1
|
Henson MW, Thrash JC. Microbial ecology of northern Gulf of Mexico estuarine waters. mSystems 2024; 9:e0131823. [PMID: 38980056 PMCID: PMC11334486 DOI: 10.1128/msystems.01318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.
Collapse
Affiliation(s)
- Michael W. Henson
- Department of Biological Sciences, Northern University, DeKalb, Illinois, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Abstract
Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.
Collapse
Affiliation(s)
- Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Cindy J Castelle
- Innovative Genomics Institute and Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
| | - Jillian F Banfield
- Innovative Genomics Institute and Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
3
|
Jurdzinski KT, Mehrshad M, Delgado LF, Deng Z, Bertilsson S, Andersson AF. Large-scale phylogenomics of aquatic bacteria reveal molecular mechanisms for adaptation to salinity. SCIENCE ADVANCES 2023; 9:eadg2059. [PMID: 37235649 PMCID: PMC10219603 DOI: 10.1126/sciadv.adg2059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The crossing of environmental barriers poses major adaptive challenges. Rareness of freshwater-marine transitions separates the bacterial communities, but how these are related to brackish counterparts remains elusive, as do the molecular adaptations facilitating cross-biome transitions. We conducted large-scale phylogenomic analysis of freshwater, brackish, and marine quality-filtered metagenome-assembled genomes (11,248). Average nucleotide identity analyses showed that bacterial species rarely existed in multiple biomes. In contrast, distinct brackish basins cohosted numerous species, but their intraspecific population structures displayed clear signs of geographic separation. We further identified the most recent cross-biome transitions, which were rare, ancient, and most commonly directed toward the brackish biome. Transitions were accompanied by systematic changes in amino acid composition and isoelectric point distributions of inferred proteomes, which evolved over millions of years, as well as convergent gains or losses of specific gene functions. Therefore, adaptive challenges entailing proteome reorganization and specific changes in gene content constrains the cross-biome transitions, resulting in species-level separation between aquatic biomes.
Collapse
Affiliation(s)
- Krzysztof T. Jurdzinski
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luis Fernando Delgado
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ziling Deng
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders F. Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
4
|
von Meijenfeldt FAB, Hogeweg P, Dutilh BE. A social niche breadth score reveals niche range strategies of generalists and specialists. Nat Ecol Evol 2023; 7:768-781. [PMID: 37012375 PMCID: PMC10172124 DOI: 10.1038/s41559-023-02027-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/27/2023] [Indexed: 04/05/2023]
Abstract
Generalists can survive in many environments, whereas specialists are restricted to a single environment. Although a classical concept in ecology, niche breadth has remained challenging to quantify for microorganisms because it depends on an objective definition of the environment. Here, by defining the environment of a microorganism as the community it resides in, we integrated information from over 22,000 environmental sequencing samples to derive a quantitative measure of the niche, which we call social niche breadth. At the level of genera, we explored niche range strategies throughout the prokaryotic tree of life. We found that social generalists include opportunists that stochastically dominate local communities, whereas social specialists are stable but low in abundance. Social generalists have a more diverse and open pan-genome than social specialists, but we found no global correlation between social niche breadth and genome size. Instead, we observed two distinct evolutionary strategies, whereby specialists have relatively small genomes in habitats with low local diversity, but relatively large genomes in habitats with high local diversity. Together, our analysis shines data-driven light on microbial niche range strategies.
Collapse
Affiliation(s)
- F A Bastiaan von Meijenfeldt
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands.
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
5
|
Bizic M, Brad T, Ionescu D, Barbu-Tudoran L, Zoccarato L, Aerts JW, Contarini PE, Gros O, Volland JM, Popa R, Ody J, Vellone D, Flot JF, Tighe S, Sarbu SM. Cave Thiovulum (Candidatus Thiovulum stygium) differs metabolically and genomically from marine species. THE ISME JOURNAL 2023; 17:340-353. [PMID: 36528730 PMCID: PMC9938260 DOI: 10.1038/s41396-022-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Thiovulum spp. (Campylobacterota) are large sulfur bacteria that form veil-like structures in aquatic environments. The sulfidic Movile Cave (Romania), sealed from the atmosphere for ~5 million years, has several aqueous chambers, some with low atmospheric O2 (~7%). The cave's surface-water microbial community is dominated by bacteria we identified as Thiovulum. We show that this strain, and others from subsurface environments, are phylogenetically distinct from marine Thiovulum. We assembled a closed genome of the Movile strain and confirmed its metabolism using RNAseq. We compared the genome of this strain and one we assembled from public data from the sulfidic Frasassi caves to four marine genomes, including Candidatus Thiovulum karukerense and Ca. T. imperiosus, whose genomes we sequenced. Despite great spatial and temporal separation, the genomes of the Movile and Frasassi Thiovulum were highly similar, differing greatly from the very diverse marine strains. We concluded that cave Thiovulum represent a new species, named here Candidatus Thiovulum stygium. Based on their genomes, cave Thiovulum can switch between aerobic and anaerobic sulfide oxidation using O2 and NO3- as electron acceptors, the latter likely via dissimilatory nitrate reduction to ammonia. Thus, Thiovulum is likely important to both S and N cycles in sulfidic caves. Electron microscopy analysis suggests that at least some of the short peritrichous structures typical of Thiovulum are type IV pili, for which genes were found in all strains. These pili may play a role in veil formation, by connecting adjacent cells, and in the motility of these exceptionally fast swimmers.
Collapse
Affiliation(s)
- Mina Bizic
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Dep 3, Plankton and Microbial Ecology, Zur Alte Fischerhütte 2, OT Neuglobsow, 16775, Stechlin, Germany. .,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| | - Traian Brad
- "Emil Racoviţă" Institute of Speleology, Clinicilor 5-7, 400006, Cluj-Napoca Romania, Romania.
| | - Danny Ionescu
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Dep 3, Plankton and Microbial Ecology, Zur Alte Fischerhütte 2, OT Neuglobsow, 16775, Stechlin, Germany. .,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| | - Lucian Barbu-Tudoran
- grid.7399.40000 0004 1937 1397Center for Electron Microscopy, “Babeș-Bolyai” University, Clinicilor 5, 400006 Cluj-Napoca, Romania
| | - Luca Zoccarato
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Dep 3, Plankton and Microbial Ecology, Zur Alte Fischerhütte 2, OT Neuglobsow, 16775 Stechlin, Germany ,grid.5173.00000 0001 2298 5320Institute of Computational Biology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 3, 31180 Vienna, Austria
| | - Joost W. Aerts
- grid.12380.380000 0004 1754 9227Department of Molecular Cell Physiology, Faculty of Earth and Life sciences, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Paul-Emile Contarini
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 97110 Pointe-à-Pitre, France ,Laboratory for Research in Complex Systems, Menlo Park, CA USA
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 97110 Pointe-à-Pitre, France
| | - Jean-Marie Volland
- Laboratory for Research in Complex Systems, Menlo Park, CA USA ,grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 94720 Berkeley, CA USA
| | - Radu Popa
- River Road Research, 62 Leslie St, Buffalo, NY 1421 USA
| | - Jessica Ody
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), C.P. 160/12, Avenue F.D. Roosevelt 50, 1050 Brussels, Belgium
| | - Daniel Vellone
- grid.59062.380000 0004 1936 7689Vermont Integrative Genomics Lab, University of Vermont Cancer Center, Health Science Research Facility, Burlington, Vermont, VT 05405 USA
| | - Jean-François Flot
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), C.P. 160/12, Avenue F.D. Roosevelt 50, 1050 Brussels, Belgium ,Interuniversity Institute of Bioinformatics in Brussels—(IB)², Brussels, Belgium
| | - Scott Tighe
- grid.59062.380000 0004 1936 7689Vermont Integrative Genomics Lab, University of Vermont Cancer Center, Health Science Research Facility, Burlington, Vermont, VT 05405 USA
| | - Serban M. Sarbu
- grid.501624.40000 0001 2260 1489“Emil Racoviţă” Institute of Speleology, Frumoasă 31-B, 010986 Bucureşti, Romania ,grid.253555.10000 0001 2297 1981Department of Biological Sciences, California State University, Chico, CA 95929 USA
| |
Collapse
|
6
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
7
|
Rojas MVR, Alonso DP, Dropa M, Razzolini MTP, de Carvalho DP, Ribeiro KAN, Ribolla PEM, Sallum MAM. Next-Generation High-Throughput Sequencing to Evaluate Bacterial Communities in Freshwater Ecosystem in Hydroelectric Reservoirs. Microorganisms 2022; 10:1398. [PMID: 35889116 PMCID: PMC9322053 DOI: 10.3390/microorganisms10071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
The quality of aquatic ecosystems is a major public health concern. The assessment and management of a freshwater system and the ecological monitoring of microorganisms that are present in it can provide indicators of the environment and water quality to protect human and animal health. with bacteria is. It is a major challenge to monitor the microbiological bacterial contamination status of surface water associated with anthropogenic activities within rivers and freshwater reservoirs. Understanding the composition of aquatic microbial communities can be beneficial for the early detection of pathogens, improving our knowledge of their ecological niches, and characterizing the assemblages of microbiota responsible for the degradation of contaminants and microbial substrates. The present study aimed to characterize the bacterial microbiota of water samples collected alongside the Madeira River and its small tributaries in rural areas near the Santo Antonio Energia hydroelectric power plant (SAE) reservoir in the municipality of Porto Velho, Rondonia state, Western Brazil. An Illumina 16s rRNA metagenomic approach was employed and the physicochemical characteristics of the water sample were assessed. We hypothesized that both water metagenomics and physicochemical parameters would vary across sampling sites. The most abundant genera found in the study were Acinetobacter, Deinococcus, and Pseudomonas. PERMANOVA and ANCOM analysis revealed that collection points sampled at the G4 location presented a significantly different microbiome compared to any other group, with the Chlamidomonadaceae family and Enhydrobacter genus being significantly more abundant. Our findings support the use of metagenomics to assess water quality standards for the protection of human and animal health in this microgeographic region.
