1
|
Pardo I, Fagundes PB, de Oliveira RS, Campregher PV. A molecular approach to triple-negative breast cancer: targeting the Notch signaling pathway. EINSTEIN-SAO PAULO 2024; 22:eRW0552. [PMID: 38324848 PMCID: PMC10948095 DOI: 10.31744/einstein_journal/2024rw0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer is an aggressive subtype of breast cancer characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. This phenotype renders triple-negative breast cancer cells refractory to conventional therapies, resulting in poor clinical outcomes and an urgent need for novel therapeutic approaches. Recent studies have implicated dysregulation of the Notch receptor signaling pathway in the development and progression of triple-negative breast cancer. OBJECTIVE This study aimed to conduct a comprehensive literature review to identify potential therapeutic targets of the Notch pathway. Our analysis focused on the upstream and downstream components of this pathway to identify potential therapeutic targets. RESULTS Modulating the Notch signaling pathway may represent a promising therapeutic strategy to treat triple-negative breast cancer. Several potential therapeutic targets within this pathway are in the early stages of development, including upstream (such as Notch ligands) and downstream (including specific molecules involved in triple-negative breast cancer growth). These targets represent potential avenues for therapeutic intervention in triple-negative breast cancer. COMMENTS Additional research specifically addressing issues related to toxicity and improving drug delivery methods is critical for the successful translation of these potential therapeutic targets into effective treatments for patients with triple-negative breast cancer.
Collapse
Affiliation(s)
- Isabele Pardo
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| | - Pedro Brecheret Fagundes
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| | - Rafael Santana de Oliveira
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| | - Paulo Vidal Campregher
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein , Hospital Israelita Albert Einstein , São Paulo , SP , Brazil .
| |
Collapse
|
2
|
Padovano C, Bianco SD, Sansico F, De Santis E, Tamiro F, Colucci M, Totti B, Di Iasio S, Bruno G, Panelli P, Miscio G, Mazza T, Giambra V. The Notch1 signaling pathway directly modulates the human RANKL-induced osteoclastogenesis. Sci Rep 2023; 13:21199. [PMID: 38040752 PMCID: PMC10692129 DOI: 10.1038/s41598-023-48615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
Notch signaling is an evolutionary conserved pathway with a key role in tissue homeostasis, differentiation and proliferation. It was reported that Notch1 receptor negatively regulates mouse osteoclast development and formation by inhibiting the expression of macrophage colony-stimulating factor in mesenchymal cells. Nonetheless, the involvement of Notch1 pathway in the generation of human osteoclasts is still controversial. Here, we report that the constitutive activation of Notch1 signaling induced a differentiation block in human mononuclear CD14+ cells directly isolated from peripheral blood mononuclear cells (PBMCs) upon in vitro stimulation to osteoclasts. Additionally, using a combined approach of single-cell RNA sequencing (scRNA-Seq) simultaneously with a panel of 31 oligo-conjugated antibodies against cell surface markers (AbSeq assay) as well as unsupervised learning methods, we detected four different cell stages of human RANKL-induced osteoclastogenesis after 5 days in which Notch1 signaling enforces the cell expansion of specific subsets. These cell populations were characterized by distinct gene expression and immunophenotypic profiles and active Notch1, JAK/STAT and WNT signaling pathways. Furthermore, cell-cell communication analyses revealed extrinsic modulators of osteoclast progenitors including the IL7/IL7R and WNT5a/RYK axes. Interestingly, we also report that Interleukin-7 receptor (IL7R) was a downstream effector of Notch1 pathway and that Notch1 and IL7R interplay promoted cell expansion of human RANKL-induced osteoclast progenitors. Taken together, these findings underline a novel cell pattern of human osteoclastogenesis, outlining the key role of Notch1 and IL-7R signaling pathways.
