1
|
Bontpart T, Weiss A, Vile D, Gérard F, Lacombe B, Reichheld JP, Mari S. Growing on calcareous soils and facing climate change. TRENDS IN PLANT SCIENCE 2024; 29:1319-1330. [PMID: 38570279 DOI: 10.1016/j.tplants.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Soil calcium carbonate (CaCO3) impacts plant mineral nutrition far beyond Fe metabolism, imposing constraints for crop growth and quality in calcareous agrosystems. Our knowledge on plant strategies to tolerate CaCO3 effects mainly refers to Fe acquisition. This review provides an update on plant cellular and molecular mechanisms recently described to counteract the negative effects of CaCO3 in soils, as well as recent efforts to identify genetic bases involved in CaCO3 tolerance from natural populations, that could be exploited to breed CaCO3-tolerant crops. Finally, we review the impact of environmental factors (soil water content, air CO2, and temperature) affecting soil CaCO3 equilibrium and plant tolerance to calcareous soils, and we propose strategies for improvement in the context of climate change.
Collapse
Affiliation(s)
- Thibaut Bontpart
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
| | - Denis Vile
- LEPSE, INRAE, Institut Agro, Université de Montpellier, 2 Place P. Viala, F-34060, Montpellier cédex 2, France
| | - Frédéric Gérard
- UMR Eco&Sols, INRAE, IRD, CIRAD, Institut Agro, Université de Montpellier, Montpellier, France
| | - Benoît Lacombe
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Stéphane Mari
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
2
|
Maya-Lastra CA, Sweeney PW, Eaton DAR, Torrez V, Maldonado C, Ore-Rengifo MI, Arakaki M, Donoghue MJ, Edwards EJ. Caught in the Act: Incipient Speciation at the Southern Limit of Viburnum in the Central Andes. Syst Biol 2024; 73:629-643. [PMID: 38832843 DOI: 10.1093/sysbio/syae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
A fundamental objective of evolutionary biology is to understand the origin of independently evolving species. Phylogenetic studies of species radiations rarely are able to document ongoing speciation; instead, modes of speciation, entailing geographic separation and/or ecological differentiation, are posited retrospectively. The Oreinotinus clade of Viburnum has radiated recently from north to south through the cloud forests of Mexico and Central America to the Central Andes. Our analyses support a hypothesis of incipient speciation in Oreinotinus at the southern edge of its geographic range, from central Peru to northern Argentina. Although several species and infraspecific taxa have been recognized in this area, multiple lines of evidence and analytical approaches (including analyses of phylogenetic relationships, genetic structure, leaf morphology, and climatic envelopes) favor the recognition of just a single species, V. seemenii. We show that what has previously been recognized as V. seemenii f. minor has recently occupied the drier Tucuman-Bolivian forest region from Samaipata in Bolivia to Salta in northern Argentina. Plants in these populations form a well-supported clade with a distinctive genetic signature and they have evolved smaller, narrower leaves. We interpret this as the beginning of a within-species divergence process that has elsewhere in the neotropics resulted repeatedly in Viburnum species with a particular set of leaf ecomorphs. Specifically, the southern populations are in the process of evolving the small, glabrous, and entire leaf ecomorph that has evolved in four other montane areas of endemism. As predicted based on our studies of leaf ecomorphs in Chiapas, Mexico, these southern populations experience generally drier conditions, with large diurnal temperature fluctuations. In a central portion of the range of V. seemenii, characterized by wetter climatic conditions, we also document what may be the initial differentiation of the leaf ecomorph with larger, pubescent, and toothy leaves. The emergence of these ecomorphs thus appears to be driven by adaptation to subtly different climatic conditions in separate geographic regions, as opposed to parapatric differentiation along elevational gradients as suggested by Viburnum species distributions in other parts of the neotropics.