Collapse
Affiliation(s)
- Martha Virginia R. Rojas
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.V.R.R.); (M.A.M.S.)
- FUNDUNESP—Fundação para o Desenvolvimento da UNESP, São Paulo 01009-906, Brazil
| | - Diego Peres Alonso
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.V.R.R.); (M.A.M.S.)
- Instituto de Biotecnologia da UNESP (IBTEC-Campus Botucatu), São Paulo 18607-440, Brazil;
| | - Milena Dropa
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.D.); (M.T.P.R.)
| | - Maria Tereza P. Razzolini
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.D.); (M.T.P.R.)
| | | | | | | | - Maria Anice M. Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.V.R.R.); (M.A.M.S.)
| |
Collapse
|
8
|
Okamura B, Gruhl A, De Baets K. Evolutionary transitions of parasites between freshwater and marine environments. Integr Comp Biol 2022; 62:345-356. [PMID: 35604852 DOI: 10.1093/icb/icac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Evolutionary transitions of organisms between environments have long fascinated biologists but attention has focused almost exclusively on free-living organisms and challenges to achieve such transitions. This bias requires addressing because parasites are a major component of biodiversity. We address this imbalance by focusing on transitions of parasitic animals between marine and freshwater environments. We highlight parasite traits and processes that may influence transition likelihood (e.g. transmission mode, life cycle, host use), and consider mechanisms and directions of transitions. Evidence for transitions in deep time and at present are described, and transitions in our changing world are considered. We propose that environmental transitions may be facilitated for endoparasites because hosts reduce exposure to physiologically challenging environments and argue that adoption of an endoparasitic lifestyle entails an equivalent transitioning process as organisms switch from living in one environment (e.g. freshwater, seawater, or air) to living symbiotically within hosts. Environmental transitions of parasites have repeatedly resulted in novel forms and diversification, contributing to the tree of life. Recognising the potential processes underlying present-day and future environmental transitions is crucial in view of our changing world and the current biodiversity crisis.
Collapse
Affiliation(s)
- Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | | | - Kenneth De Baets
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| |
Collapse
|
9
|
Zang L, Liu Y, Song X, Cai L, Liu K, Luo T, Zhang R. Unique T4-like phages in high-altitude lakes above 4500 m on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149649. [PMID: 34428653 DOI: 10.1016/j.scitotenv.2021.149649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Viruses are the most abundant biological entities in the biosphere; however, little is known about viral ecology in high altitude lakes. Here, we characterized viruses from 13 lakes, nine of which located ≥4500 m above sea level, on the Tibetan Plateau, the highest plateau on Earth. The abundance of virus-like particle (VLP) in Tibetan lakes ranged from 4.8 ± 0.2 × 105 VLPs mL-1 to 6.0 ± 0.2 × 107 VLPs mL-1 and the virus-to-bacterium ratio was in the lower range of values reported for other lakes. The viral population size was positively correlated with turbidity and negatively correlated with particulate organic carbon concentration. Highly diverse VLP morphologies, including large (~300 nm) morphotypes, were observed. Phylogenetic analysis of T4-like bacteriophages based on major capsid gene (g23) identified a novel viral group, which were detected in abundance in hyposaline and mesosaline Tibetan lakes. Adaptation to lake evolution, water source (glacier-fed or non-glacier-fed) and environmental conditions (e.g., salinity, phosphorus concentration and productivity) are likely responsible for the variation in T4-like myovirus community composition in contrasting Tibetan lakes. This first investigation of viruses in high-altitude alpine lakes above 4500 m could contribute to our understanding of viral ecology in global alpine lakes.
Collapse
Affiliation(s)
- Lin Zang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Science, Beijing 100101, China.
| | - Xuanying Song
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
10
|
Zhang D, Zhu Z, Li Y, Li X, Guan Z, Zheng J. Comparative Genomics of Exiguobacterium Reveals What Makes a Cosmopolitan Bacterium. mSystems 2021; 6:e0038321. [PMID: 34282940 PMCID: PMC8407118 DOI: 10.1128/msystems.00383-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Although the strategies used by bacteria to adapt to specific environmental conditions are widely reported, fewer studies have addressed how microbes with a cosmopolitan distribution can survive in diverse ecosystems. Exiguobacterium is a versatile genus whose members are commonly found in various habitats. To better understand the mechanisms underlying the universality of Exiguobacterium, we collected 105 strains from diverse environments and performed large-scale metabolic and adaptive ability tests. We found that most Exiguobacterium members have the capacity to survive under wide ranges of temperature, salinity, and pH. According to phylogenetic and average nucleotide identity analyses, we identified 27 putative species and classified two genetic groups: groups I and II. Comparative genomic analysis revealed that the Exiguobacterium members utilize a variety of complex polysaccharides and proteins to support survival in diverse environments and also employ a number of chaperonins and transporters for this purpose. We observed that the group I species can be found in more diverse terrestrial environments and have a larger genome size than the group II species. Our analyses revealed that the expansion of transporter families drove genomic expansion in group I strains, and we identified 25 transporter families, many of which are involved in the transport of important substrates and resistance to environmental stresses and are enriched in group I strains. This study provides important insights into both the overall general genetic basis for the cosmopolitan distribution of a bacterial genus and the evolutionary and adaptive strategies of Exiguobacterium. IMPORTANCE The wide distribution characteristics of Exiguobacterium make it a valuable model for studying the adaptive strategies of bacteria that can survive in multiple habitats. In this study, we reveal that members of the Exiguobacterium genus have a cosmopolitan distribution and share an extensive adaptability that enables them to survive in various environments. The capacities shared by Exiguobacterium members, such as their diverse means of polysaccharide utilization and environmental-stress resistance, provide an important basis for their cosmopolitan distribution. Furthermore, the selective expansion of transporter families has been a main driving force for genomic evolution in Exiguobacterium. Our findings improve our understanding of the adaptive and evolutionary mechanisms of cosmopolitan bacteria and the vital genomic traits that can facilitate niche adaptation.
