1
|
Peng Z, Wen R. Mechanical and structural features of three AcSp proteins underlie the diverse material properties of aciniform silks of Neoscona spiders. Biochimie 2024:S0300-9084(24)00255-4. [PMID: 39486782 DOI: 10.1016/j.biochi.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Spider silks are desirable multicomponent biomaterials characterized by great tensile strength, extensibility, and biocompatibility. Of all spider silk types, aciniform silk has highest toughness due to its combination of high tensile strength and elsticity. Here, we identify three major spidroin components (AcSp1A, AcSp1B, and AcSp2) from aciniform silk of orbweb weaving spider, Neoscona scylloides, and present their full-length coding gene sequences. Comparative sequence and expression level analysis show that AcSp1B has highest expression level and higher serine content than other two AcSp proteins, while the AcSp2 shows very low mRNA level. Furthermore, three recombinant minimalist AcSp proteins are produced and could be induced to form fibers by shear forces in a physiological buffer. The manual-drawn AcSp1B fiber shows strongest tensile strength among three AcSp fibers because of its higher β-sheet formed by abundant serine content. We also compare mechanical properties of aciniform silks between two Neoscona species (N. theisi and N. scylloides) and found that aciniform silks from N. theisi exhibit higher tensile strength than those of N. scylloides, which may result from altering expression levels of two AcSp1 proteins. Collectively, our results provide insights into the mechanical features of each component in aciniform silk from N. scylloides and reveal the molecular mechanism of diverse material properties of aciniform silk among species.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Radiation Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324002, Zhejiang, China
| | - Rui Wen
- Department of Radiation Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324002, Zhejiang, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Miles LS, Waterman H, Ayoub NA, Garb JE, Haney RA, Rosenberg MS, Krabbenhoft TJ, Verrelli BC. Insight into the adaptive role of arachnid genome-wide duplication through chromosome-level genome assembly of the Western black widow spider. J Hered 2024; 115:241-252. [PMID: 38567866 DOI: 10.1093/jhered/esae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
Although spiders are one of the most diverse groups of arthropods, the genetic architecture of their evolutionary adaptations is largely unknown. Specifically, ancient genome-wide duplication occurring during arachnid evolution ~450 mya resulted in a vast assembly of gene families, yet the extent to which selection has shaped this variation is understudied. To aid in comparative genome sequence analyses, we provide a chromosome-level genome of the Western black widow spider (Latrodectus hesperus)-a focus due to its silk properties, venom applications, and as a model for urban adaptation. We used long-read and Hi-C sequencing data, combined with transcriptomes, to assemble 14 chromosomes in a 1.46 Gb genome, with 38,393 genes annotated, and a BUSCO score of 95.3%. Our analyses identified high repetitive gene content and heterozygosity, consistent with other spider genomes, which has led to challenges in genome characterization. Our comparative evolutionary analyses of eight genomes available for species within the Araneoidea group (orb weavers and their descendants) identified 1,827 single-copy orthologs. Of these, 155 exhibit significant positive selection primarily associated with developmental genes, and with traits linked to sensory perception. These results support the hypothesis that several traits unique to spiders emerged from the adaptive evolution of ohnologs-or retained ancestrally duplicated genes-from ancient genome-wide duplication. These comparative spider genome analyses can serve as a model to understand how positive selection continually shapes ancestral duplications in generating novel traits today within and between diverse taxonomic groups.