Collapse
Affiliation(s)
- Costanzo Padovano
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Salvatore Daniele Bianco
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Francesca Sansico
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Elisabetta De Santis
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Francesco Tamiro
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Mattia Colucci
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Beatrice Totti
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Serena Di Iasio
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Gaja Bruno
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Patrizio Panelli
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Giuseppe Miscio
- Clinical Laboratory Analysis and Transfusional Medicine, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Vincenzo Giambra
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy.
| |
Collapse
|
3
|
Mitsiadis TA, Pagella P, Capellini TD, Smith MM. The Notch-mediated circuitry in the evolution and generation of new cell lineages: the tooth model. Cell Mol Life Sci 2023; 80:182. [PMID: 37330998 DOI: 10.1007/s00018-023-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain distinctive cell fates within organs and tissues along evolution.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Linköpings Universitet, 581 85, Linköping, Sweden
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Moya Meredith Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, London, UK
| |
Collapse
|
4
|
Gui Z, Lv M, Han M, Li S, Mo Z. Effect of CPP-related genes on GnRH secretion and Notch signaling pathway during puberty. Biomed J 2022; 46:100575. [PMID: 36528337 DOI: 10.1016/j.bj.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Puberty is a complex biological process of sexual development, influenced by genetic, metabolic-nutritional, environmental and socioeconomic factors, characterized by the development of secondary sexual characteristics, maturation of the gonads, leading to the acquisition of reproductive capacity. The onset of central precocious puberty (CPP) is mainly associated with the early activation of the hypothalamic-pituitary-gonadal (HPG) axis and increased secretion of gonadotropin-releasing hormone (GnRH), leading to increased pituitary secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and activation of gonadal function. Due to the expense and invasiveness of current diagnostic testing and drug therapies for CPP, it would be helpful to find serum and genetic markers to facilitate diagnosis. In this paper, we summarized the related factors that may affect the expression of GnRH1 gene and the secretion and action pathway of GnRH and related sex hormones, and found several potential targets, such as MKRN3, DLK1 and KISS1. Although, the specific mechanism still needs to be further studied, we would be encouraged if the insights from this review could provide new insights for future research and clinical diagnosis and treatment of CPP.
Collapse
Affiliation(s)
- Zihao Gui
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China; Clinical Medicine of Hengyang Medical School, University of South China, Hengyang, China
| | - Mei Lv
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China; Anshun City People's Hospital, Anshun, Guizhou, China
| | - Min Han
- Clinical Medicine of Hengyang Medical School, University of South China, Hengyang, China
| | - Shan Li
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Zhongcheng Mo
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
5
|
Duan JL, Ruan B, Song P, Fang ZQ, Yue ZS, Liu JJ, Dou GR, Han H, Wang L. Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P16 axis. Hepatology 2022; 75:584-599. [PMID: 34687050 DOI: 10.1002/hep.32209] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The mechanisms involved in liver regeneration after partial hepatectomy (pHx) are complicated. Cellular senescence, once linked to aging, plays a pivotal role in wound repair. However, the regulatory effects of cellular senescence on liver regeneration have not been fully elucidated. APPROACH AND RESULTS Mice subjected to pHx were analyzed 14 days after surgery. The incomplete remodeling of liver sinusoids affected shear stress-induced endothelial nitric oxide synthase (eNOS) signaling on day 14, resulting in the accumulation of senescent LSECs. Removing macrophages to augment LSEC senescence led to a malfunction of the regenerating liver. A dynamic fluctuation in Notch activity accompanied senescent LSEC accumulation during liver regeneration. Endothelial Notch activation by using Cdh5-CreERT NICeCA mice triggered LSEC senescence and senescence-associated secretory phenotype, which disrupted liver regeneration. Blocking the Notch by γ-secretase inhibitor (GSI) diminished senescence and promoted LSEC expansion. Mechanically, Notch-hairy and enhancer of split 1 signaling inhibited sirtuin 1 (Sirt1) transcription by binding to its promoter region. Activation of Sirt1 by SRT1720 neutralized the up-regulation of P53, P21, and P16 caused by Notch activation and eliminated Notch-driven LSEC senescence. Finally, Sirt1 activator promoted liver regeneration by abrogating LSEC senescence and improving sinusoid remodeling. CONCLUSIONS Shear stress-induced LSEC senescence driven by Notch interferes with liver regeneration after pHx. Sirt1 inhibition accelerates liver regeneration by abrogating Notch-driven senescence, providing a potential opportunity to target senescent cells and facilitate liver repair after injury.
