1
|
Wang B, Xiao Y, Yan M, Fan W, Zhu Y, Li W, Li T. Gene Duplication and Functional Diversification of MADS-Box Genes in Malus × domestica following WGD: Implications for Fruit Type and Floral Organ Evolution. Int J Mol Sci 2024; 25:8962. [PMID: 39201650 PMCID: PMC11354807 DOI: 10.3390/ijms25168962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The evolution of the MADS-box gene family is essential for the rapid differentiation of floral organs and fruit types in angiosperms. Two key processes drive the evolution of gene families: gene duplication and functional differentiation. Duplicated copies provide the material for variation, while advantageous mutations can confer new functions on gene copies. In this study, we selected the Rosaceae family, which includes a variety of fruit types and flower organs, as well as species that existed before and after whole-genome duplication (WGD). The results indicate that different fruit types are associated with different copies of MADS-box gene family duplications and WGD events. While most gene copies derived from WGD have been lost, MADS-box genes not only retain copies derived from WGD but also undergo further gene duplication. The sequences, protein structures, and expression patterns of these gene copies have undergone significant differentiation. This work provides a clear example of MADS-box genes in the context of gene duplication and functional differentiation, offering new insights into the evolution of fruit types and floral organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhong Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (B.W.); (Y.X.); (M.Y.); (W.F.); (Y.Z.); (W.L.)
| |
Collapse
|
2
|
Guo L, Wang S, Jiao X, Ye X, Deng D, Liu H, Li Y, Van de Peer Y, Wu W. Convergent and/or parallel evolution of RNA-binding proteins in angiosperms after polyploidization. THE NEW PHYTOLOGIST 2024; 242:1377-1393. [PMID: 38436132 DOI: 10.1111/nph.19656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Increasing studies suggest that the biased retention of stress-related transcription factors (TFs) after whole-genome duplications (WGDs) could rewire gene transcriptional networks, facilitating plant adaptation to challenging environments. However, the role of posttranscriptional factors (e.g. RNA-binding proteins, RBPs) following WGDs has been largely ignored. Uncovering thousands of RBPs in 21 representative angiosperm species, we integrate genomic, transcriptomic, regulatomic, and paleotemperature datasets to unravel their evolutionary trajectories and roles in adapting to challenging environments. We reveal functional enrichments of RBP genes in stress responses and identify their convergent retention across diverse angiosperms from independent WGDs, coinciding with global cooling periods. Numerous RBP duplicates derived from WGDs are then identified as cold-induced. A significant overlap of 29 orthogroups between WGD-derived and cold-induced RBP genes across diverse angiosperms highlights a correlation between WGD and cold stress. Notably, we unveil an orthogroup (Glycine-rich RNA-binding Proteins 7/8, GRP7/8) and relevant TF duplicates (CCA1/LHY, RVE4/8, CBF2/4, etc.), co-retained in different angiosperms post-WGDs. Finally, we illustrate their roles in rewiring circadian and cold-regulatory networks at both transcriptional and posttranscriptional levels during global cooling. Altogether, we underline the adaptive evolution of RBPs in angiosperms after WGDs during global cooling, improving our understanding of plants surviving periods of environmental turmoil.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xi Jiao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB - UGent Center for Plant Systems Biology, Ghent University, B-9052, Ghent, Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
3
|
Xiao PX, Li Y, Lu J, Zuo H, Pingcuo G, Ying H, Zhao F, Xu Q, Zeng X, Jiao WB. High-quality assembly and methylome of a Tibetan wild tree peony genome ( Paeonia ludlowii) reveal the evolution of giant genome architecture. HORTICULTURE RESEARCH 2023; 10:uhad241. [PMID: 38156287 PMCID: PMC10753165 DOI: 10.1093/hr/uhad241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Tree peony belongs to one of the Saxifragales families, Paeoniaceae. It is one of the most famous ornamental plants, and is also a promising woody oil plant. Although two Paeoniaceae genomes have been released, their assembly qualities are still to be improved. Additionally, more genomes from wild peonies are needed to accelerate genomic-assisted breeding. Here we assemble a high-quality and chromosome-scale 10.3-Gb genome of a wild Tibetan tree peony, Paeonia ludlowii, which features substantial sequence divergence, including around 75% specific sequences and gene-level differentials compared with other peony genomes. Our phylogenetic analyses suggest that Saxifragales and Vitales are sister taxa and, together with rosids, they are the sister taxon to asterids. The P. ludlowii genome is characterized by frequent chromosome reductions, centromere rearrangements, broadly distributed heterochromatin, and recent continuous bursts of transposable element (TE) movement in peony, although it lacks recent whole-genome duplication. These recent TE bursts appeared during the uplift and glacial period of the Qinghai-Tibet Plateau, perhaps contributing to adaptation to rapid climate changes. Further integrated analyses with methylome data revealed that genome expansion in peony might be dynamically affected by complex interactions among TE proliferation, TE removal, and DNA methylation silencing. Such interactions also impact numerous recently duplicated genes, particularly those related to oil biosynthesis and flower traits. This genome resource will not only provide the genomic basis for tree peony breeding but also shed light on the study of the evolution of huge genome structures as well as their protein-coding genes.
Collapse
Affiliation(s)
- Pei-Xuan Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuanrong Li
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Jin Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hao Zuo
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
| | - Gesang Pingcuo
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Hong Ying
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Fan Zhao
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiuli Zeng
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
4
|
Huang Y, Guo X, Zhang K, Mandáková T, Cheng F, Lysak MA. The meso-octoploid Heliophila variabilis genome sheds a new light on the impact of polyploidization and diploidization on the diversity of the Cape flora. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:446-466. [PMID: 37428465 DOI: 10.1111/tpj.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Although the South African Cape flora is one of the most remarkable biodiversity hotspots, its high diversity has not been associated with polyploidy. Here, we report the chromosome-scale genome assembly of an ephemeral cruciferous species Heliophila variabilis (~334 Mb, n = 11) adapted to South African semiarid biomes. Two pairs of differently fractionated subgenomes suggest an allo-octoploid origin of the genome at least 12 million years ago. The ancestral octoploid Heliophila genome (2n = 8x = ~60) has probably originated through hybridization between two allotetraploids (2n = 4x = ~30) formed by distant, intertribal, hybridization. Rediploidization of the ancestral genome was marked by extensive reorganization of parental subgenomes, genome downsizing, and speciation events in the genus Heliophila. We found evidence for loss-of-function changes in genes associated with leaf development and early flowering, and over-retention and sub/neofunctionalization of genes involved in pathogen response and chemical defense. The genomic resources of H. variabilis will help elucidate the role of polyploidization and genome diploidization in plant adaptation to hot arid environments and origin of the Cape flora. The sequenced H. variabilis represents the first chromosome-scale genome assembly of a meso-octoploid representative of the mustard family.
Collapse
Affiliation(s)
- Yile Huang
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Xinyi Guo
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
5
|
Li Y, Niu Z, Zhu M, Wang Z, Xu R, Li M, Zheng Z, Lu Z, Dong C, Hu H, Yang Y, Wu Y, Wang D, Yang J, Zhang J, Wan D, Abbott R, Liu J, Yang Y. Multi-omics data provide insight into the adaptation of the glasshouse plant Rheum nobile to the alpine subnival zone. Commun Biol 2023; 6:906. [PMID: 37667004 PMCID: PMC10477342 DOI: 10.1038/s42003-023-05271-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Subnival glasshouse plants provide a text-book example of high-altitude adaptation with reproductive organs enclosed in specialized semi-translucent bracts, monocarpic reproduction and continuous survival under stress. Here, we present genomic, transcriptomic and metabolomic analyses for one such plant, the Noble rhubarb (Rheum nobile). Comparative genomic analyses show that an expanded number of genes and retained genes from two recent whole-genome duplication events are both relevant to subnival adaptation of this species. Most photosynthesis genes are downregulated within bracts compared to within leaves, and indeed bracts exhibit a sharp reduction in photosynthetic pigments, indicating that the bracts no longer perform photosynthesis. Contrastingly, genes related to flavonol synthesis are upregulated, providing enhanced defense against UV irradiation damage. Additionally, anatomically abnormal mesophyll combined with the downregulation of genes related to mesophyll differentiation in bracts illustrates the innovation and specification of the glass-like bracts. We further detect substantial accumulation of antifreeze proteins (e.g. AFPs, LEAs) and various metabolites (e.g. Proline, Protective sugars, procyanidins) in over-wintering roots. These findings provide new insights into subnival adaptation and the evolution of glasshouse alpine plants.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhimin Niu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Renping Xu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Congcong Dong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yingbo Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ying Wu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dandan Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jinli Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Richard Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, KY169TH, UK
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Li Y, Wang Z, Zhu M, Niu Z, Li M, Zheng Z, Hu H, Lu Z, Zhang J, Wan D, Chen Q, Yang Y. A chromosome-scale Rhubarb (Rheum tanguticum) genome assembly provides insights into the evolution of anthraquinone biosynthesis. Commun Biol 2023; 6:867. [PMID: 37612424 PMCID: PMC10447539 DOI: 10.1038/s42003-023-05248-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Rhubarb is the collective name for various perennial plants from the genus Rheum L. and the Polygonaceae family. They are one of the most ancient, commonly used, and important herbs in traditional Chinese medicine. Rhubarb is a major source of anthraquinones, but how they are synthesized remains largely unknown. Here, we generate a genome sequence assembly of one important medicinal rhubarb R. tanguticum at the chromosome level, with 2.76 Gb assembled into 11 chromosomes. The genome is shaped by two recent whole-genome duplication events and recent bursts of retrotransposons. Metabolic analyses show that the major anthraquinones are mainly synthesized in its roots. Transcriptomic analysis reveals a co-expression module with a high correlation to anthraquinone biosynthesis that includes key chalcone synthase genes. One CHS, four CYP450 and two BGL genes involved in secondary metabolism show significantly upregulated expression levels in roots compared with other tissues and clustered in the co-expression module, which implies that they may also act as candidate genes for anthraquinone biosynthesis. This study provides valuable insights into the genetic bases of anthraquinone biosynthesis that will facilitate improved breeding practices and agronomic properties for rhubarb in the future.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhimin Niu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Zhang K, Yang Y, Zhang X, Zhang L, Fu Y, Guo Z, Chen S, Wu J, Schnable JC, Yi K, Wang X, Cheng F. The genome of Orychophragmus violaceus provides genomic insights into the evolution of Brassicaceae polyploidization and its distinct traits. PLANT COMMUNICATIONS 2023; 4:100431. [PMID: 36071668 PMCID: PMC10030322 DOI: 10.1016/j.xplc.2022.100431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 05/04/2023]
Abstract
Orychophragmus violaceus, referred to as "eryuelan" (February orchid) in China, is an early-flowering ornamental plant. The high oil content and abundance of unsaturated fatty acids in O. violaceus seeds make it a potential high-quality oilseed crop. Here, we generated a whole-genome assembly for O. violaceus using Nanopore and Hi-C sequencing technologies. The assembled genome of O. violaceus was ∼1.3 Gb in size, with 12 pairs of chromosomes. Through investigation of ancestral genome evolution, we determined that the genome of O. violaceus experienced a tetraploidization event from a diploid progenitor with the translocated proto-Calepineae karyotype. Comparisons between the reconstructed subgenomes of O. violaceus identified indicators of subgenome dominance, indicating that subgenomes likely originated via allotetraploidy. O. violaceus was phylogenetically close to the Brassica genus, and tetraploidy in O. violaceus occurred approximately 8.57 million years ago, close in time to the whole-genome triplication of Brassica that likely arose via an intermediate tetraploid lineage. However, the tetraploidization in Orychophragmus was independent of the hexaploidization in Brassica, as evidenced by the results from detailed phylogenetic analyses and comparisons of the break and fusion points of ancestral genomic blocks. Moreover, identification of multi-copy genes regulating the production of high-quality oil highlighted the contributions of both tetraploidization and tandem duplication to functional innovation in O. violaceus. These findings provide novel insights into the polyploidization evolution of plant species and will promote both functional genomic studies and domestication/breeding efforts in O. violaceus.
