto
Italiano di Tecnologia, 16163 Genova, Italy
- Dipartimento
di Scienze della Salute, Università
del Piemonte Orientale, 28100 Novara, Italy
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| |
Collapse
|
8
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Guo L, Cheng J, Lian S, Liu Q, Lu Y, Zheng Y, Zhu K, Zhang M, Kong Y, Zhang C, Rong N, Zhuang Y, Fang G, Jiang J, Zhang T, Han X, Liu Z, Xia M, Liu S, Zhang L, Liberles SD, Yu X, Xu Y, Yang F, Li Q, Sun JP. Structural basis of amine odorant perception by a mammal olfactory receptor. Nature 2023; 618:193-200. [PMID: 37225986 DOI: 10.1038/s41586-023-06106-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
Odorants are detected as smell in the nasal epithelium of mammals by two G-protein-coupled receptor families, the odorant receptors and the trace amine-associated receptors1,2 (TAARs). TAARs emerged following the divergence of jawed and jawless fish, and comprise a large monophyletic family of receptors that recognize volatile amine odorants to elicit both intraspecific and interspecific innate behaviours such as attraction and aversion3-5. Here we report cryo-electron microscopy structures of mouse TAAR9 (mTAAR9) and mTAAR9-Gs or mTAAR9-Golf trimers in complex with β-phenylethylamine, N,N-dimethylcyclohexylamine or spermidine. The mTAAR9 structures contain a deep and tight ligand-binding pocket decorated with a conserved D3.32W6.48Y7.43 motif, which is essential for amine odorant recognition. In the mTAAR9 structure, a unique disulfide bond connecting the N terminus to ECL2 is required for agonist-induced receptor activation. We identify key structural motifs of TAAR family members for detecting monoamines and polyamines and the shared sequence of different TAAR members that are responsible for recognition of the same odour chemical. We elucidate the molecular basis of mTAAR9 coupling to Gs and Golf by structural characterization and mutational analysis. Collectively, our results provide a structural basis for odorant detection, receptor activation and Golf coupling of an amine olfactory receptor.
Collapse
MESH Headings
- Animals
- Mice
- Biogenic Amines/analysis
- Biogenic Amines/chemistry
- Biogenic Amines/metabolism
- Cryoelectron Microscopy
- GTP-Binding Protein alpha Subunits, Gs/chemistry
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Protein alpha Subunits, Gs/ultrastructure
- Odorants/analysis
- Olfactory Perception/physiology
- Polyamines/analysis
- Polyamines/chemistry
- Polyamines/metabolism
- Receptors, Biogenic Amine/chemistry
- Receptors, Biogenic Amine/genetics
- Receptors, Biogenic Amine/metabolism
- Receptors, Biogenic Amine/ultrastructure
- Receptors, Odorant/chemistry
- Receptors, Odorant/genetics
- Receptors, Odorant/metabolism
- Receptors, Odorant/ultrastructure
- Smell/physiology
- Spermidine/analysis
- Spermidine/chemistry
- Spermidine/metabolism
Collapse
Affiliation(s)
- Lulu Guo
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Jie Cheng
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Shuo Lian
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qun Liu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yuan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Kongkai Zhu
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minghui Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yalei Kong
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Naikang Rong
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yuming Zhuang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Guoxing Fang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Jingjing Jiang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Tianyao Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Xiang Han
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Zili Liu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Shangming Liu
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, China
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.
| | - Qian Li
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| | - Jin-Peng Sun
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
10
|
Vaganova AN, Katolikova NV, Murtazina RZ, Kuvarzin SR, Gainetdinov RR. Public Transcriptomic Data Meta-Analysis Demonstrates TAAR6 Expression in the Mental Disorder-Related Brain Areas in Human and Mouse Brain. Biomolecules 2022; 12:biom12091259. [PMID: 36139098 PMCID: PMC9496192 DOI: 10.3390/biom12091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled trace amine-associated receptors (TAAR) recognize different classes of amine compounds, including trace amines or other exogenous and endogenous molecules. Yet, most members of the TAAR family (TAAR2-TAAR9) are considered olfactory receptors involved in sensing innate odors. In this study, TAAR6 mRNA expression was evaluated in the brain transcriptomic datasets available in the GEO, Allen Brain Atlas, and GTEx databases. Transcriptomic data analysis demonstrated ubiquitous weak TAAR6 mRNA expression in the brain, especially in the prefrontal cortex and nucleus accumbens. RNA sequencing of isolated cells from the nucleus accumbens showed that the expression of TAAR6 in some cell populations may be more pronounced than in whole-tissue samples. Curiously, in D1 and D2 medium spiny neurons of the nucleus accumbens, TAAR6 expression was co-regulated with genes involved in G protein-coupled receptor signaling. However, in cholinergic interneurons of the nucleus accumbens, TAAR6 expression was not associated with the activation of any specific biological process. Finally, TAAR6 expression in the mouse prefrontal cortex was validated experimentally by RT-PCR analysis. These data demonstrated that TAAR6 is expressed at low levels in the human and mouse brain, particularly in limbic structures involved in the pathogenesis of mental disorders, and thus might represent a new pharmacotherapeutic target.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Nataliia V. Katolikova
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Savelii R. Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
- St. Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|