Collapse
Affiliation(s)
- Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Qiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen-Sheng Yue
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Rodrigues ACBDC, Costa RGA, Silva SLR, Dias IRSB, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 2021; 160:103277. [PMID: 33716201 DOI: 10.1016/j.critrevonc.2021.103277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) remains the most lethal of leukemias and a small population of cells called leukemic stem cells (LSCs) has been associated with disease relapses. Some cell signaling pathways play an important role in AML survival, proliferation and self-renewal properties and are abnormally activated or suppressed in LSCs. This includes the NF-κB, Wnt/β-catenin, Hedgehog, Notch, EGFR, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD and PPAR pathways. This review aimed to discuss these pathways as molecular targets for eliminating AML LSCs. Herein, inhibitors/activators of these pathways were summarized as a potential new anti-AML therapy capable of eliminating LSCs to guide future researches. The clinical use of cell signaling pathways data can be useful to enhance the anti-AML therapy.
Collapse
Affiliation(s)
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
7
|
Vlachakis D, Papageorgiou L, Papadaki A, Georga M, Kossida S, Eliopoulos E. An updated evolutionary study of the Notch family reveals a new ancient origin and novel invariable motifs as potential pharmacological targets. PeerJ 2020; 8:e10334. [PMID: 33194454 PMCID: PMC7649014 DOI: 10.7717/peerj.10334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/19/2020] [Indexed: 01/02/2023] Open
Abstract
Notch family proteins play a key role in a variety of developmental processes by controlling cell fate decisions and operating in a great number of biological processes in several organ systems, such as hematopoiesis, somatogenesis, vasculogenesis, neurogenesis and homeostasis. The Notch signaling pathway is crucial for the majority of developmental programs and regulates multiple pathogenic processes. Notch family receptors' activation has been largely related to its multiple effects in sustaining oncogenesis. The Notch signaling pathway constitutes an ancient and conserved mechanism for cell to cell communication. Much of what is known about Notch family proteins function comes from studies done in Caenorhabditis Elegans and Drosophila Melanogaster. Although, human Notch homologs had also been identified, the molecular mechanisms which modulate the Notch signaling pathway remained substantially unknown. In this study, an updated evolutionary analysis of the Notch family members among 603 different organisms of all kingdoms, from bacteria to humans, was performed in order to discover key regions that have been conserved throughout evolution and play a major role in the Notch signaling pathway. The major goal of this study is the presentation of a novel updated phylogenetic tree for the Notch family as a reliable phylogeny "map", in order to correlate information of the closely related members and identify new possible pharmacological targets that can be used in pathogenic cases, including cancer.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Louis Papageorgiou
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariadne Papadaki
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Maria Georga
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Sofia Kossida
- IMGT, The International ImMunoGeneTics Information System, Université de Montpellier, Laboratoire d’ImmunoGénétique Moléculaire and Institut de Génétique Humaine, University of Montpellier, Montpellier, France
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
8
|
McIntyre B, Asahara T, Alev C. Overview of Basic Mechanisms of Notch Signaling in Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:9-27. [PMID: 32072496 DOI: 10.1007/978-3-030-36422-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway associated with the development and differentiation of all metazoans. It is needed for proper germ layer formation and segmentation of the embryo and controls the timing and duration of differentiation events in a dynamic manner. Perturbations of Notch signaling result in blockades of developmental cascades, developmental anomalies, and cancers. An in-depth understanding of Notch signaling is thus required to comprehend the basis of development and cancer, and can be further exploited to understand and direct the outcomes of targeted cellular differentiation into desired cell types and complex tissues from pluripotent or adult stem and progenitor cells. In this chapter, we briefly summarize the molecular, evolutionary, and developmental basis of Notch signaling. We will focus on understanding the basics of Notch signaling and its signaling control mechanisms, its developmental outcomes and perturbations leading to developmental defects, as well as have a brief look at mutations of the Notch signaling pathway causing human hereditary disorders or cancers.