Collapse
Affiliation(s)
- Dechao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaolu Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yangjie Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Ziyu Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Dam A, Marshall IPG, Risgaard‐Petersen N, Burdorf LDW, Marzocchi U. Effect of salinity on cable bacteria species composition and diversity. Environ Microbiol 2021; 23:2605-2616. [PMID: 33760391 PMCID: PMC8252435 DOI: 10.1111/1462-2920.15484] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023]
Abstract
Cable bacteria (CB) are Desulfobulbaceae that couple sulphide oxidation to oxygen reduction over centimetre distances by mediating electric currents. Recently, it was suggested that the CB clade is composed of two genera, Ca. Electronema and Ca. Electrothrix, with distinct freshwater and marine habitats respectively. However, only a few studies have reported CB from freshwater sediment, making this distinction uncertain. Here, we report novel data to show that salinity is a controlling factor for the diversity and the species composition within CB populations. CB sampled from a freshwater site (salinity 0.3) grouped into Ca. Electronema and could not grow under brackish conditions (salinity 21), whereas CB from a brackish site (salinity 21) grouped into Ca. Electrothrix and decreased by 93% in activity under freshwater conditions. On a regional scale (Baltic Sea), salinity significantly influenced species richness and composition. However, other environmental factors, such as temperature and quantity and quality of organic matter were also important to explain the observed variation. A global survey of 16S rRNA gene amplicon sequencing revealed that the two genera did not co-occur likely because of competitive exclusion and identified a possible third genus.
Collapse
Affiliation(s)
- Ann‐Sofie Dam
- Center for Electromicrobiology, Section for Microbiology, Department of BiologyAarhus UniversityAarhusDenmark
| | - Ian P. G. Marshall
- Center for Electromicrobiology, Section for Microbiology, Department of BiologyAarhus UniversityAarhusDenmark
| | - Nils Risgaard‐Petersen
- Center for Electromicrobiology, Section for Microbiology, Department of BiologyAarhus UniversityAarhusDenmark
- Section of Aquatic Biology, Department of BiologyAarhus UniversityAarhusDenmark
| | - Laurine D. W. Burdorf
- Center for Electromicrobiology, Section for Microbiology, Department of BiologyAarhus UniversityAarhusDenmark
- Centre of Excellence for Microbial Systems Technology, Department of BiologyUniversity of AntwerpWilrijk2610Belgium
| | - Ugo Marzocchi
- Center for Electromicrobiology, Section for Microbiology, Department of BiologyAarhus UniversityAarhusDenmark
- Center for Water Technology (WATEC), Department of BiologyAarhus UniversityAarhusDenmark
| |
Collapse
|
12
|
Chen LX, Zhao Y, McMahon KD, Mori JF, Jessen GL, Nelson TC, Warren LA, Banfield JF. Wide Distribution of Phage That Infect Freshwater SAR11 Bacteria. mSystems 2019. [PMID: 31641047 DOI: 10.1101/672428v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Fonsibacter (LD12 subclade) is among the most abundant bacterioplankton in freshwater ecosystems. These bacteria belong to the order Pelagibacterales (SAR11) and are related to Pelagibacter (marine SAR11), which dominates many marine habitats. Although a few Pelagibacter phage (Pelagiphage) have been described, no phage that infect Fonsibacter have been reported. In this study, we describe two groups of Podoviridae phage that infect Fonsibacter A complete Fonsibacter genome containing a prophage was reconstructed from metagenomic data. A circularized and complete genome related to the prophage, referred to as uv-Fonsiphage-EPL (lysogenic strategy), shows high similarity to marine Pelagiphage HTVC025P. Additionally, we reconstructed three complete genomes and one draft genome of phage related to marine Pelagiphage HTVC010P and predicted a lytic strategy. The similarity in codon usage and cooccurrence patterns of HTVC010P-related phage and Fonsibacter suggested that these phage infect Fonsibacter Similar phage were detected in Lake Mendota, Wisconsin, where Fonsibacter is also present. A search of related phage revealed the worldwide distribution of some genotypes in freshwater ecosystems, suggesting their substantial role in shaping indigenous microbial assemblages and influence on biogeochemical cycling. However, the uv-Fonsiphage-EPL and one group of HTVC010P-related phage have a more limited distribution in freshwater ecosystems. Overall, the findings provide insights into the genomic features of phage that infect Fonsibacter and expand understanding of the ecology and evolution of these important bacteria.IMPORTANCE Fonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsibacter and infecting phage and revealed their close relatedness to the phage infecting marine SAR11 members. Also, we illustrated that phage that infect Fonsibacter are widely distributed in freshwater habitats. In summary, the results contribute new insights into the ecology and evolution of Fonsibacter and phage.
Collapse
Affiliation(s)
- Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, USA
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jiro F Mori
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Gerdhard L Jessen
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | | | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
- School of Geography and Earth Science, McMaster University, Hamilton, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Innovative Genomics Institute at UC Berkeley, Berkeley, California, USA
- The University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Abstract
Fonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsibacter and infecting phage and revealed their close relatedness to the phage infecting marine SAR11 members. Also, we illustrated that phage that infect Fonsibacter are widely distributed in freshwater habitats. In summary, the results contribute new insights into the ecology and evolution of Fonsibacter and phage. Fonsibacter (LD12 subclade) is among the most abundant bacterioplankton in freshwater ecosystems. These bacteria belong to the order Pelagibacterales (SAR11) and are related to Pelagibacter (marine SAR11), which dominates many marine habitats. Although a few Pelagibacter phage (Pelagiphage) have been described, no phage that infect Fonsibacter have been reported. In this study, we describe two groups of Podoviridae phage that infect Fonsibacter. A complete Fonsibacter genome containing a prophage was reconstructed from metagenomic data. A circularized and complete genome related to the prophage, referred to as uv-Fonsiphage-EPL (lysogenic strategy), shows high similarity to marine Pelagiphage HTVC025P. Additionally, we reconstructed three complete genomes and one draft genome of phage related to marine Pelagiphage HTVC010P and predicted a lytic strategy. The similarity in codon usage and cooccurrence patterns of HTVC010P-related phage and Fonsibacter suggested that these phage infect Fonsibacter. Similar phage were detected in Lake Mendota, Wisconsin, where Fonsibacter is also present. A search of related phage revealed the worldwide distribution of some genotypes in freshwater ecosystems, suggesting their substantial role in shaping indigenous microbial assemblages and influence on biogeochemical cycling. However, the uv-Fonsiphage-EPL and one group of HTVC010P-related phage have a more limited distribution in freshwater ecosystems. Overall, the findings provide insights into the genomic features of phage that infect Fonsibacter and expand understanding of the ecology and evolution of these important bacteria. IMPORTANCEFonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsibacter and infecting phage and revealed their close relatedness to the phage infecting marine SAR11 members. Also, we illustrated that phage that infect Fonsibacter are widely distributed in freshwater habitats. In summary, the results contribute new insights into the ecology and evolution of Fonsibacter and phage.
Collapse
|
14
|
Žerdoner Čalasan A, Kretschmann J, Gottschling M. They are young, and they are many: dating freshwater lineages in unicellular dinophytes. Environ Microbiol 2019; 21:4125-4135. [DOI: 10.1111/1462-2920.14766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Anže Žerdoner Čalasan
- Department Biologie/Chemie, Botanik Universität Osnabrück Barbarastr. 11, 49076 Osnabrück Germany
- Department Biologie Systematische Botanik und Mykologie, GeoBio‐Center, Ludwig‐Maximilians‐Universität München Menzinger Street. 67, 80638 Munich Germany
| | - Juliane Kretschmann
- Department Biologie Systematische Botanik und Mykologie, GeoBio‐Center, Ludwig‐Maximilians‐Universität München Menzinger Street. 67, 80638 Munich Germany
| | - Marc Gottschling
- Department Biologie Systematische Botanik und Mykologie, GeoBio‐Center, Ludwig‐Maximilians‐Universität München Menzinger Street. 67, 80638 Munich Germany
| |
Collapse
|
15
|
Fernández-Gómez B, Díez B, Polz MF, Arroyo JI, Alfaro FD, Marchandon G, Sanhueza C, Farías L, Trefault N, Marquet PA, Molina-Montenegro MA, Sylvander P, Snoeijs-Leijonmalm P. Bacterial community structure in a sympagic habitat expanding with global warming: brackish ice brine at 85-90 °N. THE ISME JOURNAL 2019; 13:316-333. [PMID: 30228379 PMCID: PMC6331608 DOI: 10.1038/s41396-018-0268-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/11/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023]
Abstract
Larger volumes of sea ice have been thawing in the Central Arctic Ocean (CAO) during the last decades than during the past 800,000 years. Brackish brine (fed by meltwater inside the ice) is an expanding sympagic habitat in summer all over the CAO. We report for the first time the structure of bacterial communities in this brine. They are composed of psychrophilic extremophiles, many of them related to phylotypes known from Arctic and Antarctic regions. Community structure displayed strong habitat segregation between brackish ice brine (IB; salinity 2.4-9.6) and immediate sub-ice seawater (SW; salinity 33.3-34.9), expressed at all taxonomic levels (class to genus), by dominant phylotypes as well as by the rare biosphere, and with specialists dominating IB and generalists SW. The dominant phylotypes in IB were related to Candidatus Aquiluna and Flavobacterium, those in SW to Balneatrix and ZD0405, and those shared between the habitats to Halomonas, Polaribacter and Shewanella. A meta-analysis for the oligotrophic CAO showed a pattern with Flavobacteriia dominating in melt ponds, Flavobacteriia and Gammaproteobacteria in solid ice cores, Flavobacteriia, Gamma- and Betaproteobacteria, and Actinobacteria in brine, and Alphaproteobacteria in SW. Based on our results, we expect that the roles of Actinobacteria and Betaproteobacteria in the CAO will increase with global warming owing to the increased production of meltwater in summer. IB contained three times more phylotypes than SW and may act as an insurance reservoir for bacterial diversity that can act as a recruitment base when environmental conditions change.