Collapse
Affiliation(s)
- Carlos A Maya-Lastra
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA
- Department of Biology, Angelo State University, ASU Station #10890, San Angelo, TX, 76909, USA
| | - Patrick W Sweeney
- Division of Botany, Peabody Museum of Natural History, Yale University, 170 Whitney Ave, New Haven, CT, 06520, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution & Environmental Biology, Columbia University, 10th floor Schermerhorn Ext., 1200 Amsterdan Ave, New York, NY, 10027, USA
| | - Vania Torrez
- Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, P.O. Box 10077, La Paz, Bolivia
| | - Carla Maldonado
- Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, P.O. Box 10077, La Paz, Bolivia
| | - Malu I Ore-Rengifo
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, USA
| | - Mónica Arakaki
- Museo de Historia Natural & Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, P.O. Box 15072, Lima, Peru
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA
| |
Collapse
|
3
|
Zhao WY, Liu ZC, Shi S, Li JL, Xu KW, Huang KY, Chen ZH, Wang YR, Huang CY, Wang Y, Chen JR, Sun XL, Liang WX, Guo W, Wang LY, Meng KK, Li XJ, Yin QY, Zhou RC, Wang ZD, Wu H, Cui DF, Su ZY, Xin GR, Liu WQ, Shu WS, Jin JH, Boufford DE, Fan Q, Wang L, Chen SF, Liao WB. Landform and lithospheric development contribute to the assembly of mountain floras in China. Nat Commun 2024; 15:5139. [PMID: 38886388 PMCID: PMC11183111 DOI: 10.1038/s41467-024-49522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Although it is well documented that mountains tend to exhibit high biodiversity, how geological processes affect the assemblage of montane floras is a matter of ongoing research. Here, we explore landform-specific differences among montane floras based on a dataset comprising 17,576 angiosperm species representing 140 Chinese mountain floras, which we define as the collection of all angiosperm species growing on a specific mountain. Our results show that igneous bedrock (granitic and karst-granitic landforms) is correlated with higher species richness and phylogenetic overdispersion, while the opposite is true for sedimentary bedrock (karst, Danxia, and desert landforms), which is correlated with phylogenetic clustering. Furthermore, we show that landform type was the primary determinant of the assembly of evolutionarily older species within floras, while climate was a greater determinant for younger species. Our study indicates that landform type not only affects montane species richness, but also contributes to the composition of montane floras. To explain the assembly and differentiation of mountain floras, we propose the 'floristic geo-lithology hypothesis', which highlights the role of bedrock and landform processes in montane floristic assembly and provides insights for future research on speciation, migration, and biodiversity in montane regions.
Collapse
Affiliation(s)
- Wan-Yi Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Cheng Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- College of Resource Environment and Tourism, Capital Normal University, Beijing, China
| | - Shi Shi
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Jie-Lan Li
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Kang-You Huang
- School of Earth Science and Engineering, Sun Yat-sen University, Zhuhai, China
| | - Zhi-Hui Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ya-Rong Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui-Ying Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Jing-Rui Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xian-Ling Sun
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen, China
| | - Wen-Xing Liang
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Long-Yuan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kai-Kai Meng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu-Jie Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qian-Yi Yin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ren-Chao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Dong Wang
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen, China
| | - Hao Wu
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen, China
| | - Da-Fang Cui
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Zhi-Yao Su
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Guo-Rong Xin
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Wei-Qiu Liu
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Wen-Sheng Shu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Hua Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Lei Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing, China.
| | - Su-Fang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Wen-Bo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- School of Ecology, Sun Yat-sen University, Shenzhen, China.