Collapse
Affiliation(s)
- Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Xin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Lingkui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Yu Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Zhongwei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Shumin Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China.
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 10008, China.
| |
Collapse
|
8
|
Chen H, Fang Y, Zwaenepoel A, Huang S, Van de Peer Y, Li Z. Revisiting ancient polyploidy in leptosporangiate ferns. THE NEW PHYTOLOGIST 2023; 237:1405-1417. [PMID: 36349406 PMCID: PMC7614084 DOI: 10.1111/nph.18607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
Ferns, and particularly homosporous ferns, have long been assumed to have experienced recurrent whole-genome duplication (WGD) events because of their substantially large genome sizes, surprisingly high chromosome numbers, and high degrees of polyploidy among many extant members. As the number of sequenced fern genomes is limited, recent studies have employed transcriptome data to find evidence for WGDs in ferns. However, they have reached conflicting results concerning the occurrence of ancient polyploidy, for instance, in the lineage of leptosporangiate ferns. Because identifying WGDs in a phylogenetic context is the foremost step in studying the contribution of ancient polyploidy to evolution, we here revisited earlier identified WGDs in leptosporangiate ferns, mainly the core leptosporangiate ferns, by building KS -age distributions and applying substitution rate corrections and by conducting statistical gene tree-species tree reconciliation analyses. Our integrative analyses not only identified four ancient WGDs in the sampled core leptosporangiate ferns but also identified false positives and false negatives for WGDs that recent studies have reported earlier. In conclusion, we underscore the significance of substitution rate corrections and uncertainties in gene tree-species tree reconciliations in calling WGD events and advance an exemplar workflow to overcome such often-overlooked issues.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Yuhan Fang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sanwen Huang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
9
|
Wang R, Wu B, Jian J, Tang Y, Zhang T, Song Z, Zhang W, Qiong L. How to survive in the world's third poplar: Insights from the genome of the highest altitude woody plant, Hippophae tibetana (Elaeagnaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1051587. [PMID: 36589082 PMCID: PMC9797102 DOI: 10.3389/fpls.2022.1051587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Hippophae tibetana (Tibetan sea-buckthorn) is one of the highest distributed woody plants in the world (3,000-5,200 meters a.s.l.). It is characterized by adaptation to extreme environment and important economic values. Here, we combined PacBio Hifi platform and Hi-C technology to assemble a 1,452.75 Mb genome encoding 33,367 genes with a Contig N50 of 74.31 Mb, and inferred its sexual chromosome. Two Hippophae-specific whole-genome duplication events (18.7-21.2 million years ago, Ma; 28.6-32.4 Ma) and long terminal repeats retroelements (LTR-RTs) amplifications were detected. Comparing with related species at lower altitude, Ziziphus jujuba (<1, 700 meters a.s.l.), H. tibetana had some significantly rapid evolving genes involved in adaptation to high altitude habitats. However, comparing with Hippophae rhamnoides (<3, 700 meters a.s.l.), no rapid evolving genes were found except microtubule and microtubule-based process genes, H. tibetana has a larger genome, with extra 2, 503 genes (7.5%) and extra 680.46 Mb transposable elements (TEs) (46.84%). These results suggest that the changes in the copy number and regulatory pattern of genes play a more important role for H. tibetana adapting to more extreme and variable environments at higher altitude by more TEs and more genes increasing genome variability and expression plasticity. This suggestion was supported by two findings: nitrogen-fixing genes of H. tibetana having more copies, and intact TEs being significantly closer genes than fragmentary TEs. This study provided new insights into the evolution of alpine plants.
Collapse
Affiliation(s)
- Ruoqiu Wang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | | | - Yiwei Tang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ticao Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiping Song
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenju Zhang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - La Qiong
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, China
| |
Collapse
|
10
|
Zhong S, Li B, Chen W, Wang L, Guan J, Wang Q, Yang Z, Yang H, Wang X, Yu X, Fu P, Liu H, Chen C, Tan F, Ren T, Shen J, Luo P. The chromosome-level genome of Akebia trifoliata as an important resource to study plant evolution and environmental adaptation in the Cretaceous. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1316-1330. [PMID: 36305286 DOI: 10.1111/tpj.16011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The environmental adaptation of eudicots is the most reasonable explanation for why they compose the largest clade of modern plants (>70% of angiosperms), which indicates that the basal eudicots would be valuable and helpful to study their survival and ability to thrive throughout evolutionary processes. Here, we detected two whole-genome duplication (WGD) events in the high-quality assembled Akebia trifoliata genome (652.73 Mb) with 24 138 protein-coding genes based on the evidence of intragenomic and intergenomic collinearity, synonymous substitution rate (KS ) values and polyploidization and diploidization traces; these events putatively occurred at 85.15 and 146.43 million years ago (Mya). The integrated analysis of 16 species consisting of eight basal and eight core eudicots further revealed that there was a putative ancient WGD at the early stage of eudicots (temporarily designated θ) at 142.72 Mya, similar to the older WGD of Akebia trifoliata, and a putative core eudicot-specific WGD (temporarily designated ω). Functional enrichment analysis of retained duplicate genes following the θ event is suggestive of adaptation to the extreme environment change in both the carbon dioxide concentration and desiccation around the Jurassic-Cretaceous boundary, while the retained duplicate genes following the ω event is suggestive of adaptation to the extreme droughts, possibly leading to the rapid spread of eudicots in the mid-Cretaceous. Collectively, the A. trifoliata genome experienced two WGD events, and the older event may have occurred at the early stage of eudicots, which likely increased plant environmental adaptability and helped them survive in ancient extreme environments.
Collapse
Affiliation(s)
- Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road in Haidian District, 100193, Beijing, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Bin Li
- State Key Laboratory of Tree Breeding and Forest Genetics, Research Institute of Forestry, Chinese Academy of Forestry, 1 Dongxiaofu Xiangshan Road in Haidian District, 100091, Beijing, China
| | - Wei Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Lili Wang
- Biomarker Technologies Co., Ltd, 12 Fuqian Street in Shunyi District, 101300, Beijing, China
| | - Ju Guan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Zujun Yang
- Center for Information in Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue in West Hi-Tech Zone, 611731, Chengdu, Sichuan Province, China
| | - Hao Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Xianshu Wang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Xiaojiao Yu
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Peng Fu
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Hongchang Liu
- Guizhou Key Laboratory for Propagation and Cultivation of Medicinal Plants, Guizhou University, 2708 Huaxi South Avenue in Huaxi District, 550025, Guiyang, Guizhou province, China
| | - Chen Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Tianheng Ren
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road in Haidian District, 100193, Beijing, China
| |
Collapse
|
11
|
Zhao L, Sun L, Guo L, Lu X, Malik WA, Chen X, Wang D, Wang J, Wang S, Chen C, Nie T, Ye W. Systematic analysis of Histidine photosphoto transfer gene family in cotton and functional characterization in response to salt and around tolerance. BMC PLANT BIOLOGY 2022; 22:548. [PMID: 36443680 PMCID: PMC9703675 DOI: 10.1186/s12870-022-03947-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorylation regulated by the two-component system (TCS) is a very important approach signal transduction in most of living organisms. Histidine phosphotransfer (HP) is one of the important members of the TCS system. Members of the HP gene family have implications in plant stresses tolerance and have been deeply studied in several crops. However, upland cotton is still lacking with complete systematic examination of the HP gene family. RESULTS A total of 103 HP gene family members were identified. Multiple sequence alignment and phylogeny of HPs distributed them into 7 clades that contain the highly conserved amino acid residue "XHQXKGSSXS", similar to the Arabidopsis HP protein. Gene duplication relationship showed the expansion of HP gene family being subjected with whole-genome duplication (WGD) in cotton. Varying expression profiles of HPs illustrates their multiple roles under altering environments particularly the abiotic stresses. Analysis is of transcriptome data signifies the important roles played by HP genes against abiotic stresses. Moreover, protein regulatory network analysis and VIGS mediated functional approaches of two HP genes (GhHP23 and GhHP27) supports their predictor roles in salt and drought stress tolerance. CONCLUSIONS This study provides new bases for systematic examination of HP genes in upland cotton, which formulated the genetic makeup for their future survey and examination of their potential use in cotton production.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Taili Nie
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China.