Collapse
Affiliation(s)
- Beatriz Fernández-Gómez
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
- INTA-Universidad de Chile, Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile.
- Center for Climate and Resilience Research, Concepción, Chile.
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - José Ignacio Arroyo
- Department of Ecology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Germán Marchandon
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Cynthia Sanhueza
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Laura Farías
- Center for Climate and Resilience Research, Concepción, Chile
- Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
| | - Pablo A Marquet
- Department of Ecology, Pontifical University Catholic of Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Coquimbo, Chile
| | - Peter Sylvander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
16
|
Paver SF, Muratore D, Newton RJ, Coleman ML. Reevaluating the Salty Divide: Phylogenetic Specificity of Transitions between Marine and Freshwater Systems. mSystems 2018; 3:e00232-18. [PMID: 30443603 PMCID: PMC6234284 DOI: 10.1128/msystems.00232-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
Marine and freshwater microbial communities are phylogenetically distinct, and transitions between habitat types are thought to be infrequent. We compared the phylogenetic diversity of marine and freshwater microorganisms and identified specific lineages exhibiting notably high or low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA gene tag-sequencing data sets. As expected, marine and freshwater microbial communities differed in the relative abundance of major phyla and contained habitat-specific lineages. At the same time, and contrary to expectations, many shared taxa were observed in both habitats. Based on several metrics, we found that Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria contained the highest number of closely related marine and freshwater sequences, suggesting comparatively recent habitat transitions in these groups. Using the abundant alphaproteobacterial group SAR11 as an example, we found evidence that new lineages, beyond the recognized LD12 clade, are detected in freshwater at low but reproducible abundances; this evidence extends beyond the 16S rRNA locus to core genes throughout the genome. Our results suggest that shared taxa are numerous, but tend to occur sporadically and at low relative abundance in one habitat type, leading to an underestimation of transition frequency between marine and freshwater habitats. Rare taxa with abundances near or below detection, including lineages that appear to have crossed the salty divide relatively recently, may possess adaptations enabling them to exploit opportunities for niche expansion when environments are disturbed or conditions change. IMPORTANCE The distribution of microbial diversity across environments yields insight into processes that create and maintain this diversity as well as potential to infer how communities will respond to future environmental changes. We integrated data sets from dozens of freshwater lake and marine samples to compare diversity across open water habitats differing in salinity. Our novel combination of sequence-based approaches revealed lineages that likely experienced a recent transition across habitat types. These taxa are promising targets for studying physiological constraints on salinity tolerance. Our findings contribute to understanding the ecological and evolutionary controls on microbial distributions, and open up new questions regarding the plasticity and adaptability of particular lineages.
Collapse
Affiliation(s)
- Sara F. Paver
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Daniel Muratore
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Maureen L. Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME JOURNAL 2018; 12:1846-1860. [PMID: 29599519 PMCID: PMC6018831 DOI: 10.1038/s41396-018-0092-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 11/08/2022]
Abstract
Evolutionary transitions between fresh and salt water happen infrequently among bacterioplankton. Within the ubiquitous and highly abundant heterotrophic Alphaproteobacteria order Pelagibacterales (SAR11), most members live in marine habitats, but the LD12 subclade has evolved as a unique freshwater lineage. LD12 cells occur as some of the most dominant freshwater bacterioplankton, yet this group has remained elusive to cultivation, hampering a more thorough understanding of its biology. Here, we report the first successful isolation of an LD12 representative, strain LSUCC0530, using high-throughput dilution-to-extinction cultivation methods, and its complete genome sequence. Growth experiments corroborate ecological data suggesting active populations of LD12 in brackish water up to salinities of ~5. LSUCC0530 has the smallest closed genome thus far reported for a SAR11 strain (1.16 Mbp). The genome affirms many previous metabolic predictions from cultivation-independent analyses, like a complete Embden–Meyerhof–Parnas glycolysis pathway, but also provides novel insights, such as the first isocitrate dehydrogenase in LD12, a likely homologous recombination of malate synthase from outside of the SAR11 clade, and analogous substitutions of ion transporters with others that occur throughout the rest of the SAR11 clade. Growth data support metagenomic recruitment results suggesting temperature-based ecotype diversification within LD12. Key gene losses for osmolyte uptake provide a succinct hypothesis for the evolutionary transition of LD12 from salt to freshwater. For strain LSUCC0530, we propose the provisional nomenclature Candidatus fonsibacter ubiquis.
Collapse
|
18
|
Shen D, Jürgens K, Beier S. Experimental insights into the importance of ecologically dissimilar bacteria to community assembly along a salinity gradient. Environ Microbiol 2018; 20:1170-1184. [DOI: 10.1111/1462-2920.14059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/18/2017] [Accepted: 01/27/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Dandan Shen
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Department of Biological Oceanography, Seestr. 15; D-18119 Rostock Germany
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Department of Biological Oceanography, Seestr. 15; D-18119 Rostock Germany
| | - Sara Beier
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Department of Biological Oceanography, Seestr. 15; D-18119 Rostock Germany
| |
Collapse
|
19
|
Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans. Appl Environ Microbiol 2017; 84:AEM.02116-17. [PMID: 29030444 DOI: 10.1128/aem.02116-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/07/2017] [Indexed: 11/20/2022] Open
Abstract
The genus Limnohabitans (Comamonadaceae, Betaproteobacteria) is a common and a highly active component of freshwater bacterioplanktonic communities. To date, the genus has been considered to contain only heterotrophic species. In this study, we detected the photosynthesis genes pufLM and bchY in 28 of 46 strains from three Limnohabitans lineages. The pufM sequences obtained are very closely related to environmental pufM sequences detected in various freshwater habitats, indicating the ubiquity and potential importance of photoheterotrophic Limnohabitans in nature. Additionally, we sequenced and analyzed the genomes of 5 potentially photoheterotrophic Limnohabitans strains, to gain further insights into their phototrophic capacity. The structure of the photosynthesis gene cluster turned out to be highly conserved within the genus Limnohabitans and also among all potentially photosynthetic Betaproteobacteria strains. The expression of photosynthetic complexes was detected in a culture of Limnohabitans planktonicus II-D5T using spectroscopic and pigment analyses. This was further verified by a novel combination of infrared microscopy and fluorescent in situ hybridization.IMPORTANCE The data presented document that the capacity to perform anoxygenic photosynthesis is common among the members of the genus Limnohabitans, indicating that they may have a novel role in freshwater habitats.