- School of Agriculture, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
4
|
An ZX, Shi LG, Hou GY, Zhou HL, Xun WJ. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal 2024; 18:101147. [PMID: 38843669 DOI: 10.1016/j.animal.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 06/22/2024] Open
Abstract
Understanding the genetic characteristics of indigenous goat breeds is crucial for their conservation and breeding efforts. Hainan black goats, as a native breed of south China's tropical island province of Hainan, possess distinctive traits such as black hair, a moderate growth rate, good meat quality, and small body size. However, they exhibit exceptional resilience to rough feeding conditions, possess high-quality meat, and show remarkable resistance to stress and heat. In this study, we resequenced the whole genome of Hainan black goats to study the economic traits and genetic basis of these goats, we leveraged whole-genome sequencing data from 33 Hainan black goats to analyze single nucleotide polymorphism (SNP) density, Runs of homozygosity (ROH), Integrated Haplotype Score (iHS), effective population size (Ne), Nucleotide diversity Analysis (Pi) and selection characteristics. Our findings revealed that Hainan black goats harbor a substantial degree of genetic variation, with a total of 23 608 983 SNPs identified. Analysis of ROHs identified 53 710 segments, predominantly composed of short fragments, with inbreeding events mainly occurring in ancient ancestors, the estimates of inbreeding based on ROH in Hainan black goats typically exhibit moderate values ranging from 0.107 to 0.186. This is primarily attributed to significant declines in the effective population size over recent generations. Moreover, we identified 921 candidate genes within the intersection candidate region of ROH and iHS. Several of these genes are associated with crucial traits such as immunity (PTPRC, HYAL1, HYAL2, HYAL3, CENPE and PKN1), heat tolerance (GNG2, MAPK8, CAPN2, SLC1A1 and LEPR), meat quality (ACOX1, SSTR1, CAMK2B, PPP2CA and PGM1), cashmere production (AKT4, CHRM2, OXTR, AKT3, HMCN1 and CDK19), and stress resistance (TLR2, IFI44, ENPP1, STK3 and NFATC1). The presence of these genes may be attributed to the genetic adaptation of Hainan black goats to local climate conditions. The insights gained from this study provide valuable references and a solid foundation for the preservation, breeding, and utilization of Hainan black goats and their valuable genetic resources.
Collapse
Affiliation(s)
- Z X An
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - L G Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - G Y Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - H L Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - W J Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Zhou H, Zhang X, Liu H, Ma J, Hao F, Ye H, Wang Y, Zhang S, Yue M, Zhao P. Chromosome-level genome assembly of Platycarya strobilacea. Sci Data 2024; 11:269. [PMID: 38443357 PMCID: PMC10914804 DOI: 10.1038/s41597-024-03107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Platycarya strobilacea belongs to the walnut family (Juglandaceae), is commonly known as species endemic to East Asia, and is an ecologically important, wind pollinated, woody deciduous tree. To facilitate this ancient tree for the ecological value and conservation of this ancient tree, we report a new high-quality genome assembly of P. strobilacea. The genome size was 677.30 Mb, with a scaffold N50 size of 45,791,698 bp, and 98.43% of the assembly was anchored to 15 chromosomes. We annotated 32,246 protein-coding genes in the genome, of which 96.30% were functionally annotated in six databases. This new high-quality assembly of P. strobilacea provide valuable resource for the phylogenetic and evolutionary analysis of the walnut family and angiosperm.