| |
Collapse
|
12
|
Wang J, Yuan M, Feng Y, Zhang Y, Bao S, Hao Y, Ding Y, Gao X, Yu Z, Xu Q, Zhao J, Zhu Q, Wang P, Wu C, Wang J, Li Y, Xu C, Wang J. A common whole-genome paleotetraploidization in Cucurbitales. PLANT PHYSIOLOGY 2022; 190:2430-2448. [PMID: 36053177 PMCID: PMC9706448 DOI: 10.1093/plphys/kiac410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/10/2022] [Indexed: 06/01/2023]
Abstract
Cucurbitales are an important order of flowering plants known for encompassing edible plants of economic and medicinal value and numerous ornamental plants of horticultural value. By reanalyzing the genomes of two representative families (Cucurbitaceae and Begoniaceae) in Cucurbitales, we found that the previously identified Cucurbitaceae common paleotetraploidization that occurred shortly after the core-eudicot-common hexaploidization event is shared by Cucurbitales, including Begoniaceae. We built a multigenome alignment framework for Cucurbitales by identifying orthologs and paralogs and systematically redating key evolutionary events in Cucurbitales. Notably, characterizing the gene retention levels and genomic fractionation patterns between subgenomes generated from different polyploidizations in Cucurbitales suggested the autopolyploid nature of the Begoniaceae common tetraploidization and the allopolyploid nature of the Cucurbitales common tetraploidization and the Cucurbita-specific tetraploidization. Moreover, we constructed the ancestral Cucurbitales karyotype comprising 17 proto-chromosomes, confirming that the most recent common ancestor of Cucurbitaceae contained 15 proto-chromosomes and rejecting the previous hypothesis for an ancestral Cucurbitaceae karyotype with 12 proto-chromosomes. In addition, we found that the polyploidization and tandem duplication events promoted the expansion of gene families involved in the cucurbitacin biosynthesis pathway; however, gene loss and chromosomal rearrangements likely limited the expansion of these gene families.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Min Yuan
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yishan Feng
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yan Zhang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Shoutong Bao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yanan Hao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yue Ding
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Xintong Gao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Zijian Yu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Qiang Xu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Junxin Zhao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Qianwen Zhu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Ping Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Chunyang Wu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Jianyu Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | | | | | | |
Collapse
|
13
|
Guo L, Wang S, Nie Y, Shen Y, Ye X, Wu W. Convergent evolution of AP2/ERF III and IX subfamilies through recurrent polyploidization and tandem duplication during eudicot adaptation to paleoenvironmental changes. PLANT COMMUNICATIONS 2022; 3:100420. [PMID: 35949168 PMCID: PMC9700204 DOI: 10.1016/j.xplc.2022.100420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 05/10/2023]
Abstract
Whole-genome duplication (WGD or polyploidization) has been suggested as a genetic contributor to angiosperm adaptation to environmental changes. However, many eudicot lineages did not undergo recent WGD (R-WGD) around and/or after the Cretaceous-Paleogene (K-Pg) boundary, times of severe environmental changes; how those plants survived has been largely ignored. Here, we collected 22 plants from major branches of the eudicot phylogeny and classified them into two groups according to the occurrence or absence of R-WGD: 12 R-WGD-containing plants (R-WGD-Y) and 10 R-WGD-lacking plants (R-WGD-N). Subsequently, we identified 496 gene-rich families in R-WGD-Y and revealed that members of the AP2/ERF transcription factor family were convergently over-retained after R-WGDs and showed exceptional cold stimulation. The evolutionary trajectories of the AP2/ERF family were then compared between R-WGD-Y and R-WGD-N to reveal convergent expansions of the AP2/ERF III and IX subfamilies through recurrent independent WGDs and tandem duplications (TDs) after the radiation of the plants. The expansions showed coincident enrichments in- times around and/or after the K-Pg boundary, when global cooling was a major environmental stressor. Consequently, convergent expansions and co-retentions of AP2/ERF III C-repeat binding factor (CBF) duplicates and their regulons in different eudicot lineages contributed to the rewiring of cold-specific regulatory networks. Moreover, promoter analysis of cold-responsive AP2/ERF genes revealed an underlying cis-regulatory code (G-box: CACGTG). We propose a seesaw model of WGDs and TDs in the convergent expansion of AP2/ERF III and IX genes that has contributed to eudicot adaptation during paleoenvironmental changes, and we suggest that TD may be a reciprocal/alternative mechanism for genetic innovation in plants that lack WGD.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
14
|
Dreni L, Ferrándiz C. Tracing the Evolution of the SEPALLATA Subfamily across Angiosperms Associated with Neo- and Sub-Functionalization for Reproductive and Agronomically Relevant Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2934. [PMID: 36365387 PMCID: PMC9656651 DOI: 10.3390/plants11212934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral organ identities. However, there are published reports that suggest that some SEP members also regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence architecture, with potential for application in breeding programs in crops. The SEP subfamily underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking advantage of the many whole genomic sequences now available, we present a revised and expanded SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot supports the evidence that the major SEP3 clade is highly specialized for the specification of the three innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that their evolution was driven by whole-genome duplications rather than small-scale duplication events. Our work may help to identify those SEP lineages that are the best candidates for the improvement of inflorescence traits, even in far distantly related crops.
Collapse
|
15
|
Wang Z, Li Y, Sun P, Zhu M, Wang D, Lu Z, Hu H, Xu R, Zhang J, Ma J, Liu J, Yang Y. A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots. BMC Biol 2022; 20:216. [PMID: 36195948 PMCID: PMC9533543 DOI: 10.1186/s12915-022-01420-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Eudicots are the most diverse group of flowering plants that compromise five well-defined lineages: core eudicots, Ranunculales, Proteales, Trochodendrales, and Buxales. However, the phylogenetic relationships between these five lineages and their chromosomal evolutions remain unclear, and a lack of high-quality genome analyses for Buxales has hindered many efforts to address this knowledge gap. RESULTS Here, we present a high-quality chromosome-level genome of Buxus austro-yunnanensis (Buxales). Our phylogenomic analyses revealed that Buxales and Trochodendrales are genetically similar and classified as sisters. Additionally, both are sisters to the core eudicots, while Ranunculales was found to be the first lineage to diverge from these groups. Incomplete lineage sorting and hybridization were identified as the main contributors to phylogenetic discordance (34.33%) between the lineages. In fact, B. austro-yunnanensis underwent only one whole-genome duplication event, and collinear gene phylogeny analyses suggested that separate independent polyploidizations occurred in the five eudicot lineages. Using representative genomes from these five lineages, we reconstructed the ancestral eudicot karyotype (AEK) and generated a nearly gapless karyotype projection for each eudicot species. Within core eudicots, we recovered one common chromosome fusion event in asterids and malvids, respectively. Further, we also found that the previously reported fused AEKs in Aquilegia (Ranunculales) and Vitis (core eudicots) have different fusion positions, which indicates that these two species have different karyotype evolution histories. CONCLUSIONS Based on our phylogenomic and karyotype evolution analyses, we revealed the likely relationships and evolutionary histories of early eudicots. Ultimately, our study expands genomic resources for early-diverging eudicots.
Collapse
Affiliation(s)
- Zhenyue Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Dandan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Hongyin Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Renping Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianxiang Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
Zhong S, Yang H, Guan J, Shen J, Ren T, Li Z, Tan F, Li Q, Luo P. Characterization of the MADS-Box Gene Family in Akebia trifoliata and Their Evolutionary Events in Angiosperms. Genes (Basel) 2022; 13:genes13101777. [PMID: 36292662 PMCID: PMC9601569 DOI: 10.3390/genes13101777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
As the largest clade of modern plants, flower plants have evolved a wide variety of flowers and fruits. MADS-box genes play key roles in regulating plant morphogenesis, while basal eudicots have an evolutionarily important position of acting as an evolutionary bridge between basal angiosperms and core eudicots. Akebia trifoliata is an important member of the basal eudicot group. To study the early evolution of angiosperms, we identified and characterized the MADS-Box gene family on the whole-genome level of A. trifoliata. There were 47 MADS-box genes (13 type I and 34 type II genes) in the A. trifoliata genome; type I genes had a greater gene length and coefficient of variation and a smaller exon number than type II genes. A total of 27 (57.4%) experienced whole or segmental genome duplication and purifying selection. A transcriptome analysis suggested that three and eight genes were involved in whole fruit and seed development, respectively. The diversification and phylogenetic analysis of 1479 type II MADS-box genes of 22 angiosperm species provided some clues indicating that a γ whole genome triplication event of eudicots possibility experienced a two-step process. These results are valuable for improving A. trifoliata fruit traits and theoretically elucidating evolutionary processes of angiosperms, especially eudicots.
Collapse
Affiliation(s)
- Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huai Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ju Guan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianheng Ren
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Li
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Li
- Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic, Chongqing 408000, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
17
|
Drummond CP, Renner T. Genomic insights into the evolution of plant chemical defense. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102254. [PMID: 35777286 DOI: 10.1016/j.pbi.2022.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant trait evolution can be impacted by common mechanisms of genome evolution, including whole-genome and small-scale duplication, rearrangement, and selective pressures. With the increasing accessibility of genome sequencing for non-model species, comparative studies of trait evolution among closely related or divergent lineages have supported investigations into plant chemical defense. Plant defensive compounds include major chemical classes, such as terpenoids, alkaloids, and phenolics, and are used in primary and secondary plant functions. These include the promotion of plant health, facilitation of pollination, defense against pathogens, and responses to a rapidly changing climate. We discuss mechanisms of genome evolution and use examples from recent studies to impress a stronger understanding of the link between genotype and phenotype as it relates to the evolution of plant chemical defense. We conclude with considerations for how to leverage genomics, transcriptomics, metabolomics, and functional assays for studying the emergence and evolution of chemical defense systems.
Collapse
Affiliation(s)
- Chloe P Drummond
- The Pennsylvania State University, Department of Entomology, 501 ASI Building University Park, PA 16802, USA.
| | - Tanya Renner
- The Pennsylvania State University, Department of Entomology, 501 ASI Building University Park, PA 16802, USA
| |
Collapse
|
18
|
Khan AL, Al-Harrasi A, Wang JP, Asaf S, Riethoven JJM, Shehzad T, Liew CS, Song XM, Schachtman DP, Liu C, Yu JG, Zhang ZK, Meng FB, Yuan JQ, Wei CD, Guo H, Wang X, Al-Rawahi A, Lee IJ, Bennetzen JL, Wang XY. Genome structure and evolutionary history of frankincense producing Boswellia sacra. iScience 2022; 25:104574. [PMID: 35789857 PMCID: PMC9249616 DOI: 10.1016/j.isci.2022.104574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022] Open
Abstract
Boswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype—dominating most resin-productive trees. Further, the stem transcriptome revealed that wounding concurrently activates phytohormones signaling, cell wall fortification, and resin terpenoid biosynthesis pathways leading to the synthesis of boswellic acid—a key chemotaxonomic marker of Boswellia. The sequence datasets reported here will serve as a foundation to investigate the genetic determinants of frankincense and other resin-producing species in Burseraceae. Assembly and architecture of frankincense producing Boswellia sacra Flueck Comparative genomics and evolutionary history of frankincense tree within orders Transcriptome of stem part and gene expression patterns of wounding to the tree Resin biosynthesis pathway and related CYP450 enzymes and gene families
Collapse
|
19
|
Wu P, Zhang L, Zhang K, Yin Y, Liu A, Zhu Y, Fu Y, Sun F, Zhao S, Feng K, Xu X, Chen X, Cheng F, Li L. The adaptive evolution of Euryale ferox to the aquatic environment through paleo-hexaploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:627-645. [PMID: 35218099 PMCID: PMC9314984 DOI: 10.1111/tpj.15717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 05/25/2023]
Abstract
Occupation of living space is one of the main driving forces of adaptive evolution, especially for aquatic plants whose leaves float on the water surface and thus have limited living space. Euryale ferox, from the angiosperm basal family Nymphaeaceae, develops large, rapidly expanding leaves to compete for space on the water surface. Microscopic observation found that the cell proliferation of leaves is almost completed underwater, while the cell expansion occurs rapidly after they grow above water. To explore the mechanism underlying the specific development of leaves, we performed sequences assembly and analyzed the genome and transcriptome dynamics of E. ferox. Through reconstruction of the three sub-genomes generated from the paleo-hexaploidization event in E. ferox, we revealed that one sub-genome was phylogenetically closer to Victoria cruziana, which also exhibits gigantic floating leaves. Further analysis revealed that while all three sub-genomes promoted the evolution of the specific leaf development in E. ferox, the genes from the sub-genome closer to V. cruziana contributed more to this adaptive evolution. Moreover, we found that genes involved in cell proliferation and expansion, photosynthesis, and energy transportation were over-retained and showed strong expression association with the leaf development stages, such as the expression divergence of SWEET orthologs as energy uploaders and unloaders in the sink and source leaf organs of E. ferox. These findings provide novel insights into the genome evolution through polyploidization, as well as the adaptive evolution regarding the leaf development accomplished through biased gene retention and expression sub-functionalization of multi-copy genes in E. ferox.