Collapse
|
20
|
Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations. ISME JOURNAL 2017; 12:742-755. [PMID: 29222442 PMCID: PMC5962901 DOI: 10.1038/s41396-017-0001-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 08/16/2017] [Accepted: 10/09/2017] [Indexed: 01/25/2023]
Abstract
To understand the forces driving differentiation and diversification in wild bacterial populations, we must be able to delineate and track ecologically relevant units through space and time. Mapping metagenomic sequences to reference genomes derived from the same environment can reveal genetic heterogeneity within populations, and in some cases, be used to identify boundaries between genetically similar, but ecologically distinct, populations. Here we examine population-level heterogeneity within abundant and ubiquitous freshwater bacterial groups such as the acI Actinobacteria and LD12 Alphaproteobacteria (the freshwater sister clade to the marine SAR11) using 33 single-cell genomes and a 5-year metagenomic time series. The single-cell genomes grouped into 15 monophyletic clusters (termed “tribes”) that share at least 97.9% 16S rRNA identity. Distinct populations were identified within most tribes based on the patterns of metagenomic read recruitments to single-cell genomes representing these tribes. Genetically distinct populations within tribes of the acI Actinobacterial lineage living in the same lake had different seasonal abundance patterns, suggesting these populations were also ecologically distinct. In contrast, sympatric LD12 populations were less genetically differentiated. This suggests that within one lake, some freshwater lineages harbor genetically discrete (but still closely related) and ecologically distinct populations, while other lineages are composed of less differentiated populations with overlapping niches. Our results point at an interplay of evolutionary and ecological forces acting on these communities that can be observed in real time.
Collapse
|
21
|
Gołębiewski M, Całkiewicz J, Creer S, Piwosz K. Tideless estuaries in brackish seas as possible freshwater-marine transition zones for bacteria: the case study of the Vistula river estuary. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:129-143. [PMID: 27935224 DOI: 10.1111/1758-2229.12509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Most bacteria are found either in marine or fresh waters and transitions between the two habitats are rare, even though freshwater and marine bacteria co-occur in brackish habitats. Estuaries in brackish, tideless seas could be habitats where the transition of freshwater phylotypes to marine conditions occurs. We tested this hypothesis in the Gulf of Gdańsk (Baltic Sea) by comparing bacterial communities from different zones of the estuary, via pyrosequencing of 16S rRNA amplicons. We predicted the existence of a core microbiome (CM, a set of abundant OTUs present in all samples) comprising OTUs consisting of populations specific for particular zones of the estuary. The CMs for the entire studied period consisted of only eight OTUs, and this number was even lower for specific seasons: five in spring, two in summer, and one in autumn and winter. Six of the CM OTUs, and another 21 of the 50 most abundant OTUs consisted of zone-specific populations, plausibly representing micro-evolutionary forces. The presence of up to 15% of freshwater phylotypes from the Vistula River in the brackish Gulf of Gdańsk supported our hypothesis, but high dissimilarity between the bacterial communities suggested that freshwater-marine transitions are rare even in tideless estuaries in brackish seas.
Collapse
Affiliation(s)
- Marcin Gołębiewski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
- Centre for Modern Interdisciplinary Research, Nicolaus Copernicus University, Toruń, Poland
| | | | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Gdynia, Poland
- Laboratory of Anoxygenic Phototrophs, Center Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, 37981, Czech Republic
| |
Collapse
|
22
|
Mitterboeck TF, Chen AY, Zaheer OA, Ma EYT, Adamowicz SJ. Do saline taxa evolve faster? Comparing relative rates of molecular evolution between freshwater and marine eukaryotes. Evolution 2016; 70:1960-78. [PMID: 27402284 DOI: 10.1111/evo.13000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022]
Abstract
The major branches of life diversified in the marine realm, and numerous taxa have since transitioned between marine and freshwaters. Previous studies have demonstrated higher rates of molecular evolution in crustaceans inhabiting continental saline habitats as compared with freshwaters, but it is unclear whether this trend is pervasive or whether it applies to the marine environment. We employ the phylogenetic comparative method to investigate relative molecular evolutionary rates between 148 pairs of marine or continental saline versus freshwater lineages representing disparate eukaryote groups, including bony fish, elasmobranchs, cetaceans, crustaceans, mollusks, annelids, algae, and other eukaryotes, using available protein-coding and noncoding genes. Overall, we observed no consistent pattern in nucleotide substitution rates linked to habitat across all genes and taxa. However, we observed some trends of higher evolutionary rates within protein-coding genes in freshwater taxa-the comparisons mainly involving bony fish-compared with their marine relatives. The results suggest no systematic differences in substitution rate between marine and freshwater organisms.
Collapse
Affiliation(s)
- T Fatima Mitterboeck
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada. .,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Alexander Y Chen
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Omar A Zaheer
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Eddie Y T Ma
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,School of Computer Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sarah J Adamowicz
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
23
|
Brindefalk B, Ekman M, Ininbergs K, Dupont CL, Yooseph S, Pinhassi J, Bergman B. Distribution and expression of microbial rhodopsins in the Baltic Sea and adjacent waters. Environ Microbiol 2016; 18:4442-4455. [DOI: 10.1111/1462-2920.13407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Björn Brindefalk
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| | - Martin Ekman
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| | - Karolina Ininbergs
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| | - Christopher L. Dupont
- Microbial and Environmental Genomics; J. Craig Venter Institute; San Diego CA 92037 USA
| | - Shibu Yooseph
- Informatics Group, J. Craig Venter Institute; San Diego CA 92037 USA
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems; Linnaeus University; Kalmar SE-391 82 Sweden
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| |
Collapse
|
24
|
Ortmann AC, Santos TTL. Spatial and temporal patterns in the Pelagibacteraceae across an estuarine gradient. FEMS Microbiol Ecol 2016; 92:fiw133. [PMID: 27387911 DOI: 10.1093/femsec/fiw133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 11/14/2022] Open
Abstract
Marine bacterial communities show strong spatial and seasonal patterns, often characterized by changes at high taxonomic levels. The Pelagibacteraceae are common members of bacterial communities, with well-documented biogeography at the subclade level. To identify patterns within the subclades, the abundance and diversity of Pelagibacteraceae were analyzed over a two-year period at four stations across an estuarine gradient. Pelagibacteraceae was the most abundant bacterial family, averaging 27% of the community, but varying from 1% to 57% in any one sample. Highest abundances were detected in autumn and winter. Pelagibacteraceae richness was lowest at the most inshore site, and highest in autumn and winter at all sites. Shannon diversity decreased in winter, when a few OTUs dominated the community. Dissolved oxygen, dissolved silicate and prokaryote abundance explained most of the variability in the Pelagibacteraceae communities, with salinity differentiating low salinity communities. The 10 most abundant OTUs included OTUs that varied across sites, with little seasonality as well as those with small site effects, but strong seasonal patterns indicating differences in the niches of individual OTUs. While salinity was important in structuring low salinity communities, higher salinity communities appear to be responding to additional environmental parameters including oxygen, nutrients and other organisms.
Collapse
Affiliation(s)
- Alice C Ortmann
- Department of Marine Sciences, University of South Alabama, Mobile, AL 36688, USA Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA
| | - Thays T L Santos
- Department of Oceanography and Limnology, Federal University of Maranhao, CEP 65080-805, Sao Luis, MA, Brazil School of Marine Science, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
25
|
Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME JOURNAL 2015; 10:665-77. [PMID: 26284443 DOI: 10.1038/ismej.2015.143] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 11/08/2022]
Abstract
Members of the archaeal Miscellaneous Crenarchaeotic Group (MCG) are among the most successful microorganisms on the planet. During its evolutionary diversification, this very diverse group has managed to cross the saline-freshwater boundary, one of the most important evolutionary barriers structuring microbial communities. However, the current understanding on the ecological significance of MCG in freshwater habitats is scarce and the evolutionary relationships between freshwater and saline MCG remains poorly known. Here, we carried out molecular phylogenies using publicly available 16S rRNA gene sequences from various geographic locations to investigate the distribution of MCG in freshwater and saline sediments and to evaluate the implications of saline-freshwater transitions during the diversification events. Our approach provided a robust ecological framework in which MCG archaea appeared as a core generalist group in the sediment realm. However, the analysis of the complex intragroup phylogeny of the 21 subgroups currently forming the MCG lineage revealed that distinct evolutionary MCG subgroups have arisen in marine and freshwater sediments suggesting the occurrence of adaptive evolution specific to each habitat. The ancestral state reconstruction analysis indicated that this segregation was mainly due to the occurrence of a few saline-freshwater transition events during the MCG diversification. In addition, a network analysis showed that both saline and freshwater MCG recurrently co-occur with archaea of the class Thermoplasmata in sediment ecosystems, suggesting a potentially relevant trophic connection between the two clades.