Collapse
Affiliation(s)
- Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xuedong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fan Hao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yaling Wang
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ming Yue
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
6
|
Groh JS, Vik DC, Stevens KA, Brown PJ, Langley CH, Coop G. Distinct ancient structural polymorphisms control heterodichogamy in walnuts and hickories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.23.573205. [PMID: 38187547 PMCID: PMC10769452 DOI: 10.1101/2023.12.23.573205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The maintenance of stable mating type polymorphisms is a classic example of balancing selection, underlying the nearly ubiquitous 50/50 sex ratio in species with separate sexes. One lesser known but intriguing example of a balanced mating polymorphism in angiosperms is heterodichogamy - polymorphism for opposing directions of dichogamy (temporal separation of male and female function in hermaphrodites) within a flowering season. This mating system is common throughout Juglandaceae, the family that includes globally important and iconic nut and timber crops - walnuts (Juglans), as well as pecan and other hickories (Carya). In both genera, heterodichogamy is controlled by a single dominant allele. We fine-map the locus in each genus, and find two ancient (>50 Mya) structural variants involving different genes that both segregate as genus-wide trans-species polymorphisms. The Juglans locus maps to a ca. 20 kb structural variant adjacent to a probable trehalose phosphate phosphatase (TPPD-1), homologs of which regulate floral development in model systems. TPPD-1 is differentially expressed between morphs in developing male flowers, with increased allele-specific expression of the dominant haplotype copy. Across species, the dominant haplotype contains a tandem array of duplicated sequence motifs, part of which is an inverted copy of the TPPD-1 3' UTR. These repeats generate various distinct small RNAs matching sequences within the 3' UTR and further downstream. In contrast to the single-gene Juglans locus, the Carya heterodichogamy locus maps to a ca. 200-450 kb cluster of tightly linked polymorphisms across 20 genes, some of which have known roles in flowering and are differentially expressed between morphs in developing flowers. The dominant haplotype in pecan, which is nearly always heterozygous and appears to rarely recombine, shows markedly reduced genetic diversity and is over twice as long as its recessive counterpart due to accumulation of various types of transposable elements. We did not detect either genetic system in other heterodichogamous genera within Juglandaceae, suggesting that additional genetic systems for heterodichogamy may yet remain undiscovered.
Collapse
Affiliation(s)
- Jeffrey S Groh
- Department of Evolution and Ecology, University of California, Davis
- Center for Population Biology, University of California, Davis
| | - Diane C Vik
- Department of Evolution and Ecology, University of California, Davis
| | - Kristian A Stevens
- Department of Evolution and Ecology, University of California, Davis
- Department of Computer Science, University of California, Davis
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis
| | - Charles H Langley
- Department of Evolution and Ecology, University of California, Davis
- Center for Population Biology, University of California, Davis
| | - Graham Coop
- Department of Evolution and Ecology, University of California, Davis
- Center for Population Biology, University of California, Davis
| |
Collapse
|
7
|
Lipánová V, Kabátová KN, Zeisek V, Kolář F, Chrtek J. Evolution of the Sabulina verna group (Caryophyllaceae) in Europe: A deep split, followed by secondary contacts, multiple allopolyploidization and colonization of challenging substrates. Mol Phylogenet Evol 2023; 189:107940. [PMID: 37820762 DOI: 10.1016/j.ympev.2023.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
One of the major goals of contemporary evolutionary biology is to elucidate the relative roles of allopatric and ecological differentiation and polyploidy in speciation. In this study, we address the taxonomically intricate Sabulina verna group, which has a disjunct Arctic-alpine postglacial range in Europe and occupies a broad range of ecological niches, including substrates toxic to plants. Using genome-wide ddRAD sequencing combined with morphometric analyses based on extensive sampling of 111 natural populations, we aimed to disentangle internal evolutionary relationships and examine their correspondence with the pronounced edaphic and ploidy diversity within the group. We identified two spatially distinct groups of diploids: a widespread Arctic-alpine group and a spatially restricted yet diverse Balkan group. Most tetraploids exhibited a considerably admixed ancestry derived from both these groups, suggesting their allopolyploid origin. Four genetic clusters in congruence with geography and mostly supported by morphological traits were recognized in the diploid Arctic-alpine group. Tetraploids are split into two distinct and geographically vicariant groups, indicating their repeated polytopic origin. Furthermore, our results also revealed at least five-fold parallel colonization of toxic substrates (serpentine and metalliferous), altogether demonstrating a complex interaction between geography, challenging substrates and polyploidy in the evolution of the group. Finally, we propose a new taxonomic treatment of this complex.
Collapse
Affiliation(s)
- Veronika Lipánová
- Department of Botany, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic; Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | | - Vojtěch Zeisek
- Department of Botany, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Jindřich Chrtek
- Department of Botany, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic.
| |
Collapse
|