Collapse
Affiliation(s)
- Peng Wu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijing100081China
| | - Lingkui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijing100081China
| | - Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijing100081China
| | - Yulai Yin
- Suzhou Academy of Agricultural ScienceSuzhou215000China
| | - Ailian Liu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Yue Zhu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Yu Fu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Fangfang Sun
- Suzhou Academy of Agricultural ScienceSuzhou215000China
| | - Shuping Zhao
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Kai Feng
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Xuewen Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Xuehao Chen
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijing100081China
| | - Liangjun Li
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhou225000China
| |
Collapse
|
20
|
Ma L, Yan Y. GhSOC1s Evolve to Respond Differently to the Environmental Cues and Promote Flowering in Partially Independent Ways. FRONTIERS IN PLANT SCIENCE 2022; 13:882946. [PMID: 35519808 PMCID: PMC9067242 DOI: 10.3389/fpls.2022.882946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum is most broadly cultivated in the world due to its broader adaptation to the environment and successful breeding of early maturity varieties. However, how cotton responds to environmental cues to adjust flowering time to achieve reproductive success is largely unknown. SOC1 functions as an essential integrator for the endogenous and exogenous signals to maximize reproduction. Thus we identified six SOC1-like genes in Gossypium that clustered into two groups. GhSOC1-1 contained a large intron and clustered with monocot SOC1s, while GhSOC1-2/3 were close to dicot SOC1s. GhSOC1s expression gradually increased during seedling development suggesting their conserved function in promoting flowering, which was supported by the early flowering phenotype of 35S:GhSOC1-1 Arabidopsis lines and the delayed flowering of cotton silencing lines. Furthermore, GhSOC1-1 responded to short-day and high temperature conditions, while GhSOC1-2 responded to long-day conditions. GhSOC1-3 might function to promote flowering in response to low temperature and cold. Taken together, our results demonstrate that GhSOC1s respond differently to light and temperature and act cooperatively to activate GhLFY expression to promote floral transition and enlighten us in cotton adaptation to environment that is helpful in improvement of cotton maturity.
Collapse
|
21
|
Sork VL, Cokus SJ, Fitz-Gibbon ST, Zimin AV, Puiu D, Garcia JA, Gugger PF, Henriquez CL, Zhen Y, Lohmueller KE, Pellegrini M, Salzberg SL. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Nat Commun 2022; 13:2047. [PMID: 35440538 PMCID: PMC9018854 DOI: 10.1038/s41467-022-29584-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Quercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.
Collapse
Affiliation(s)
- Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA.
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA.
| | - Shawn J Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Sorel T Fitz-Gibbon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Aleksey V Zimin
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jesse A Garcia
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Claudia L Henriquez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Ying Zhen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Steven L Salzberg
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
22
|
Zhang Q, Zhao L, Folk RA, Zhao JL, Zamora NA, Yang SX, Soltis DE, Soltis PS, Gao LM, Peng H, Yu XQ. Phylotranscriptomics of Theaceae: generic-level relationships, reticulation and whole-genome duplication. ANNALS OF BOTANY 2022; 129:457-471. [PMID: 35037017 PMCID: PMC8944729 DOI: 10.1093/aob/mcac007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Theaceae, with three tribes, nine genera and more than 200 species, are of great economic and ecological importance. Recent phylogenetic analyses based on plastomic data resolved the relationships among the three tribes and the intergeneric relationships within two of those tribes. However, generic-level relationships within the largest tribe, Theeae, were not fully resolved. The role of putative whole-genome duplication (WGD) events in the family and possible hybridization events among genera within Theeae also remain to be tested further. METHODS Transcriptomes or low-depth whole-genome sequencing of 57 species of Theaceae, as well as additional plastome sequence data, were generated. Using a dataset of low-copy nuclear genes, we reconstructed phylogenetic relationships using concatenated, species tree and phylogenetic network approaches. We further conducted molecular dating analyses and inferred possible WGD events by examining the distribution of the number of synonymous substitutions per synonymous site (Ks) for paralogues in each species. For plastid protein-coding sequences , phylogenies were reconstructed for comparison with the results obtained from analysis of the nuclear dataset. RESULTS Based on the 610 low-copy nuclear genes (858 606 bp in length) investigated, Stewartieae was resolved as sister to the other two tribes. Within Theeae, the Apterosperma-Laplacea clade grouped with Pyrenaria, leaving Camellia and Polyspora as sister. The estimated ages within Theaceae were largely consistent with previous studies based mainly on plastome data. Two reticulation events within Camellia and one between the common ancestor of Gordonia and Schima were found. All members of the tea family shared two WGD events, an older At-γ and a recent Ad-β; both events were also shared with the outgroups (Diapensiaceae, Pentaphylacaceae, Styracaceae and Symplocaceae). CONCLUSIONS Our analyses using low-copy nuclear genes improved understanding of phylogenetic relationships at the tribal and generic levels previously proposed based on plastome data, but the phylogenetic position of the Apterosperma-Laplacea clade needs more attention. There is no evidence for extensive intergeneric hybridization within Theeae or for a Theaceae-specific WGD event. Land bridges (e.g. the Bering land bridge) during the Late Oligocene may have permitted the intercontinental plant movements that facilitated the putative ancient introgression between the common ancestor of Gordonia and Schima.
Collapse
Affiliation(s)
- Qiong Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Nelson A Zamora
- National Herbarium of Costa Rica (CR), Natural History Department of National Museum of Costa Rica, San José, Costa Rica
| | - Shi-Xiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Lijiang Forest Ecosystem National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, China
| | | | | |
Collapse
|
23
|
Wu Y, Wen J, Xia Y, Zhang L, Du H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. HORTICULTURE RESEARCH 2022; 9:uhac058. [PMID: 35591925 PMCID: PMC9113232 DOI: 10.1093/hr/uhac058] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 05/31/2023]
Abstract
R2R3-MYB genes (R2R3-MYBs) form one of the largest transcription factor gene families in the plant kingdom, with substantial structural and functional diversity. However, the evolutionary processes leading to this amazing functional diversity have not yet been clearly established. Recently developed genomic and classical molecular technologies have provided detailed insights into the evolutionary relationships and functions of plant R2R3-MYBs. Here, we review recent genome-level and functional analyses of plant R2R3-MYBs, with an emphasis on their evolution and functional diversification. In land plants, this gene family underwent a large expansion by whole genome duplications and small-scale duplications. Along with this population explosion, a series of functionally conserved or lineage-specific subfamilies/groups arose with roles in three major plant-specific biological processes: development and cell differentiation, specialized metabolism, and biotic and abiotic stresses. The rapid expansion and functional diversification of plant R2R3-MYBs are highly consistent with the increasing complexity of angiosperms. In particular, recently derived R2R3-MYBs with three highly homologous intron patterns (a, b, and c) are disproportionately related to specialized metabolism and have become the predominant subfamilies in land plant genomes. The evolution of plant R2R3-MYBs is an active area of research, and further studies are expected to improve our understanding of the evolution and functional diversification of this gene family.
Collapse
Affiliation(s)
- Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
24
|
Li M, Galimba K, Xiao Y, Dardick C, Mount SM, Callahan A, Liu Z. Comparative transcriptomic analysis of apple and peach fruits: insights into fruit type specification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1614-1629. [PMID: 34905278 DOI: 10.1111/tpj.15633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/21/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Fruits represent key evolutionary innovations in angiosperms and exhibit diverse types adapted for seed dissemination. However, the mechanisms that underlie fruit type diversity are not understood. The Rosaceae family comprises many different fruit types, including 'pome' and 'drupe' fruits, and hence is an excellent family for investigating the genetic basis of fruit type specification. Using comparative transcriptomics, we investigated the molecular events that correlate with pome (apple) and drupe (peach) fleshy fruit development, focusing on the earliest stages of fruit initiation. We identified PI and TM6, MADS box genes whose expression negatively correlates with fruit flesh-forming tissues irrespective of fruit type. In addition, the MADS box gene FBP9 is expressed in fruit-forming tissues in both species, and was lost multiple times in the genomes of dry-fruit-forming eudicots including Arabidopsis. Network analysis reveals co-expression between FBP9 and photosynthesis genes in both apple and peach, suggesting that FBP9 and photosynthesis may both promote fleshy fruit development. The large transcriptomic datasets at the earliest stages of pome and drupe fruit development provide rich resources for comparative studies, and the work provides important insights into fruit-type specification.
Collapse
Affiliation(s)
- Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Kelsey Galimba
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Appalachian Fruit Research Station, USDA-ARS, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Yuwei Xiao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Chris Dardick
- Appalachian Fruit Research Station, USDA-ARS, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ann Callahan
- Appalachian Fruit Research Station, USDA-ARS, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
25
|
Buxus and Tetracentron genomes help resolve eudicot genome history. Nat Commun 2022; 13:643. [PMID: 35110570 PMCID: PMC8810787 DOI: 10.1038/s41467-022-28312-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/14/2022] [Indexed: 01/15/2023] Open
Abstract
Ancient whole-genome duplications (WGDs) characterize many large angiosperm lineages, including angiosperms themselves. Prominently, the core eudicot lineage accommodates 70% of all angiosperms and shares ancestral hexaploidy, termed gamma. Gamma arose via two WGDs that occurred early in eudicot history; however, the relative timing of these is unclear, largely due to the lack of high-quality genomes among early-diverging eudicots. Here, we provide complete genomes for Buxus sinica (Buxales) and Tetracentron sinense (Trochodendrales), representing the lineages most closely related to core eudicots. We show that Buxus and Tetracentron are both characterized by independent WGDs, resolve relationships among early-diverging eudicots and their respective genomes, and use the RACCROCHE pipeline to reconstruct ancestral genome structure at three key phylogenetic nodes of eudicot diversification. Our reconstructions indicate genome structure remained relatively stable during early eudicot diversification, and reject hypotheses of gamma arising via inter-lineage hybridization between ancestral eudicot lineages, involving, instead, only stem lineage core eudicot ancestors. Gamma triplication arises via two whole-genome duplications early in eudicot history, but the relative timing of these is unclear. Here, the authors report the genomes of Buxales and Trochodendrales and reject the hypothesis of gamma arising via inter-lineage hybridization between ancestral eudicot lineages.
Collapse
|
26
|
Evolutionary history and pan-genome dynamics of strawberry ( Fragaria spp.). Proc Natl Acad Sci U S A 2021; 118:2105431118. [PMID: 34697247 PMCID: PMC8609306 DOI: 10.1073/pnas.2105431118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Strawberry (Fragaria spp.) has emerged as a model system for various fundamental and applied research in recent years. In total, the genomes of five different species have been sequenced over the past 10 y. Here, we report chromosome-scale reference genomes for five strawberry species, including three newly sequenced species' genomes, and genome resequencing data for 128 additional accessions to estimate the genetic diversity, structure, and demographic history of key Fragaria species. Our analyses obtained fully resolved and strongly supported phylogenies and divergence times for most diploid strawberry species. These analyses also uncovered a new diploid species (Fragaria emeiensis Jia J. Lei). Finally, we constructed a pan-genome for Fragaria and examined the evolutionary dynamics of gene families. Notably, we identified multiple independent single base mutations of the MYB10 gene associated with white pigmented fruit shared by different strawberry species. These reference genomes and datasets, combined with our phylogenetic estimates, should serve as a powerful comparative genomic platform and resource for future studies in strawberry.