Collapse
|
26
|
Filker S, Gimmler A, Dunthorn M, Mahé F, Stoeck T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 2014; 19:283-95. [DOI: 10.1007/s00792-014-0713-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/16/2014] [Indexed: 11/24/2022]
|
27
|
Free-Living and Particle-Associated Bacterioplankton in Large Rivers of the Mississippi River Basin Demonstrate Biogeographic Patterns. Appl Environ Microbiol 2014; 80:7186-95. [PMID: 25217018 DOI: 10.1128/aem.01844-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
The different drainage basins of large rivers such as the Mississippi River represent interesting systems in which to study patterns in freshwater microbial biogeography. Spatial variability in bacterioplankton communities in six major rivers (the Upper Mississippi, Missouri, Illinois, Ohio, Tennessee, and Arkansas) of the Mississippi River Basin was characterized using Ion Torrent 16S rRNA amplicon sequencing. When all systems were combined, particle-associated (>3 μm) bacterial assemblages were found to be different from free-living bacterioplankton in terms of overall community structure, partly because of differences in the proportional abundance of sequences affiliated with major bacterial lineages (Alphaproteobacteria, Cyanobacteria, and Planctomycetes). Both particle-associated and free-living communities ordinated by river system, a pattern that was apparent even after rare sequences or those affiliated with Cyanobacteria were removed from the analyses. Ordination of samples by river system correlated with environmental characteristics of each river, such as nutrient status and turbidity. Communities in the Upper Mississippi and the Missouri and in the Ohio and the Tennessee, pairs of rivers that join each other, contained similar taxa in terms of presence-absence data but differed in the proportional abundance of major lineages. The most common sequence types detected in particle-associated communities were picocyanobacteria in the Synechococcus/Prochlorococcus/Cyanobium (Syn/Pro) clade, while free-living communities also contained a high proportion of LD12 (SAR11/Pelagibacter)-like Alphaproteobacteria. This research shows that while different tributaries of large river systems such as the Mississippi River harbor distinct bacterioplankton communities, there is also microhabitat variation such as that between free-living and particle-associated assemblages.
Collapse
|
28
|
Han D, Kang I, Ha HK, Kim HC, Kim OS, Lee BY, Cho JC, Hur HG, Lee YK. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting. PLoS One 2014; 9:e86887. [PMID: 24497990 PMCID: PMC3908934 DOI: 10.1371/journal.pone.0086887] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/16/2013] [Indexed: 02/01/2023] Open
Abstract
From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.
Collapse
Affiliation(s)
- Dukki Han
- Korea Polar Research Institute, KIOST, Incheon, Republic of Korea
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ilnam Kang
- Division of Biology and Ocean Sciences, Inha University, Incheon, Republic of Korea
| | - Ho Kyung Ha
- Korea Polar Research Institute, KIOST, Incheon, Republic of Korea
| | - Hyun Cheol Kim
- Korea Polar Research Institute, KIOST, Incheon, Republic of Korea
| | - Ok-Sun Kim
- Korea Polar Research Institute, KIOST, Incheon, Republic of Korea
| | - Bang Yong Lee
- Korea Polar Research Institute, KIOST, Incheon, Republic of Korea
| | - Jang-Cheon Cho
- Division of Biology and Ocean Sciences, Inha University, Incheon, Republic of Korea
| | - Hor-Gil Hur
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yoo Kyung Lee
- Korea Polar Research Institute, KIOST, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
Zaremba-Niedzwiedzka K, Viklund J, Zhao W, Ast J, Sczyrba A, Woyke T, McMahon K, Bertilsson S, Stepanauskas R, Andersson SGE. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol 2013; 14:R130. [PMID: 24286338 PMCID: PMC4053759 DOI: 10.1186/gb-2013-14-11-r130] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/28/2013] [Indexed: 12/17/2022] Open
Abstract
Background The SAR11 group of Alphaproteobacteria is highly abundant in the oceans. It contains a recently diverged freshwater clade, which offers the opportunity to compare adaptations to salt- and freshwaters in a monophyletic bacterial group. However, there are no cultivated members of the freshwater SAR11 group and no genomes have been sequenced yet. Results We isolated ten single SAR11 cells from three freshwater lakes and sequenced and assembled their genomes. A phylogeny based on 57 proteins indicates that the cells are organized into distinct microclusters. We show that the freshwater genomes have evolved primarily by the accumulation of nucleotide substitutions and that they have among the lowest ratio of recombination to mutation estimated for bacteria. In contrast, members of the marine SAR11 clade have one of the highest ratios. Additional metagenome reads from six lakes confirm low recombination frequencies for the genome overall and reveal lake-specific variations in microcluster abundances. We identify hypervariable regions with gene contents broadly similar to those in the hypervariable regions of the marine isolates, containing genes putatively coding for cell surface molecules. Conclusions We conclude that recombination rates differ dramatically in phylogenetic sister groups of the SAR11 clade adapted to freshwater and marine ecosystems. The results suggest that the transition from marine to freshwater systems has purged diversity and resulted in reduced opportunities for recombination with divergent members of the clade. The low recombination frequencies of the LD12 clade resemble the low genetic divergence of host-restricted pathogens that have recently shifted to a new host.
Collapse
|
30
|
Zhang R, Wu Q, Piceno YM, Desantis TZ, Saunders FM, Andersen GL, Liu WT. Diversity of bacterioplankton in contrasting Tibetan lakes revealed by high-density microarray and clone library analysis. FEMS Microbiol Ecol 2013; 86:277-87. [PMID: 23837564 DOI: 10.1111/1574-6941.12160] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/28/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022] Open
Abstract
Tibetan lakes represent a unique microbial environment and are a good ecosystem to investigate the microbial diversity of high mountain lakes and their relationship with environmental factors. The diversity and community structure of bacterioplankton in Tibetan lakes was determined using DNA fingerprinting analysis, high-density 16S rRNA gene microarray (PhyloChip) analysis, and extensive clone library analysis of bacterial 16S rRNA genes. A previously unseen high microbial diversity (1732 operational taxonomic units based on PhyloChip data) and numerous novel bacterial 16S rRNA gene sequences were observed. Abundant SAR11-like sequences retrieved from saline Lake Qinghai demonstrated a unique SAR11 phylogenetic sister clade related to the freshwater LD12 clade. Water chemistry (e.g. salinity) and altitude played important roles in the selection of bacterial taxa (both presence and relative abundance) in Tibetan lakes. The ubiquity and uniqueness of bacterial taxa, as well as the correlation between environmental factors and bacterial taxa, was observed to vary gradually with different phylogenetic levels. Our study suggested high microbial cosmopolitanism and high endemicity observed at higher and lower phylogenetic levels, respectively.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Environmental Science and Engineering, National University of Singapore, Singapore; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Zeng J, Deng LJ, Lou K, Zhang T, Yang HM, Shi YW, Lin Q. Molecular characterization of the planktonic microorganisms in water of two mountain brackish lakes. J Basic Microbiol 2013; 54:509-20. [DOI: 10.1002/jobm.201300187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/25/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Jun Zeng
- Institute of Microbiology; Xinjiang Academy of Agriculture Science; Urumqi China
- State Key Laboratory of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| | - Li-Juan Deng
- Institute of Microbiology; Xinjiang Academy of Agriculture Science; Urumqi China
| | - Kai Lou
- Institute of Microbiology; Xinjiang Academy of Agriculture Science; Urumqi China
| | - Tao Zhang
- Institute of Microbiology; Xinjiang Academy of Agriculture Science; Urumqi China
| | - Hong-Mei Yang
- Institute of Microbiology; Xinjiang Academy of Agriculture Science; Urumqi China
| | - Ying-Wu Shi
- Institute of Microbiology; Xinjiang Academy of Agriculture Science; Urumqi China
| | - Qing Lin
- Institute of Microbiology; Xinjiang Academy of Agriculture Science; Urumqi China
| |
Collapse
|
32
|
Tripp HJ. The unique metabolism of SAR11 aquatic bacteria. J Microbiol 2013; 51:147-53. [DOI: 10.1007/s12275-013-2671-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/11/2012] [Indexed: 01/19/2023]
|
33
|
Zeng DN, Fan ZY, Chi L, Wang X, Qu WD, Quan ZX. Analysis of the bacterial communities associated with different drinking water treatment processes. World J Microbiol Biotechnol 2013; 29:1573-84. [PMID: 23515963 DOI: 10.1007/s11274-013-1321-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
Abstract
A drinking water plant was surveyed to determine the bacterial composition of different drinking water treatment processes (DWTP). Water samples were collected from different processing steps in the plant (i.e., coagulation, sedimentation, sand filtration, and chloramine disinfection) and from distantly piped water. The samples were pyrosequensed using sample-specific oligonucleotide barcodes. The taxonomic composition of the microbial communities of different DWTP and piped water was dominated by the phylum Proteobacteria. Additionally, a large proportion of the sequences were assigned to the phyla Actinobacteria and Bacteroidetes. The piped water exhibited increasing taxonomic diversity, including human pathogens such as the Mycobacterium, which revealed a threat to the safety of drinking water. Surprisingly, we also found that a sister group of SAR11 (LD12) persisted throughout the DWTP, which was always detected in freshwater aquatic systems. Moreover, Polynucleobacter, Rhodoferax, and a group of Actinobacteria, hgcI clade, were relatively consistent throughout the processes. It is concluded that smaller-size microorganisms tended to survive against the present treatment procedure. More improvement should be made to ensure the long-distance transmission drinking water.