Collapse
Affiliation(s)
| | | | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Wang J, Liu Z, Bellen HJ, Yamamoto S. Navigating MARRVEL, a Web-Based Tool that Integrates Human Genomics and Model Organism Genetics Information. J Vis Exp 2019:10.3791/59542. [PMID: 31475990 PMCID: PMC7401700 DOI: 10.3791/59542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Through whole-exome/genome sequencing, human geneticists identify rare variants that segregate with disease phenotypes. To assess if a specific variant is pathogenic, one must query many databases to determine whether the gene of interest is linked to a genetic disease, whether the specific variant has been reported before, and what functional data is available in model organism databases that may provide clues about the gene's function in human. MARRVEL (Model organism Aggregated Resources for Rare Variant ExpLoration) is a one-stop data collection tool for human genes and variants and their orthologous genes in seven model organisms including in mouse, rat, zebrafish, fruit fly, nematode worm, fission yeast, and budding yeast. In this Protocol, we provide an overview of what MARRVEL can be used for and discuss how different datasets can be used to assess whether a variant of unknown significance (VUS) in a known disease-causing gene or a variant in a gene of uncertain significance (GUS) may be pathogenic. This protocol will guide a user through searching multiple human databases simultaneously starting with a human gene with or without a variant of interest. We also discuss how to utilize data from OMIM, ExAC/gnomAD, ClinVar, Geno2MP, DGV and DECHIPHER. Moreover, we illustrate how to interpret a list of ortholog candidate genes, expression patterns, and GO terms in model organisms associated with each human gene. Furthermore, we discuss the value protein structural domain annotations provided and explain how to use the multiple species protein alignment feature to assess whether a variant of interest affects an evolutionarily conserved domain or amino acid. Finally, we will discuss three different use-cases of this website. MARRVEL is an easily accessible open access website designed for both clinical and basic researchers and serves as a starting point to design experiments for functional studies.
Collapse
Affiliation(s)
- Julia Wang
- Program in Developmental Biology, Baylor College of Medicine; Medical Scientist Training Program, Baylor College of Medicine
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital; Department of Molecular and Human Genetics, Baylor College of Medicine; Department of Neuroscience, Baylor College of Medicine; Howard Hughes Medical Institute, Baylor College of Medicine
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital; Department of Molecular and Human Genetics, Baylor College of Medicine; Department of Neuroscience, Baylor College of Medicine;
| |
Collapse
|
10
|
Krishna BM, Jana S, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Lett 2019; 461:123-131. [PMID: 31326555 DOI: 10.1016/j.canlet.2019.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023]
Abstract
The Notch signaling pathway, which is highly conserved from sea urchins to humans, plays an important role in cell-differentiation, survival, proliferation, stem-cell renewal, and determining cell fate during development and morphogenesis. It is well established that signaling pathways are dysregulated in a wide-range of diseases, including human malignancies. Studies suggest that the dysregulation of the Notch pathway contributes to carcinogenesis, cancer stem cell renewal, angiogenesis, and chemo-resistance. Elevated levels of Notch receptors and ligands have been associated with cancer-progression and poor survival. Furthermore, the Notch signaling pathway regulates the transcriptional activity of key target genes through crosstalk with several other signaling pathways. Indeed, increasing evidence suggests that the Notch signaling pathway may serve as a therapeutic target for the treatment of several cancers, including breast cancer. Researchers have demonstrated the anti-tumor properties of Notch inhibitors in various cancer types. Currently, Notch inhibitors are being evaluated for anticancer efficacy in a number of clinical-trials. However, because there are multiple Notch receptors that can exhibit either oncogenic or tumor-suppressing roles in various cells, it is important that the Notch inhibitors are specific to particular receptors that are tumorigenic in nature. This review critically evaluates existing Notch inhibitory drugs and strategies and summarizes the previous discoveries, current understandings, and recent developments in support of Notch receptors as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Samir Jana