Collapse
|
27
|
Alhindi T, Al-Abdallat AM. Genome-Wide Identification and Analysis of the MADS-Box Gene Family in American Beautyberry ( Callicarpa americana). PLANTS 2021; 10:plants10091805. [PMID: 34579338 PMCID: PMC8466759 DOI: 10.3390/plants10091805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022]
Abstract
The MADS-box gene family encodes a number of transcription factors that play key roles in various plant growth and development processes from response to environmental cues to cell differentiation and organ identity, especially the floral organogenesis, as in the prominent ABCDE model of flower development. Recently, the genome of American beautyberry (Callicarpa americana) has been sequenced. It is a shrub native to the southern region of United States with edible purple-colored berries; it is a member of the Lamiaceae family, a family of medical and agricultural importance. Seventy-eight MADS-box genes were identified from 17 chromosomes of the C. americana assembled genome. Peptide sequences blast and analysis of phylogenetic relationships with MADS-box genes of Sesame indicum, Solanum lycopersicum, Arabidopsis thaliana, and Amborella trichopoda were performed. Genes were separated into 32 type I and 46 type II MADS-box genes. C. americana MADS-box genes were clustered into four groups: MIKCC, MIKC*, Mα-type, and Mγ-type, while the Mβ-type group was absent. Analysis of the gene structure revealed that from 1 to 15 exons exist in C. americana MADS-box genes. The number of exons in type II MADS-box genes (5–15) greatly exceeded the number in type I genes (1–9). The motif distribution analysis of the two types of MADS-box genes showed that type II MADS-box genes contained more motifs than type I genes. These results suggested that C. americana MADS-box genes type II had more complex structures and might have more diverse functions. The role of MIKC-type MADS-box genes in flower and fruit development was highlighted when the expression profile was analyzed in different organs transcriptomes. This study is the first genome-wide analysis of the C. americana MADS-box gene family, and the results will further support any functional and evolutionary studies of C. americana MADS-box genes and serve as a reference for related studies of other plants in the medically important Lamiaceae family.
Collapse
Affiliation(s)
- Tareq Alhindi
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
- Correspondence:
| | - Ayed M. Al-Abdallat
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|
28
|
Martínez-Salazar S, González F, Alzate JF, Pabón-Mora N. Molecular framework underlying floral bilateral symmetry and nectar spur development in Tropaeolum, an atypical member of the Brassicales. AMERICAN JOURNAL OF BOTANY 2021; 108:1315-1330. [PMID: 34458983 DOI: 10.1002/ajb2.1719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Floral spurs are key innovations associated with elaborate pollination mechanisms that have evolved independently several times across angiosperms. Spur formation can shift the floral symmetry from radial to bilateral, as it is the case in Tropaeolum, the only member of the Brassicales with floral nectar spurs. The genetic mechanisms underlying both spur and bilateral symmetry in the family have not yet been investigated. METHODS We studied flower development and morphoanatomy of Tropaeolum longifolium. We also generated a reference transcriptome and isolated all candidate genes involved in adaxial-abaxial differential growth during spur formation. Finally, we evaluated the evolution of the targeted genes across Brassicales and examined their expression in dissected floral parts. RESULTS Five sepals initiate spirally, followed by five petals alternate to the sepals, five antesepalous stamens, three antepetalous stamens, and three carpels. Intercalary growth at the common base of sepals and petals forms a floral tube. The spur is an outgrowth from the adaxial region of the tube, lined up with the medial sepal. We identified Tropaeolum specific duplications in the TCP3/4L and STM gene lineages, which are critical for spur formation in other taxa. In addition, we found that TM6 (MADS-box), RL2 (RAD-like7), and KN2/6L2 and OSH6L (KNOX1 genes), have been lost in core Brassicales but retained in Tropaeolum. CONCLUSIONS Three genes are pivotal during the extreme adaxial-abaxial asymmetry of the floral tube, namely, TlTCP4L2 restricted to the adaxial side where the spur is formed, and TlTCP12 and TlSTM1 to the abaxial side, lacking a spur.
Collapse
Affiliation(s)
| | - Favio González
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Instituto de Ciencias Naturales, AA 7495, Bogotá, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica-CNSG, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, AA 1226, Medellín, Colombia
| |
Collapse
|
29
|
Hulse-Kemp AM, Bostan H, Chen S, Ashrafi H, Stoffel K, Sanseverino W, Li L, Cheng S, Schatz MC, Garvin T, du Toit LJ, Tseng E, Chin J, Iorizzo M, Van Deynze A. An anchored chromosome-scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids. THE PLANT GENOME 2021; 14:e20101. [PMID: 34109759 DOI: 10.1002/tpg2.20101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Spinach (Spinacia oleracea L.) is a member of the Caryophyllales family, a basal eudicot asterid that consists of sugar beet (Beta vulgaris L. subsp. vulgaris), quinoa (Chenopodium quinoa Willd.), and amaranth (Amaranthus hypochondriacus L.). With the introduction of baby leaf types, spinach has become a staple food in many homes. Production issues focus on yield, nitrogen-use efficiency and resistance to downy mildew (Peronospora effusa). Although genomes are available for the above species, a chromosome-level assembly exists only for quinoa, allowing for proper annotation and structural analyses to enhance crop improvement. We independently assembled and annotated genomes of the cultivar Viroflay using short-read strategy (Illumina) and long-read strategies (Pacific Biosciences) to develop a chromosome-level, genetically anchored assembly for spinach. Scaffold N50 for the Illumina assembly was 389 kb, whereas that for Pacific BioSciences was 4.43 Mb, representing 911 Mb (93% of the genome) in 221 scaffolds, 80% of which are anchored and oriented on a sequence-based genetic map, also described within this work. The two assemblies were 99.5% collinear. Independent annotation of the two assemblies with the same comprehensive transcriptome dataset show that the quality of the assembly directly affects the annotation with significantly more genes predicted (26,862 vs. 34,877) in the long-read assembly. Analysis of resistance genes confirms a bias in resistant gene motifs more typical of monocots. Evolutionary analysis indicates that Spinacia is a paleohexaploid with a whole-genome triplication followed by extensive gene rearrangements identified in this work. Diversity analysis of 75 lines indicate that variation in genes is ample for hypothesis-driven, genomic-assisted breeding enabled by this work.
Collapse
Affiliation(s)
- Amanda M Hulse-Kemp
- Department of Plant Sciences, University of California, Davis, CA, USA
- USDA, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Raleigh, NC, USA
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Shiyu Chen
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Hamid Ashrafi
- Department of Horticulture, North Carolina State University, Raleigh, NC, USA
| | - Kevin Stoffel
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | | | - Shifeng Cheng
- BGI-Shenzhen, Shenzhen, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518060, P. R. China
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building 1121, Cold Spring Harbor, NY, 11724, USA
- Departments of Computer Science and Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Tyler Garvin
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building 1121, Cold Spring Harbor, NY, 11724, USA
| | - Lindsey J du Toit
- Washington State University, SU Mount Vernon Northwestern Washington Research & Extension Center (NWREC), Mount Vernon, WA, 98273, USA
| | | | - Jason Chin
- Pacific Biosciences, Menlo Park, CA, USA
- DNAnexus Inc, 1975 W El Camino Real #204, Mountain View, CA, 94040, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
- Department of Horticulture, North Carolina State University, Raleigh, NC, USA
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
30
|
Zhang L, Wu S, Chang X, Wang X, Zhao Y, Xia Y, Trigiano RN, Jiao Y, Chen F. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. PLANT, CELL & ENVIRONMENT 2020; 43:2847-2856. [PMID: 33001478 DOI: 10.1111/pce.13898] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 05/24/2023]
Abstract
Flowering plants, or angiosperms, consist of more than 300,000 species, far more than any other land plant lineages. The accumulated evidence indicates that multiple ancient polyploidy events occurred around 100 to 120 million years ago during the Cretaceous and drove the early diversification of four major clades of angiosperms: gamma whole-genome triplication in the common ancestor of core eudicots, tau whole-genome duplication during the early diversification of monocots, lambda whole-genome duplication during the early diversification of magnoliids, and pi whole-genome duplication in the Nymphaeales lineage. These four polyploidy events have played essential roles in the adaptive evolution and diversification of major clades of flowering plants. Here, we specifically review the current understanding of this wave of ancient whole-genome duplications and their evolutionary significance. Notably, although these ancient whole-genome duplications occurred independently, they have contributed to the expansion of many stress-related genes (e.g., heat shock transcription factors and Arabidopsis response regulators),and these genes could have been selected for by global environmental changes in the Cretaceous. Therefore, this ancient wave of paleopolyploidy events could have significantly contributed to the adaptation of angiosperms to environmental changes, and potentially promoted the wide diversification of flowering plants.
Collapse
Affiliation(s)
- Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shengdan Wu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Xiaojun Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
New insights on the function of plant acyl carrier proteins from comparative and evolutionary analysis. Genomics 2020; 113:1155-1165. [PMID: 33221517 DOI: 10.1016/j.ygeno.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Acyl carrier proteins (ACPs) play a central role in both plastidial and mitochondrial Type II fatty acid synthesis in plant cells. However, a large proportion of plant ACPs remain functionally uncharacterized, and their evolutionary history remains elusive. In present study, 97 putative ACPs were identified from ten angiosperm species examined. Based on phylogenetic analysis, ACP genes were grouped into plastidial (cpACP: ACP1/2/3/4/5) and mitochondrial (mtACP: mtACP1/mtACP2/mtACP3) ACPs. Protein sequence (motifs and length), tertiary structure, and gene structure (exon number, average intron length, and intron phase) were highly conserved in different ACP subclades. The differentiation of ACPs into distinct types occurred 85-98 and 45-57 million years ago. A limited proportion of ACP genes experience tandem or segmental duplication, corresponding to two rounds of whole genome duplication. Ka/Ks ratios revealed that duplicated ACP genes underwent a purifying selection. Regarding expression patterns, most ACPs were expressed constitutively and tissue-specifically. Notably, the average expression levels of ACP1, mtACP3, and mtACP1 were positively correlated with those of ACP3, ACP4, and mtACP2, respectively. Analysis of cis-elements showed that seven motifs (CACTFTPPCA1, DOFCOREZM, GT1CONSENSUS, CAATBOX1, ARR1AT, POLLEN1LELAT52, and GATABOX) related to tissue-specific, ABA, and light-mediated gene regulation were ubiquitous in all ACPs investigated, which shed new light on the regulation patterns of these central enzymatic partners of the FAS system. This study presents a thorough overview of angiosperm ACP gene families and provides informative clues for the functional characterization of plant ACPs in the future.