Collapse
Affiliation(s)
- Dan-Ning Zeng
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
34
|
Santini F, Nguyen MTT, Sorenson L, Waltzek TB, Lynch Alfaro JW, Eastman JM, Alfaro ME. Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). J Evol Biol 2013; 26:1003-18. [DOI: 10.1111/jeb.12112] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 11/28/2022]
Affiliation(s)
- F. Santini
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; Los Angeles CA USA
| | - M. T. T. Nguyen
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; Los Angeles CA USA
| | - L. Sorenson
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; Los Angeles CA USA
| | - T. B. Waltzek
- Department of Infectious Diseases and Pathology; College of Veterinary Medicine, University of Florida; Gainesville FL USA
| | - J. W. Lynch Alfaro
- Institute for Society and Genetics & Department of Anthropology; University of California Los Angeles; Los Angeles CA USA
| | - J. M. Eastman
- Department of Biological Sciences & the Institute of Bioinformatics and Evolutionary Study; University of Idaho; Moscow ID USA
| | - M. E. Alfaro
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; Los Angeles CA USA
| |
Collapse
|
35
|
Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, Rengefors K, Tranvik L, Bertilsson S. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME JOURNAL 2012; 7:937-48. [PMID: 23254515 PMCID: PMC3635229 DOI: 10.1038/ismej.2012.168] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The response of microbial communities to long-term environmental change is poorly understood. Here, we study bacterioplankton communities in a unique system of coastal Antarctic lakes that were exposed to progressive long-term environmental change, using 454 pyrosequencing of the 16S rDNA gene (V3–V4 regions). At the time of formation, most of the studied lakes harbored marine-coastal microbial communities, as they were connected to the sea. During the past 20 000 years, most lakes isolated from the sea, and subsequently they experienced a gradual, but strong, salinity change that eventually developed into a gradient ranging from freshwater (salinity 0) to hypersaline (salinity 100). Our results indicated that present bacterioplankton community composition was strongly correlated with salinity and weakly correlated with geographical distance between lakes. A few abundant taxa were shared between some lakes and coastal marine communities. Nevertheless, lakes contained a large number of taxa that were not detected in the adjacent sea. Abundant and rare taxa within saline communities presented similar biogeography, suggesting that these groups have comparable environmental sensitivity. Habitat specialists and generalists were detected among abundant and rare taxa, with specialists being relatively more abundant at the extremes of the salinity gradient. Altogether, progressive long-term salinity change appears to have promoted the diversification of bacterioplankton communities by modifying the composition of ancestral communities and by allowing the establishment of new taxa.
Collapse
Affiliation(s)
- Ramiro Logares
- Institute of Marine Sciences, CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ngugi DK, Stingl U. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea. PLoS One 2012; 7:e50274. [PMID: 23185592 PMCID: PMC3502338 DOI: 10.1371/journal.pone.0050274] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022] Open
Abstract
Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24 °C throughout the year, and a remarkable uniform temperature (~22 °C) and salinity (~41 psu) from the mixed layer (~200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea's water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium.
Collapse
MESH Headings
- Alphaproteobacteria/classification
- Alphaproteobacteria/genetics
- Base Sequence
- Biodiversity
- DNA, Bacterial
- DNA, Intergenic/classification
- DNA, Intergenic/genetics
- DNA, Intergenic/isolation & purification
- Ecosystem
- Genetic Loci
- Indian Ocean
- Molecular Sequence Data
- Phylogeny
- Plankton/classification
- Plankton/genetics
- RNA, Ribosomal, 16S/classification
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- Salinity
- Temperature
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | | |
Collapse
|
37
|
Abstract
The bacteria that can be grown in the laboratory are only a small fraction of the total diversity that exists in nature. At all levels of bacterial phylogeny, uncultured clades that do not grow on standard media are playing critical roles in cycling carbon, nitrogen, and other elements, synthesizing novel natural products, and impacting the surrounding organisms and environment. While molecular techniques, such as metagenomic sequencing, can provide some information independent of our ability to culture these organisms, it is essentially impossible to learn new gene and pathway functions from pure sequence data. A true understanding of the physiology of these bacteria and their roles in ecology, host health, and natural product production requires their cultivation in the laboratory. Recent advances in growing these species include coculture with other bacteria, recreating the environment in the laboratory, and combining these approaches with microcultivation technology to increase throughput and access rare species. These studies are unraveling the molecular mechanisms of unculturability and are identifying growth factors that promote the growth of previously unculturable organisms. This minireview summarizes the recent discoveries in this area and discusses the potential future of the field.
Collapse
|
38
|
BLOOM DD, LOVEJOY NR. Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). J Evol Biol 2012; 25:701-15. [DOI: 10.1111/j.1420-9101.2012.02464.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Abstract
AbstractMicrobes play key roles in the functioning of the biosphere. Still, our knowledge about their total diversity is very limited. In particular, we lack a clear understanding of the evolutionary dynamics occurring within their populations (i.e. among members of the same biological species). Unlike animals and plants, microbes normally have huge population sizes, high reproductive rates and the potential for unrestricted dispersal. As a consequence, the knowledge of population genetics acquired from studying animals and plants cannot be applied without extensive testing to microbes. Next generation molecular tools, like High Throughput Sequencing (e.g. 454 and Illumina) coupled to Single Cell Genomics, now allow investigating microbial populations at a very fine scale. Such techniques have the potential to shed light on several ecological and evolutionary processes occurring within microbial populations that so far have remained hidden. Furthermore, they may facilitate the identification of microbial species. Eventually, we may find an answer to the question of whether microbes and multicellular organisms follow the same or different rules in their population diversification patterns.
Collapse
|
40
|
Levipan HA, Alarcón WO, Saldías GS. Fingerprinting analysis of the prokaryote community along a marine–freshwater transect in central-southern Chile. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0353-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
41
|
Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, Cristina Souza de Oliveira T, Wagner Garcia J, Pellon de Miranda F, Henrique-Silva F. Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS One 2011; 6:e23785. [PMID: 21915244 PMCID: PMC3158796 DOI: 10.1371/journal.pone.0023785] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022] Open
Abstract
River water is a small percentage of the total freshwater on Earth but represents an essential resource for mankind. Microbes in rivers perform essential ecosystem roles including the mineralization of significant quantities of organic matter originating from terrestrial habitats. The Amazon river in particular is famous for its size and importance in the mobilization of both water and carbon out of its enormous basin. Here we present the first metagenomic study on the microbiota of this river. It presents many features in common with the other freshwater metagenome available (Lake Gatun in Panama) and much less similarity with marine samples. Among the microbial taxa found, the cosmopolitan freshwater acI lineage of the actinobacteria was clearly dominant. Group I Crenarchaea and the freshwater sister group of the marine SAR11 clade, LD12, were found alongside more exclusive and well known freshwater taxa such as Polynucleobacter. A metabolism-centric analysis revealed a disproportionate representation of pathways involved in heterotrophic carbon processing, as compared to those found in marine samples. In particular, these river microbes appear to be specialized in taking up and mineralizing allochthonous carbon derived from plant material.