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
11
|
Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev 2018; 154:122-144. [PMID: 29940277 DOI: 10.1016/j.mod.2018.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
Bilaterian embryos are triploblastic organisms which develop three complete germ layers (ectoderm, mesoderm, and endoderm). While the ectoderm develops mainly from the animal hemisphere, there is diversity in the location from where the endoderm and the mesoderm arise in relation to the animal-vegetal axis, ranging from endoderm being specified between the ectoderm and mesoderm in echinoderms, and the mesoderm being specified between the ectoderm and the endoderm in vertebrates. A common feature is that part of the mesoderm segregates from an ancient bipotential endomesodermal domain. The process of segregation is noisy during the initial steps but it is gradually refined. In this review, we discuss the role of the Notch pathway in the establishment and refinement of boundaries between germ layers in bilaterians, with special focus on its interaction with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina.
| |
Collapse
|
12
|
Lin S, Negulescu A, Bulusu S, Gibert B, Delcros JG, Ducarouge B, Rama N, Gadot N, Treilleux I, Saintigny P, Meurette O, Mehlen P. Non-canonical NOTCH3 signalling limits tumour angiogenesis. Nat Commun 2017; 8:16074. [PMID: 28719575 PMCID: PMC5520050 DOI: 10.1038/ncomms16074] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/25/2017] [Indexed: 01/22/2023] Open
Abstract
Notch signalling is a causal determinant of cancer and efforts have been made to develop targeted therapies to inhibit the so-called canonical pathway. Here we describe an unexpected pro-apoptotic role of Notch3 in regulating tumour angiogenesis independently of the Notch canonical pathway. The Notch3 ligand Jagged-1 is upregulated in a fraction of human cancer and our data support the view that Jagged-1, produced by cancer cells, is inhibiting the apoptosis induced by the aberrant Notch3 expression in tumour vasculature. We thus present Notch3 as a dependence receptor inducing endothelial cell death while this pro-apoptotic activity is blocked by Jagged-1. Along this line, using Notch3 mutant mice, we demonstrate that tumour growth and angiogenesis are increased when Notch3 is silenced in the stroma. Consequently, we show that the well-documented anti-tumour effect mediated by γ-secretase inhibition is at least in part dependent on the apoptosis triggered by Notch3 in endothelial cells. Notch signalling is deregulated in several cancers; therefore, strategies targeting this pathway are currently being explored. Here the authors report a pro-apoptotic function of Notch3 in endothelial cells; consequently, when Notch3 is silenced in stroma cells, tumour growth and angiogenesis are increased.
Collapse
Affiliation(s)
- Shuheng Lin
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Ana Negulescu
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Sirisha Bulusu
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Guy Delcros
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Benjamin Ducarouge
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nicolas Gadot
- Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Isabelle Treilleux
- Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Pierre Saintigny
- Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Olivier Meurette
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
13
|
Rutten JW, Dauwerse HG, Peters DJM, Goldfarb A, Venselaar H, Haffner C, van Ommen GJB, Aartsma-Rus AM, Lesnik Oberstein SAJ. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping:in vitroproof of concept. Brain 2016; 139:1123-35. [DOI: 10.1093/brain/aww011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022] Open
|
14
|
Murata A, Hayashi SI. Notch-Mediated Cell Adhesion. BIOLOGY 2016; 5:biology5010005. [PMID: 26784245 PMCID: PMC4810162 DOI: 10.3390/biology5010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms.