Collapse
Affiliation(s)
- Lindsay S Miles
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, United States
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Hannah Waterman
- Department of Biological Sciences and Research and Education in Energy, Environment, and Water Institute, University at Buffalo, Buffalo, NY, United States
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Robert A Haney
- Department of Biology, Ball State University, Muncie, IN, United States
| | - Michael S Rosenberg
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Trevor J Krabbenhoft
- Department of Biological Sciences and Research and Education in Energy, Environment, and Water Institute, University at Buffalo, Buffalo, NY, United States
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
3
|
Lu W, Shi R, Li X, Ma S, Yang D, Shang D, Xia Q. A review on complete silk gene sequencing and de novo assembly of artificial silk. Int J Biol Macromol 2024; 264:130444. [PMID: 38417762 DOI: 10.1016/j.ijbiomac.2024.130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Silk, especially spider and insect silk, is a highly versatile biomaterial with potential applications in biomedicine, materials science, and biomimetic engineering. The primary structure of silk proteins is the basis for the mechanical properties of silk fibers. Biotechnologies such as single-molecule sequencing have facilitated an increasing number of reports on new silk genes and assembled silk proteins. Therefore, this review aims to provide a comprehensive overview of the recent advances in representative spider and insect silk proteins, focusing on identification methods, sequence characteristics, and de novo design and assembly. The review discusses three identification methods for silk genes: polymerase chain reaction (PCR)-based sequencing, PCR-free cloning and sequencing, and whole-genome sequencing. Moreover, it reveals the main spider and insect silk proteins and their sequences. Subsequent de novo assembly of artificial silk is covered and future research directions in the field of silk proteins, including new silk genes, customizable artificial silk, and the expansion of silk production and applications are discussed. This review provides a basis for the genetic aspects of silk production and the potential applications of artificial silk in material science and biomedical engineering.
Collapse
Affiliation(s)
- Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xue Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Daiying Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Deli Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Yang Y, Gao Z, Yang D. pH-dependent self-assembly mechanism of a single repetitive domain from a spider silk protein. Int J Biol Macromol 2023; 242:124775. [PMID: 37169045 DOI: 10.1016/j.ijbiomac.2023.124775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Spider silk is self-assembled from full-length silk proteins, and some silk protein fragments can also form silk-like fibers in vitro. However, the mechanism underlying the silk fiber formation is not understood well. In this study, we investigated the fiber formation of a single repetitive domain (RP) from a minor ampullate silk protein (MiSp). Our findings revealed that pH and salt concentration affect not only the stability of MiSp-RP but also its self-assembly into fibers and aggregates. Using nuclear magnetic resonance (NMR) spectroscopy, we solved the three-dimensional (3D) structure of MiSp RP in aqueous solution. On the basis of the structure and mutagenesis, we revealed that charge-dipole interactions are responsible for the pH- and salt-dependent properties of MiSp-RP. Our results indicate that fiber formation is regulated by a delicate balance between intermolecular and intramolecular interactions, rather than by the protein stability alone. These findings have implications for the design of silk proteins for mass production of spider silk.
Collapse
Affiliation(s)
- Yadi Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhenwei Gao
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Lu W, Ma S, Sun L, Zhang T, Wang X, Feng M, Wang A, Shi R, Jia L, Xia Q. Combined CRISPR toolkits reveal the domestication landscape and function of the ultra-long and highly repetitive silk genes. Acta Biomater 2023; 158:190-202. [PMID: 36603730 DOI: 10.1016/j.actbio.2022.12.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Highly repetitive sequences play a major structural and function role in the genome. In the present study, we developed Cas9-assisted cloning and SMRT sequencing of long repetitive sequences (CACS) to sequence and manipulate highly repetitive genes from eukaryotic genomes. CACS combined Cas9-mediated cleavage of a target segment from an intact genome, Gibson assembly cloning, and PacBio SMRT sequencing. Applying CACS, we directly cloned and sequenced the complete sequences of fibroin heavy chain (FibH) genes from 17 domesticated (Bombyx mori) and 7 wild (Bombyx mandarina) silkworms. Our analysis revealed the unique fine structure organization, genetic variations, and domestication dynamics of FibH. We also demonstrated that the length of the repetitive regions determined the mechanical properties of silk fiber, which was further confirmed by Cas9 editing of FibH. CACS is a simple, robust, and efficient approach, providing affordable accessibility to highly repetitive regions of a genome. STATEMENT OF SIGNIFICANCE: Silkworm silk is the earliest and most widely used animal fiber, and its excellent performance mainly depends on the fibroin heavy chain (FibH) protein. The FibH gene is the main breakthrough in understanding the formation mechanism and improvement of silk fiber. In the study, we developed a CACS method for characterizing the fine structure and domestication landscape of 24 silkworm FibH genes. We used CRISPR/Cas9 to edit the repetitive sequence of FibH genes, revealing the relationship between FibH genes and mechanical properties of silkworm silk. Our study is helpful in modifying silk genes to manipulate other valuable highly repetitive sequences, and provides insight for silkworm breeding.