Collapse
|
32
|
Wang Y, Nie F, Shahid MQ, Baloch FS. Molecular footprints of selection effects and whole genome duplication (WGD) events in three blueberry species: detected by transcriptome dataset. BMC PLANT BIOLOGY 2020; 20:250. [PMID: 32493212 PMCID: PMC7268529 DOI: 10.1186/s12870-020-02461-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/24/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Both selection effects and whole genome duplication played very important roles in plant speciation and evolution, and to decipher the corresponding molecular footprint has always been a central task of geneticists. Vaccinium is species rich genus that comprised of about 450 species, and blueberry is one of the most important species of Vaccinium genus, which is gaining popularity because of high healthful value. In this article, we aimed to decipher the molecular footprints of natural selection on the single copy genes and WGD events occur in the evolutionary history of blueberry species. RESULTS We identified 30,143, 29,922 and 28,891 putative protein coding sequences from 45,535, 42,914 and 43,630 unigenes assembled from the leaves' transcriptome assembly of 19 rabbiteye (T1), 13 southern highbush (T2) and 22 northern highbush (T3) blueberry cultivars. A total of 17, 21 and 27 single copy orthologs were found to undergone positive selection in T1 versus T2, T1 versus T3, and T2 versus T3, respectively, and these orthologs were enriched in metabolic pathways including "Terpenoid backbone biosynthesis", "Valine, leucine and isoleucine biosynthesis", "Butanoate metabolism", "C5-Branched dibasic acid metabolism" "Pantothenate and CoA biosynthesis". We also detected significant molecular footprints of a recent (about 9.04 MYA), medium (about 43.44 MYA) and an ancient (about 116.39 MYA) WGD events that occurred in the evolutionary history of three blueberry species. CONCLUSION Some important functional genes revealed positive selection effect in blueberry. At least three rounds of WGD events were detected in the evolutionary history of blueberry species. Our work provides insights about the genetic mechanism of adaptive evolution in blueberry and species radiation of Vaccinium in short geological scale time.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Health and Life Science, Kaili University, Kaili City, 556011 Guizhou Province China
| | - Fei Nie
- Biological institute of Guizhou Province, Guiyang City, 556000 Guizhou Province China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong Province China
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
33
|
Li J, Gao X, Zhang X, Liu C. Dynamic Expansion and Functional Evolutionary Profiles of Plant Conservative Gene Family SBP-Box in Twenty Two Flowering Plants and the Origin of miR156. Biomolecules 2020; 10:biom10050757. [PMID: 32414086 PMCID: PMC7277735 DOI: 10.3390/biom10050757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
Conservative gene families in plants, which are closely related to innovations in flowering plants, have long and complex evolutionary histories. Here, we used the SQUAMOSA promoter-binding protein (SBP-box) gene family as an example to study conservative gene families in flowering plants. In total, 11 groups, including nine angiosperm-conservative groups and two monocot- and eudicot-specific groups, were identified. Among the nine angiosperm-conservative groups, four are conserved in all land plants and the remaining five are angiosperm-specific. The five angiosperm-specific groups exhibit structural and functional diversity and evolved together, along with the evolution of flowering plants. The expansion of SBP genes was affected by miR156, and the miR156-regulated SBP genes tend to retain more copies. Our results reflect the dynamic evolutionary process of the different groups, with the identification of two genetic lines via synteny analyses. In addition, miR156 showed a close evolutionary relationship with SBP genes, suggesting that it may originate from face-to-face tandem duplication of SBP genes. SBP genes without an miR156 binding locus are usually functionally conservative or housekeeping like, belonging to the terrestrial-conservative group. In contrast, SBP genes with miR156 binding sites are selected by angiosperms to regulate more complex physiological processes.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (J.L.); (X.G.); (X.Z.)
- College of Life Sciences, Univeristy of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyang Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (J.L.); (X.G.); (X.Z.)
| | - Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (J.L.); (X.G.); (X.Z.)
- College of Life Sciences, Univeristy of Chinese Academy of Sciences, Beijing 100049, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (J.L.); (X.G.); (X.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Correspondence: ; Tel.: +86-691-8713009
| |
Collapse
|
34
|
Wong GKS, Soltis DE, Leebens-Mack J, Wickett NJ, Barker MS, Van de Peer Y, Graham SW, Melkonian M. Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Green Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:741-765. [PMID: 31851546 DOI: 10.1146/annurev-arplant-042916-041040] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The 1,000 Plants (1KP) initiative was the first large-scale effort to collect next-generation sequencing (NGS) data across a phylogenetically representative sampling of species for a major clade of life, in this case theViridiplantae, or green plants. As an international multidisciplinary consortium, we focused on plant evolution and its practical implications. Among the major outcomes were the inference of a reference species tree for green plants by phylotranscriptomic analysis of low-copy genes, a survey of paleopolyploidy (whole-genome duplications) across the Viridiplantae, the inferred evolutionary histories for many gene families and biological processes, the discovery of novel light-sensitive proteins for optogenetic studies in mammalian neuroscience, and elucidation of the genetic network for a complex trait (C4 photosynthesis). Altogether, 1KP demonstrated how value can be extracted from a phylodiverse sequencing data set, providing a template for future projects that aim to generate even more data, including complete de novo genomes, across the tree of life.
Collapse
Affiliation(s)
- Gane Ka-Shu Wong
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E9, Canada;
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Douglas E Soltis
- Florida Museum of Natural History, Gainesville, Florida 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois 60022, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michael Melkonian
- Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
35
|
Yang Y, Sun P, Lv L, Wang D, Ru D, Li Y, Ma T, Zhang L, Shen X, Meng F, Jiao B, Shan L, Liu M, Wang Q, Qin Z, Xi Z, Wang X, Davis CC, Liu J. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. NATURE PLANTS 2020; 6:215-222. [PMID: 32094642 PMCID: PMC8075997 DOI: 10.1038/s41477-020-0594-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/06/2020] [Indexed: 05/07/2023]
Abstract
Angiosperms represent one of the most spectacular terrestrial radiations on the planet1, but their early diversification and phylogenetic relationships remain uncertain2-5. A key reason for this impasse is the paucity of complete genomes representing early-diverging angiosperms. Here, we present high-quality, chromosomal-level genome assemblies of two aquatic species-prickly waterlily (Euryale ferox; Nymphaeales) and the rigid hornwort (Ceratophyllum demersum; Ceratophyllales)-and expand the genomic representation for key sectors of the angiosperm tree of life. We identify multiple independent polyploidization events in each of the five major clades (that is, Nymphaeales, magnoliids, monocots, Ceratophyllales and eudicots). Furthermore, our phylogenomic analyses, which spanned multiple datasets and diverse methods, confirm that Amborella and Nymphaeales are successively sister to all other angiosperms. Furthermore, these genomes help to elucidate relationships among the major subclades within Mesangiospermae, which contain about 350,000 species. In particular, the species-poor lineage Ceratophyllales is supported as sister to eudicots, and monocots and magnoliids are placed as successively sister to Ceratophyllales and eudicots. Finally, our analyses indicate that incomplete lineage sorting may account for the incongruent phylogenetic placement of magnoliids between nuclear and plastid genomes.
Collapse
Affiliation(s)
- Yongzhi Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Pengchuan Sun
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Leke Lv
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Donglei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dafu Ru
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xingxing Shen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fanbo Meng
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Beibei Jiao
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Lanxing Shan
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Man Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Zhiji Qin
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA, USA.
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China.
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
36
|
Li Z, Barker MS. Inferring putative ancient whole-genome duplications in the 1000 Plants (1KP) initiative: access to gene family phylogenies and age distributions. Gigascience 2020; 9:giaa004. [PMID: 32043527 PMCID: PMC7011446 DOI: 10.1093/gigascience/giaa004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Polyploidy, or whole-genome duplications (WGDs), repeatedly occurred during green plant evolution. To examine the evolutionary history of green plants in a phylogenomic framework, the 1KP project sequenced >1,000 transcriptomes across the Viridiplantae. The 1KP project provided a unique opportunity to study the distribution and occurrence of WGDs across the green plants. As an accompaniment to the capstone publication, this article provides expanded methodological details, results validation, and descriptions of newly released datasets that will aid researchers who wish to use the extended data generated by the 1KP project. RESULTS In the 1KP capstone analyses, we used a total evidence approach that combined inferences of WGDs from Ks and phylogenomic methods to infer and place 244 putative ancient WGDs across the Viridiplantae. Here, we provide an expanded explanation of our approach by describing our methodology and walk-through examples. We also evaluated the consistency of our WGD inferences by comparing them to evidence from published syntenic analyses of plant genome assemblies. We find that our inferences are consistent with whole-genome synteny analyses and our total evidence approach may minimize the false-positive rate throughout the dataset. CONCLUSIONS We release 383,679 nuclear gene family phylogenies and 2,306 gene age distributions with Ks plots from the 1KP capstone paper. These resources will be useful for many future analyses on gene and genome evolution in green plants.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| |
Collapse
|
37
|
Wang J, Yu J, Li Y, Wei C, Guo H, Liu Y, Zhang J, Li X, Wang X. Sequential Paleotetraploidization shaped the carrot genome. BMC PLANT BIOLOGY 2020; 20:52. [PMID: 32005164 PMCID: PMC6995200 DOI: 10.1186/s12870-020-2235-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/31/2019] [Indexed: 06/02/2023]
Abstract
BACKGROUND Carrot (Daucus carota subsp. carota L.) is an important root crop with an available high-quality genome. The carrot genome is thought to have undergone recursive paleo-polyploidization, but the extent, occurrences, and nature of these events are not clearly defined. RESULTS Using a previously published comparative genomics pipeline, we reanalysed the carrot genome and characterized genomic fractionation, as well as gene loss and retention, after each of the two tetraploidization events and inferred a dominant and sensitive subgenome for each event. In particular, we found strong evidence of two sequential tetraploidization events, with one (Dc-α) approximately 46-52 million years ago (Mya) and the other (Dc-β) approximately 77-87 Mya, both likely allotetraploidization in nature. The Dc-β event was likely common to all Apiales plants, occurring around the divergence of Apiales-Bruniales and after the divergence of Apiales-Asterales, likely playing an important role in the derivation and divergence of Apiales species. Furthermore, we found that rounds of polyploidy events contributed to the expansion of gene families responsible for plastidial methylerythritol phosphate (MEP), the precursor of carotenoid accumulation, and shaped underlying regulatory pathways. The alignment of orthologous and paralogous genes related to different events of polyploidization and speciation constitutes a comparative genomics platform for studying Apiales, Asterales, and many other related species. CONCLUSIONS Hierarchical inference of homology revealed two tetraploidization events that shaped the carrot genome, which likely contributed to the successful establishment of Apiales plants and the expansion of MEP, upstream of the carotenoid accumulation pathway.
Collapse
Affiliation(s)
- Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- College of Mathematics and Science, Handan University, Handan, 056005 Hebei China
| | - Jigao Yu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Chendan Wei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - He Guo
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Ying Liu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Jin Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Xiuqing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, Frederiction, New Brunswick E3B 4Z7 Canada
| | - Xiyin Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
- School of Genomics and Bio-Big-Data, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| |
Collapse
|
38
|
Phukela B, Geeta R, Das S, Tandon R. Ancestral segmental duplication in Solanaceae is responsible for the origin of CRCa-CRCb paralogues in the family. Mol Genet Genomics 2020; 295:563-577. [PMID: 31912236 DOI: 10.1007/s00438-019-01641-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/18/2019] [Indexed: 01/03/2023]
Abstract
CRABS CLAW (CRC), a member of YABBY transcription factor family, has been previously reported to be principally involved in carpel development across angiosperms, and nectary development in core eudicots. Most of the studies suggest that CRC exists as a single copy gene, except in the Solanaceae where CRC occurs as paralogous pairs-CRCa-CRCb in Solanum lycopersicum, and CRC1-CRC2 in Petunia hybrida. In spite of their crucial role in carpel and nectary development, there is no information about the evolutionary history of the CRC paralogy in Solanaceae and whether the paralogy extends beyond Solanaceae. We analyzed homologues of CRC across angiosperms including genome sequence of fourteen species of Solanaceae available at Sol Genomics Network database, Phytozome and NCBI, to address the questions. Our phylogenetic reconstruction across angiosperms combined with comparative genomic, microsynteny and genome-fractionation analyses across the Solanaceae genomes revealed that (1) the CRCa-CRCb lineage is represented by a single copy in other flowering plants; (2) putative homologues of CRCa and CRCb are present in all the Solanaceae genomes studied; (3) the CRCa-CRCb paralogy in Solanaceae is associated with a large segmental duplication within Solanaceae (perhaps in its common ancestor), and (4) the duplicated segments have undergone different degrees of retention and loss of genes. Also, the CRC gene lineage expanded in Solanaceae following Solanaceae-α hexaploidy event and that two CRC duplicate copies were subsequently retained during the course of evolution. Besides the first detailed description of CRC evolution in Solanaceae, the study identifies potential candidate genes for future functional investigations.