Collapse
Affiliation(s)
- Akihiko Murata
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Shin-Ichi Hayashi
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
15
|
Ramakrishnan G, Davaakhuu G, Chung WC, Zhu H, Rana A, Filipovic A, Green AR, Atfi A, Pannuti A, Miele L, Tzivion G. AKT and 14-3-3 regulate Notch4 nuclear localization. Sci Rep 2015; 5:8782. [PMID: 25740432 PMCID: PMC4350099 DOI: 10.1038/srep08782] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/03/2015] [Indexed: 02/08/2023] Open
Abstract
Members of the Notch family of transmembrane receptors, Notch1-4 in mammals, are involved in the regulation of cell fate decisions and cell proliferation in various organisms. The Notch4 isoform, which is specific to mammals, was originally identified as a viral oncogene in mice, Int3, able to initiate mammary tumors. In humans, Notch4 expression appears to be associated with breast cancer stem cells and endocrine resistance. Following ligand binding, the Notch4 receptor undergoes cleavage at the membrane and the Notch4-intracellular domain (ICD), translocates to the nucleus and regulates gene transcription. Little is known on the mechanisms regulating Notch4-ICD and its nuclear localization. Here, we describe the identification of four distinct AKT phosphorylation sites in human Notch4-ICD and demonstrate that AKT binds Notch4-ICD and phosphorylates all four sites in vitro and in vivo. The phosphorylation in cells is regulated by growth factors and is sensitive to phosphatidyl inositol-3 kinase (PI3K) inhibitors. This phosphorylation generates binding sites to the 14-3-3 regulatory proteins, which are involved in the regulation of nucleocytoplasmic shuttling of target proteins, restricting phosphorylated Notch4-ICD to the cytoplasm. Our findings provide a novel mechanism for Notch4-ICD regulation, suggesting a negative regulatory role for the PI3K-AKT pathway in Notch4 nuclear signaling.
Collapse
Affiliation(s)
| | - Gantulga Davaakhuu
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216
| | - Wen Cheng Chung
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216
| | - He Zhu
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ajay Rana
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153
| | - Aleksandra Filipovic
- Imperial College London, Division of Surgery and Cancer, Department of Oncology, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Andrew R Green
- Department of Histopathology and School of Molecular Medical Sciences, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Azeddine Atfi
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 [2] Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Antonio Pannuti
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 [2] Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Lucio Miele
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216
| | - Guri Tzivion
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 [2] Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
16
|
Abstract
Notch signaling is a master controller of the neural stem cell and neural development maintaining a significant role in the normal brain function. Notch genes are involved in embryogenesis, nervous system, and cardiovascular and endocrine function. On the other side, there are studies representing the involvement of Notch mutations in sporadic Alzheimer disease, other neurodegenerative diseases such as Down syndrome, Pick's and Prion's disease, and CADASIL. This manuscript attempts to present a holistic view of the positive or negative contribution of Notch signaling in the adult brain, and at the same time to present and promote the promising research fields of study.
Collapse
|
17
|
Richtsmeier JT, Flaherty K. Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol 2013; 125:469-89. [PMID: 23525521 PMCID: PMC3652528 DOI: 10.1007/s00401-013-1104-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 01/02/2023]
Abstract
The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association of brain and skull conserved over evolutionary time obvious in the study of development and disease.
Collapse
Affiliation(s)
- Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA.