Collapse
Affiliation(s)
- Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- * E-mail: (FRV); (FHS)
| | - Katherine D. McMahon
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Danyelle Toyama
- Laboratory of Molecular Biology, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - Raquel Rinke
- Laboratory of Molecular Biology, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | | | | | - Fernando Pellon de Miranda
- Petróleo Brasileiro S.A. – Petrobras, Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Melo, Rio de Janeiro, RJ, Brasil
| | - Flavio Henrique-Silva
- Laboratory of Molecular Biology, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil
- * E-mail: (FRV); (FHS)
| |
Collapse
|
42
|
Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep 2011; 1:13. [PMID: 22355532 PMCID: PMC3216501 DOI: 10.1038/srep00013] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 11/22/2022] Open
Abstract
Mitochondria share a common ancestor with the Alphaproteobacteria, but determining their precise origins is challenging due to inherent difficulties in phylogenetically reconstructing ancient evolutionary events. Nonetheless, phylogenetic accuracy improves with more refined tools and expanded taxon sampling. We investigated mitochondrial origins with the benefit of new, deeply branching genome sequences from the ancient and prolific SAR11 clade of Alphaproteobacteria and publicly available alphaproteobacterial and mitochondrial genome sequences. Using the automated phylogenomic pipeline Hal, we systematically studied the effect of taxon sampling and missing data to accommodate small mitochondrial genomes. The evidence supports a common origin of mitochondria and SAR11 as a sister group to the Rickettsiales. The simplest explanation of these data is that mitochondria evolved from a planktonic marine alphaproteobacterial lineage that participated in multiple inter-specific cell colonization events, in some cases yielding parasitic relationships, but in at least one case producing a symbiosis that characterizes modern eukaryotic life.
Collapse
|
43
|
Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol 2011; 77:3234-43. [PMID: 21460114 DOI: 10.1128/aem.02611-10] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We applied molecular, microscopic, and culture techniques to characterize the microbial communities in snow and air at remote sites in the Canadian High Arctic (Ward Hunt Island, Ellesmere Island, and Cornwallis Island, latitudes 74 to 83(o)N). Members of the Bacteria and Eukarya were prevalent in the snow, and their small subunit (SSU) rRNA gene signatures indicated strong local aerial transport within the region over the preceding 8 months of winter snowpack accumulation. Many of the operational taxonomic units (OTUs) were similar to previously reported SSU rRNA gene sequences from the Arctic Ocean, suggesting the importance of local aerial transport processes for marine microbiota. More than 47% of the cyanobacterial OTUs in the snow have been previously found in microbial mats in the region, indicating that this group was also substantially derived from local sources. Viable cyanobacteria isolated from the snow indicated free exchange between the snow and adjacent mat communities. Other sequences were most similar to those found outside the Canadian Arctic but were from snow, lake and sea ice, glaciers and permafrost, alpine regions, Antarctica, and other regions of the Arctic, supporting the concept of global distribution of microbial ecotypes throughout the cold biosphere.
Collapse
|
44
|
Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria 'that rule the waves' (LD12). ISME JOURNAL 2011; 5:1242-52. [PMID: 21412347 DOI: 10.1038/ismej.2011.8] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alphaproteobacteria are common members of marine bacterioplankton assemblages, but are believed to be rare in lacustrine systems. However, uncultured Alphaproteobacteria of the freshwater LD12 lineage form a tight monophyletic sister group with the numerically dominant bacteria in marine epipelagic waters, the SAR11 clade or genus Pelagibacter. Comparative rRNA sequence analysis reveals a global occurrence of LD12 bacteria in freshwater systems. The association of genotypic subclades with single-study systems moreover suggests a regional diversification. LD12 bacteria exhibit distinct and annually recurring spatio-temporal distribution patterns in prealpine lakes, as assessed by seasonally resolved vertical profiling and high-throughput cell counting. During the summer months, these ultramicrobacteria can form cell densities in the surface (epilimnetic) water layers that are comparable to those of their marine counterparts (>5 × 10(8) cells per l). LD12 bacteria had a pronounced preference for glutamine and glutamate over 7 other amino acids in situ, and they exhibited substantially higher uptake of these two substrates (and glycine) than the microbial assemblage in general. In addition, members of LD12 were also able to exploit other monomeric sources of organic carbon such as glucose, fructose or acetate. LD12 seemed to follow an oligotrophic lifestyle with slow but efficient uptake already at low substrate concentrations. Thus, LD12 bacteria do not only share phenotypic and metabolic traits with Pelagibacter, but also seem to thrive in the analogous spatiotemporal niche in freshwaters. The two groups together form one of the rare monophyletic lineages of ultramicrobacteria that have successfully traversed the barrier between marine and freshwater habitats.
Collapse
|
45
|
Silveira CB, Vieira RP, Cardoso AM, Paranhos R, Albano RM, Martins OB. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean. PLoS One 2011; 6:e17789. [PMID: 21408023 PMCID: PMC3052384 DOI: 10.1371/journal.pone.0017789] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 02/09/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. CONCLUSIONS/SIGNIFICANCE Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine bacterioplankton communities in a tropical island at the South Atlantic Ocean.
Collapse
Affiliation(s)
- Cynthia B. Silveira
- Instituto de Bioquímica Médica,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo P. Vieira
- Instituto de Bioquímica Médica,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander M. Cardoso
- Instituto Nacional de Metrologia
Normalização e Qualidade Industrial, Rio de Janeiro,
Brazil
- * E-mail:
| | - Rodolfo Paranhos
- Instituto de Biologia, Universidade Federal do
Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodolpho M. Albano
- Departamento de Bioquímica,
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando B. Martins
- Instituto de Bioquímica Médica,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 2011; 75:14-49. [PMID: 21372319 PMCID: PMC3063352 DOI: 10.1128/mmbr.00028-10] [Citation(s) in RCA: 867] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Freshwater bacteria are at the hub of biogeochemical cycles and control water quality in lakes. Despite this, little is known about the identity and ecology of functionally significant lake bacteria. Molecular studies have identified many abundant lake bacteria, but there is a large variation in the taxonomic or phylogenetic breadths among the methods used for this exploration. Because of this, an inconsistent and overlapping naming structure has developed for freshwater bacteria, creating a significant obstacle to identifying coherent ecological traits among these groups. A discourse that unites the field is sorely needed. Here we present a new freshwater lake phylogeny constructed from all published 16S rRNA gene sequences from lake epilimnia and propose a unifying vocabulary to discuss freshwater taxa. With this new vocabulary in place, we review the current information on the ecology, ecophysiology, and distribution of lake bacteria and highlight newly identified phylotypes. In the second part of our review, we conduct meta-analyses on the compiled data, identifying distribution patterns for bacterial phylotypes among biomes and across environmental gradients in lakes. We conclude by emphasizing the role that this review can play in providing a coherent framework for future studies.
Collapse
Affiliation(s)
- Ryan J. Newton
- Great Lakes WATER Institute, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, Limnology/Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden, Departments of Bacteriology and Civil and Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin
| | - Stuart E. Jones
- Great Lakes WATER Institute, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, Limnology/Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden, Departments of Bacteriology and Civil and Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin
| | - Alexander Eiler
- Great Lakes WATER Institute, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, Limnology/Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden, Departments of Bacteriology and Civil and Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin
| | - Katherine D. McMahon
- Great Lakes WATER Institute, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, Limnology/Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden, Departments of Bacteriology and Civil and Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin
| | - Stefan Bertilsson
- Great Lakes WATER Institute, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, Limnology/Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden, Departments of Bacteriology and Civil and Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin
| |
Collapse
|