Collapse
Affiliation(s)
- Banisha Phukela
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
39
|
Wu S, Han B, Jiao Y. Genetic Contribution of Paleopolyploidy to Adaptive Evolution in Angiosperms. MOLECULAR PLANT 2020; 13:59-71. [PMID: 31678615 DOI: 10.1016/j.molp.2019.10.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Ancient whole-genome duplications (WGDs or polyploidy) are prevalent in plants, and some WGDs occurred during the timing of severe global environmental changes. It has been suggested that WGDs may have contributed to plant adaptation. However, this still lacks empirical evidence at the genetic level to support the hypothesis. Here, we investigated the survivors of gene duplicates from multiple ancient WGD events on the major branches of angiosperm phylogeny, and aimed to explore genetic evidence supporting the significance of polyploidy. Duplicated genes co-retained from three waves of independent WGDs (∼120 million years ago [Ma], ∼66, and <20 Ma) were investigated in 25 selected species. Gene families functioning in low temperature and darkness were commonly retained gene duplicates after the eight independently occurring WGDs in many lineages around the Cretaceous-Paleocene boundary, when the global cooling and darkness were the two main stresses. Moreover, the commonly retained duplicates could be key factors which may have contributed to the robustness of the critical stress-related pathways. In addition, genome-wide transcription factors (TFs) functioning in stresses tend to retain duplicates after waves of WGDs, and the coselected gene duplicates in many lineages may play critical roles during severe environmental stresses. Collectively, these results shed new light on the significant contribution of paleopolyploidy to plant adaptation during global environmental changes in the evolutionary history of angiosperms.
Collapse
Affiliation(s)
- Shengdan Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocai Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
Ma J, Deng S, Jia Z, Sang Z, Zhu Z, Zhou C, Ma L, Chen F. Conservation and divergence of ancestral AGAMOUS/SEEDSTICK subfamily genes from the basal angiosperm Magnolia wufengensis. TREE PHYSIOLOGY 2020; 40:90-107. [PMID: 31553477 DOI: 10.1093/treephys/tpz091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
AGAMOUS/SEEDSTICK (AG/STK) subfamily genes play crucial roles in the reproductive development of plants. However, most of our current knowledge of AG/STK subfamily genes is restricted to core eudicots and grasses, and the knowledge of ancestral exon-intron structures, expression patterns, protein-protein interaction patterns and functions of AG/STK subfamily genes remains unclear. To determine these, we isolated AG/STK subfamily genes (MawuAG1, MawuAG2 and MawuSTK) from a woody basal angiosperm Magnolia wufengensis (Magnoliaceae). MawuSTK arose from the gene duplication event occurring before the diversification of extant angiosperms, and MawuAG1 and MawuAG2 may result from a gene duplication event occurring before the divergence of Magnoliaceae and Lauraceae. Gene duplication led to apparent diversification in their expression and interaction patterns. It revealed that expression in both stamens and carpels likely represents the ancestral expression profiles of AG lineage genes, and expression of STK-like genes in stamens may have been lost soon after the appearance of the STK lineage. Moreover, AG/STK subfamily proteins may have immediately established interactions with the SEPALLATA (SEP) subfamily proteins following the emergence of the SEP subfamily; however, their interactions with the APETALA1/FRUITFULL subfamily proteins or themselves differ from those found in monocots and basal and core eudicots. MawuAG1 plays highly conserved roles in the determinacy of stamen, carpel and ovule identity, while gene duplication contributed to the functional diversification of MawuAG2 and MawuSTK. In addition, we investigated the evolutionary history of exon-intron structural changes of the AG/STK subfamily, and a novel splice-acceptor mode (GUU-AU) and the convergent evolution of N-terminal extension in the euAG and PLE subclades were revealed for the first time. These results further advance our understanding of ancestral AG/STK subfamily genes in terms of phylogeny, exon-intron structures, expression and interaction patterns, and functions, and provide strong evidence for the significance of gene duplication in the expansion and evolution of the AG/STK subfamily.
Collapse
Affiliation(s)
- Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Yichang, 443002, Hubei Province, PR China
| | - Zhonglong Zhu
- Wufeng Bo Ling Magnolia Wufengensis Technology Development Co., Ltd, Yichang, 443002, Hubei Province, PR China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| | - Lvyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| |
Collapse
|
41
|
Soza VL, Lindsley D, Waalkes A, Ramage E, Patwardhan RP, Burton JN, Adey A, Kumar A, Qiu R, Shendure J, Hall B. The Rhododendron Genome and Chromosomal Organization Provide Insight into Shared Whole-Genome Duplications across the Heath Family (Ericaceae). Genome Biol Evol 2019; 11:3353-3371. [PMID: 31702783 PMCID: PMC6907397 DOI: 10.1093/gbe/evz245] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The genus Rhododendron (Ericaceae), which includes horticulturally important plants such as azaleas, is a highly diverse and widely distributed genus of >1,000 species. Here, we report the chromosome-scale de novo assembly and genome annotation of Rhododendron williamsianum as a basis for continued study of this large genus. We created multiple short fragment genomic libraries, which were assembled using ALLPATHS-LG. This was followed by contiguity preserving transposase sequencing (CPT-seq) and fragScaff scaffolding of a large fragment library, which improved the assembly by decreasing the number of scaffolds and increasing scaffold length. Chromosome-scale scaffolding was performed by proximity-guided assembly (LACHESIS) using chromatin conformation capture (Hi-C) data. Chromosome-scale scaffolding was further refined and linkage groups defined by restriction-site associated DNA (RAD) sequencing of the parents and progeny of a genetic cross. The resulting linkage map confirmed the LACHESIS clustering and ordering of scaffolds onto chromosomes and rectified large-scale inversions. Assessments of the R. williamsianum genome assembly and gene annotation estimate them to be 89% and 79% complete, respectively. Predicted coding sequences from genome annotation were used in syntenic analyses and for generating age distributions of synonymous substitutions/site between paralgous gene pairs, which identified whole-genome duplications (WGDs) in R. williamsianum. We then analyzed other publicly available Ericaceae genomes for shared WGDs. Based on our spatial and temporal analyses of paralogous gene pairs, we find evidence for two shared, ancient WGDs in Rhododendron and Vaccinium (cranberry/blueberry) members that predate the Ericaceae family and, in one case, the Ericales order.
Collapse
Affiliation(s)
- Valerie L Soza
- Department of Biology, University of Washington, Seattle, WA
| | - Dale Lindsley
- Department of Biology, University of Washington, Seattle, WA
- Retired
| | - Adam Waalkes
- Department of Biology, University of Washington, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | | | | | - Joshua N Burton
- Department of Genome Sciences, University of Washington, Seattle, WA
- Adaptive Biotechnologies, Seattle, WA
| | - Andrew Adey
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR
| | - Akash Kumar
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA
- Retired
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Benjamin Hall
- Department of Biology, University of Washington, Seattle, WA
| |
Collapse
|
42
|
Baniaga AE, Marx HE, Arrigo N, Barker MS. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol Lett 2019; 23:68-78. [PMID: 31637845 DOI: 10.1111/ele.13402] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023]
Abstract
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.
Collapse
Affiliation(s)
- Anthony E Baniaga
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nils Arrigo
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
43
|
Abstract
Green plants (Viridiplantae) include around 450,000-500,000 species1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
Collapse
|
44
|
Gao B, Chen M, Li X, Zhang J. Ancient duplications and grass-specific transposition influenced the evolution of LEAFY transcription factor genes. Commun Biol 2019; 2:237. [PMID: 31263781 PMCID: PMC6588583 DOI: 10.1038/s42003-019-0469-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
The LFY transcription factor gene family are important in the promotion of cell proliferation and floral development. Understanding their evolution offers an insight into floral development in plant evolution. Though a promiscuous transition intermediate and a gene duplication event within the LFY family had been identified previously, the early evolutionary path of this family remained elusive. Here, we reconstructed the LFY family phylogeny using maximum-likelihood and Bayesian inference methods incorporating LFY genes from all major lineages of streptophytes. The well-resolved phylogeny unveiled a high-confidence duplication event before the functional divergence of types I and II LFY genes in the ancestry of liverworts, mosses and tracheophytes, supporting sub-functionalization of an ancestral promiscuous gene. The identification of promiscuous genes in Osmunda suggested promiscuous LFY genes experienced an ancient transient duplication. Genomic synteny comparisons demonstrated a deep genomic positional conservation of LFY genes and an ancestral lineage-specific transposition activity in grasses.
Collapse
Affiliation(s)
- Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Moxian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresource, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
45
|
Hoffmeier A, Gramzow L, Bhide AS, Kottenhagen N, Greifenstein A, Schubert O, Mummenhoff K, Becker A, Theißen G. A Dead Gene Walking: Convergent Degeneration of a Clade of MADS-Box Genes in Crucifers. Mol Biol Evol 2019; 35:2618-2638. [PMID: 30053121 DOI: 10.1093/molbev/msy142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genes are "born," and eventually they "die." These processes shape the phenotypic evolution of organisms and are hence of great biological interest. If genes die in plants, they generally do so quite rapidly. Here, we describe the fate of GOA-like genes that evolve in a dramatically different manner. GOA-like genes belong to the subfamily of Bsister genes of MIKC-type MADS-box genes. Typical MIKC-type genes encode conserved transcription factors controlling plant development. We show that ABS-like genes, a clade of Bsister genes, are indeed highly conserved in crucifers (Brassicaceae) maintaining the ancestral function of Bsister genes in ovule and seed development. In contrast, their closest paralogs, the GOA-like genes, have been undergoing convergent gene death in Brassicaceae. Intriguingly, erosion of GOA-like genes occurred after millions of years of coexistence with ABS-like genes. We thus describe Delayed Convergent Asymmetric Degeneration, a so far neglected but possibly frequent pattern of duplicate gene evolution that does not fit classical scenarios. Delayed Convergent Asymmetric Degeneration of GOA-like genes may have been initiated by a reduction in the expression of an ancestral GOA-like gene in the stem group of Brassicaceae and driven by dosage subfunctionalization. Our findings have profound implications for gene annotations in genomics, interpreting patterns of gene evolution and using genes in phylogeny reconstructions of species.