| | | |
Collapse
|
18
|
Zhang L, Ma H. Complex evolutionary history and diverse domain organization of SET proteins suggest divergent regulatory interactions. THE NEW PHYTOLOGIST 2012; 195:248-63. [PMID: 22510098 DOI: 10.1111/j.1469-8137.2012.04143.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Plants and animals possess very different developmental processes, yet share conserved epigenetic regulatory mechanisms, such as histone modifications. One of the most important forms of histone modification is methylation on lysine residues of the tails, carried out by members of the SET protein family, which are widespread in eukaryotes. • We analyzed molecular evolution by comparative genomics and phylogenetics of the SET genes from plant and animal genomes, grouping SET genes into several subfamilies and uncovering numerous gene duplications, particularly in the Suv, Ash, Trx and E(z) subfamilies. • Domain organizations differ between different subfamilies and between plant and animal SET proteins in some subfamilies, and support the grouping of SET genes into seven main subfamilies, suggesting that SET proteins have acquired distinctive regulatory interactions during evolution. We detected evidence for independent evolution of domain organization in different lineages, including recruitment of new domains following some duplications. • More recent duplications in both vertebrates and land plants are probably the result of whole-genome or segmental duplications. The evolution of the SET gene family shows that gene duplications caused by segmental duplications and other mechanisms have probably contributed to the complexity of epigenetic regulation, providing insights into the evolution of the regulation of chromatin structure.
Collapse
Affiliation(s)
- Liangsheng Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
19
|
Falix FA, Aronson DC, Lamers WH, Gaemers IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:988-95. [PMID: 22353464 DOI: 10.1016/j.bbadis.2012.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.
Collapse
Affiliation(s)
- Farah A Falix
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
20
|
Cummins TD, Mendenhall MD, Lowry MN, Korte EA, Barati MT, Khundmiri SJ, Salyer SA, Klein JB, Powell DW. Elongin C is a mediator of Notch4 activity in human renal tubule cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1748-57. [PMID: 22001063 DOI: 10.1016/j.bbapap.2011.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/12/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Notch proteins (Notch 1-4) are a family of trans-membrane cell surface receptors that are converted into transcriptional regulators when activated by interactions with cell surface ligands on adjacent cells. Ligand-binding stimulates proteolytic cleavage of the trans-membrane domain, releasing an active intracellular domain (ICD) that translocates to the nucleus and impacts transcription. In transit, the ICD may interact with regulatory proteins that modulate the expression and transcriptional activity. We have found that Notch4(ICD) expression is enhanced in the tubule cells of fibrotic kidneys from diabetic mice and humans and identified Notch4(ICD) interacting proteins that could be pertinent to normal and pathological functions. Using proteomic techniques, several components of the Elongin C complex were identified as candidate Notch4(ICD) interactors. Elongin C complexes can function as ubiquitin ligases capable of regulating proteasomal degradation of specific protein substrates. Our studies indicate that ectopic Elongin C expression stimulates Notch4(ICD) degradation and inhibits its transcriptional activity in human kidney tubule HK11 cells. Blocking Elongin C mediated degradation by MG132 indicates the potential for ubiquitin-mediated Elongin C regulation of Notch4(ICD). Functional interaction of Notch4(ICD) and Elongin C provides novel insight into regulation of Notch signaling in epithelial cell biology and disease.
Collapse
Affiliation(s)
- Timothy D Cummins
- Departments of Biochemistry and Molecular Biology, University of Kentucky, KY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Peng X, Pentassuglia L, Sawyer DB. Emerging anticancer therapeutic targets and the cardiovascular system: is there cause for concern? Circ Res 2010; 106:1022-34. [PMID: 20360265 DOI: 10.1161/circresaha.109.211276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The race for a cure to cancer continues, fueled by unprecedented discoveries of fundamental biology underlying carcinogenesis and tumorigenesis. The expansion of the target list and tools to approach them is moving the oncology community extraordinarily rapidly to clinical trials, bringing new hope for cancer patients. This effort is also propelling biological discoveries in cardiovascular research, because many of the targets being explored in cancer play fundamental roles in the heart and vasculature. The combined efforts of cardiovascular and cancer biologists, along with clinical investigators in these fields, will be needed to understand how to safely exploit these efforts. Here, we discuss a few of the many research foci in oncology where we believe such collaboration will be particularly important.
Collapse
Affiliation(s)
- Xuyang Peng
- Cardiovascular Medicine, Vanderbilt University Medical Center, PRB 359B Pierce Ave., Nashville, TN 37232, USA.
| | | | | |
Collapse
|