Collapse
Affiliation(s)
- Andrea Hoffmeier
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lydia Gramzow
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Amey S Bhide
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nina Kottenhagen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Andreas Greifenstein
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Olesia Schubert
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Osnabrück, Germany
| | - Annette Becker
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Günter Theißen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
46
|
Ma J, Deng S, Chen L, Jia Z, Sang Z, Zhu Z, Ma L, Chen F. Gene duplication led to divergence of expression patterns, protein-protein interaction patterns and floral development functions of AGL6-like genes in the basal angiosperm Magnolia wufengensis (Magnoliaceae). TREE PHYSIOLOGY 2019; 39:861-876. [PMID: 31034013 DOI: 10.1093/treephys/tpz010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/07/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The MADS-box family genes play critical roles in the regulation of growth and development of flowering plants. AGAMOUS-LIKE 6 (AGL6)-like genes are one of the most enigmatic subfamilies of the MADS-box family because of highly variable expression patterns and ambiguous functions, which have long puzzled researchers. A lot of AGL6 homologs have been identified from gymnosperms and angiosperms. However, only a few have been characterized, especially for basal angiosperm taxa. Magnolia wufengensis is a woody basal angiosperm from the family Magnoliaceae. In the current study, the phylogenesis, expression and protein-protein interaction (PPI) patterns, and functions of two AGL6 homologs from M. wufengensis, MawuAGL6-1 and MawuAGL6-2, were analyzed. Phylogenetic analysis indicated that the two AGL6 duplicates may have arisen by gene duplication before the divergence of Magnoliaceae and Lauraceae, with the diversification of their expression and PPI patterns after gene duplication. Functional analysis revealed that, in addition to common functions in accelerating flowering, MawuAGL6-1 might be responsible for flower meristem determinacy, while MawuAGL6-2 is preferentially recruited to regulate tepal morphogenesis. These findings further advance our understanding of the evolution of phylogenesis, expression, interaction and functions of AGL6 lineage genes from basal angiosperms, as well as the entire AGL6 lineage genes, and the significance of AGL6 lineage genes in the evolution and biological diversity.
Collapse
Affiliation(s)
- Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, PR China
| | - Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Liyuan Chen
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Wufeng, Hubei Province, PR China
| | - Zhonglong Zhu
- Wufeng Bo Ling Magnolia Wufengensis Technology Development Co., Ltd, Wufeng, Hubei Province, PR China
| | - Lvyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, PR China
| |
Collapse
|
47
|
Wang J, Sun P, Li Y, Liu Y, Yang N, Yu J, Ma X, Sun S, Xia R, Liu X, Ge D, Luo S, Liu Y, Kong Y, Cui X, Lei T, Wang L, Wang Z, Ge W, Zhang L, Song X, Yuan M, Guo D, Jin D, Chen W, Pan Y, Liu T, Yang G, Xiao Y, Sun J, Zhang C, Li Z, Xu H, Duan X, Shen S, Zhang Z, Huang S, Wang X. An Overlooked Paleotetraploidization in Cucurbitaceae. Mol Biol Evol 2019; 35:16-26. [PMID: 29029269 PMCID: PMC5850751 DOI: 10.1093/molbev/msx242] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cucurbitaceae plants are of considerable biological and economic importance, and genomes of cucumber, watermelon, and melon have been sequenced. However, a comparative genomics exploration of their genome structures and evolution has not been available. Here, we aimed at performing a hierarchical inference of genomic homology resulted from recursive paleopolyploidizations. Unexpectedly, we found that, shortly after a core-eudicot-common hexaploidy, a cucurbit-common tetraploidization (CCT) occurred, overlooked by previous reports. Moreover, we characterized gene loss (and retention) after these respective events, which were significantly unbalanced between inferred subgenomes, and between plants after their split. The inference of a dominant subgenome and a sensitive one suggested an allotetraploid nature of the CCT. Besides, we found divergent evolutionary rates among cucurbits, and after doing rate correction, we dated the CCT to be 90–102 Ma, likely common to all Cucurbitaceae plants, showing its important role in the establishment of the plant family.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Pengchuan Sun
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuxian Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yinzhe Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Nanshan Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jigao Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xuelian Ma
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Sangrong Sun
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ruiyan Xia
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaojian Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Dongcen Ge
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Sainan Luo
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yinmeng Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Youting Kong
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaobo Cui
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tianyu Lei
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Li Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhenyi Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Weina Ge
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lan Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Min Yuan
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Di Guo
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Dianchuan Jin
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wei Chen
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuxin Pan
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tao Liu
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Guixian Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yue Xiao
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jinshuai Sun
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Cong Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhibo Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Haiqing Xu
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xueqian Duan
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shaoqi Shen
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhonghua Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Sanwen Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
48
|
Sun W, Leng L, Yin Q, Xu M, Huang M, Xu Z, Zhang Y, Yao H, Wang C, Xiong C, Chen S, Jiang C, Xie N, Zheng X, Wang Y, Song C, Peters RJ, Chen S. The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:841-857. [PMID: 30444296 PMCID: PMC7252214 DOI: 10.1111/tpj.14162] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 05/09/2023]
Abstract
Andrographis paniculata is a herbaceous dicot plant widely used for its anti-inflammatory and anti-viral properties across its distribution in China, India and other Southeast Asian countries. A. paniculata was used as a crucial therapeutic treatment during the influenza epidemic of 1919 in India, and is still used for the treatment of infectious disease in China. A. paniculata produces large quantities of the anti-inflammatory diterpenoid lactones andrographolide and neoandrographolide, and their analogs, which are touted to be the next generation of natural anti-inflammatory medicines for lung diseases, hepatitis, neurodegenerative disorders, autoimmune disorders and inflammatory skin diseases. Here, we report a chromosome-scale A. paniculata genome sequence of 269 Mb that was assembled by Illumina short reads, PacBio long reads and high-confidence (Hi-C) data. Gene annotation predicted 25 428 protein-coding genes. In order to decipher the genetic underpinning of diterpenoid biosynthesis, transcriptome data from seedlings elicited with methyl jasmonate were also obtained, which enabled the identification of genes encoding diterpenoid synthases, cytochrome P450 monooxygenases, 2-oxoglutarate-dependent dioxygenases and UDP-dependent glycosyltransferases potentially involved in diterpenoid lactone biosynthesis. We further carried out functional characterization of pairs of class-I and -II diterpene synthases, revealing the ability to produce diversified labdane-related diterpene scaffolds. In addition, a glycosyltransferase able to catalyze O-linked glucosylation of andrograpanin, yielding the major active product neoandrographolide, was also identified. Thus, our results demonstrate the utility of the combined genomic and transcriptomic data set generated here for the investigation of the production of the bioactive diterpenoid lactone constituents of the important medicinal herb A. paniculata.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - MeiMei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Mingkun Huang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Zhichao Xu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Yujun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Caixia Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Chao Xiong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Sha Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., 341008, Ganzhou, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., 341008, Ganzhou, China
| | - Xilong Zheng
- Hainan Branch, Institute of Medicinal Plant Development, 570311, Wanning, China
| | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, 430070, Wuhan, China
| | - Chi Song
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| |
Collapse
|
49
|
Lu Y, Chen W, Zhao L, Yao J, Li Y, Yang W, Liu Z, Zhang Y, Sun J. Different divergence events for three pairs of PEBPs in Gossypium as implied by evolutionary analysis. Genes Genomics 2019; 41:445-458. [PMID: 30610620 DOI: 10.1007/s13258-018-0775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The phosphatidylethanolamine-binding protein (PEBP) gene family plays a crucial role in seed germination, reproductive transformation, and other important developmental processes in plants, but its distribution in Gossypium genomes or species, evolutionary properties, and the fates of multiple duplicated genes remain unclear. OBJECTIVES The primary objectives of this study were to elucidate the distribution and characteristics of PEBP genes in Gossypium, as well as the evolutionary pattern of duplication and deletion, and functional differentiation of PEBPs in plants. METHODS Using the PEBP protein sequences in Arabidopsis thaliana as queries, blast alignment was carried out for the identification of PEBP genes in four sequenced cotton species. Using the primers designed according to the PEBP genome sequences, PEBP genes were cloned from 15 representative genomes of Gossypium genus, and the gene structure, CDS sequence, protein sequence and properties were predicted and phylogenetic analysis was performed. Taking PEBP proteins of grape as reference, grouping of orthologous gene, analysis of phylogeny and divergence of PEBPs in nine species were conducted to reconstruct the evolutionary pattern of PEBP genes in plants. RESULTS We identified and cloned 160 PEBPs from 15 cotton species, and the phylogenetic analysis showed that the genes could be classified into the following three subfamilies: MFT-like, FT-like and TFL1-like. There were eight single orthologous group (OG) members in each diploid and 16 double OG members in each tetraploid. An analysis of the expression and selective pressure indicated that expression divergence and strong purification selection within the same OG presented in the PEBP gene family. CONCLUSION An evolutionary pattern of duplication and deletion of the PEBP family in the evolutionary history of Gossypium was suggested, and three pairs of genes resulted from different whole-genome duplication events.
Collapse
Affiliation(s)
- Youjun Lu
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832003, China
- Cotton Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Huanghe Road, Anyang, 455000, Henan, China
| | - Wei Chen
- Cotton Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Cotton Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Jinbo Yao
- Cotton Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yan Li
- Cotton Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Weijun Yang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Huanghe Road, Anyang, 455000, Henan, China
| | - Ziyang Liu
- University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - Yongshan Zhang
- Cotton Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
50
|
Gao B, Chen M, Li X, Liang Y, Zhu F, Liu T, Zhang D, Wood AJ, Oliver MJ, Zhang J. Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. BMC PLANT BIOLOGY 2018; 18:256. [PMID: 30367626 PMCID: PMC6204039 DOI: 10.1186/s12870-018-1437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Facilitated by the rapid progress of sequencing technology, comparative genomic studies in plants have unveiled recurrent whole genome duplication (i.e. polyploidization) events throughout plant evolution. The evolutionary past of plant genes should be analyzed in a background of recurrent polyploidy events in distinctive plant lineages. The Vascular Plant One Zinc-finger (VOZ) gene family encode transcription factors associated with a number of important traits including control of flowering time and photoperiodic pathways, but the evolutionary trajectory of this gene family remains uncharacterized. RESULTS In this study, we deciphered the evolutionary history of the VOZ gene family by analyses of 107 VOZ genes in 46 plant genomes using integrated methods: phylogenic reconstruction, Ks-based age estimation and genomic synteny comparisons. By scrutinizing the VOZ gene family phylogeny the core eudicot γ event was well circumscribed, and relics of the precommelinid τ duplication event were detected by incorporating genes from oil palm and banana. The more recent T and ρ polyploidy events, closely coincident with the species diversification in Solanaceae and Poaceae, respectively, were also identified. Other important polyploidy events captured included the "salicoid" event in poplar and willow, the "early legume" and "soybean specific" events in soybean, as well as the recent polyploidy event in Physcomitrella patens. Although a small transcription factor gene family, the evolutionary history of VOZ genes provided an outstanding record of polyploidy events in plants. The evolutionary past of VOZ gene family demonstrated a close correlation with critical plant polyploidy events which generated species diversification and provided answer to Darwin's "abominable mystery". CONCLUSIONS We deciphered the evolutionary history of VOZ transcription factor family in plants and ancestral polyploidy events in plants were recapitulated simultaneously. This analysis allowed for the generation of an idealized plant gene tree demonstrating distinctive retention and fractionation patterns following polyploidy events.
Collapse
Affiliation(s)
- Bei Gao
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Moxian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Yuqing Liang
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Fuyuan Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037 China
| | - Tieyuan Liu
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University-Carbondale, Carbondale, IL 62901-6509 USA
| | - Melvin J. Oliver
- USDA-ARS, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211 USA
| | - Jianhua Zhang
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|