Collapse
Affiliation(s)
- Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Min Feng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Aoming Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Arguelles J, Baker RH, Perez-Rigueiro J, Guinea GV, Elices M, Hayashi CY. Relating spidroin motif prevalence and periodicity to the mechanical properties of major ampullate spider silks. J Comp Physiol B 2023; 193:25-36. [PMID: 36342510 PMCID: PMC9852138 DOI: 10.1007/s00360-022-01464-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Spider dragline fibers exhibit incredible mechanical properties, outperforming many synthetic polymers in toughness assays, and possess desirable properties for medical and other human applications. These qualities make dragline fibers popular subjects for biomimetics research. The enormous diversity of spiders presents both an opportunity for the development of new bioinspired materials and a challenge for the identification of fundamental design principles, as the mechanical properties of dragline fibers show both intraspecific and interspecific variations. In this regard, the stress-strain curves of draglines from different species have been shown to be effectively compared by the α* parameter, a value derived from maximum-supercontracted silk fibers. To identify potential molecular mechanisms impacting α* values, here we analyze spider fibroin (spidroin) sequences of the Western black widow (Latrodectus hesperus) and the black and yellow garden spider (Argiope aurantia). This study serves as a primer for investigating the molecular properties of spidroins that underlie species-specific α* values. Initial findings are that while overall motif composition was similar between species, certain motifs and higher level periodicities of glycine-rich region lengths showed variation, notably greater distances between poly-A motifs in A. aurantia sequences. In addition to increased period lengths, A. aurantia spidroins tended to have an increased prevalence of charged and hydrophobic residues. These increases may impact the number and strength of hydrogen bond networks within fibers, which have been implicated in conformational changes and formation of nanocrystals, contributing to the greater extensibility of A. aurantia draglines compared to those of L. hesperus.
Collapse
Affiliation(s)
- Joseph Arguelles
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024 USA
| | - Richard H. Baker
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024 USA
| | - Jose Perez-Rigueiro
- Center for Biomedical Engineering (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain ,Centro de Investigatión Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain ,Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, ETSI Caminos, Canales y Peurtos, 28040 Madrid, Spain ,Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Engineering (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain ,Centro de Investigatión Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain ,Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, ETSI Caminos, Canales y Peurtos, 28040 Madrid, Spain ,Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - M. Elices
- Centro de Investigatión Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Cheryl Y. Hayashi
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024 USA
| |
Collapse
|
7
|
Wen R, Wang K, Zan X. Characterization of two full-length tubuliform silk gene sequences from Neoscona theisi reveals intragenic concerted evolution and multiple copies in genome. Int J Biol Macromol 2022; 223:1015-1023. [PMID: 36375671 DOI: 10.1016/j.ijbiomac.2022.11.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Orb-web weaving spiders use a variety of silk types for particular tasks, and each silk type is composed of at least two spider silk proteins (spidroins). In the early stage of divergence, however, the molecular evolutionary processes act on spidroin variants are still unclear because of a lack of knowledge for full-length paralogous and orthologous gene sequences among closely related species. Here, we present two complete gene sequences encoding the tubuliform spidroin TuSp1 variants (TuSp1-v2 and TuSp1-v3) from orb-weaving spider Neoscona theisi. Both N. theisi TuSp1-v2 and TuSp1-v3 genes contain a single enormous exon (14,139 bp for TuSp1-v2 and 13,152 bp for TuSp1-v3) and dozens of tandemly arrayed repeats (25 repeats for TuSp1-v2 and 23 repeats for TuSp1-v3) with extreme intragenic homogenization. The pattern of expression for these two spidroins revealed that the level of TuSp1-v3 mRNA is ~3-fold higher than that of TuSp1-v2 in tubuliform gland. Phylogenetic analyses of spidroins not only show the occurrence of a gene duplication event for TuSp1-v2 and TuSp1-v3 in the common ancestor of the Neoscona and Araneus lineage but reinforce the role of concerted evolution for the extreme homogenization of TuSp1 repeats.
Collapse
Affiliation(s)
- Rui Wen
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Kangkang Wang
- Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Miller J, Zimin AV, Gordus A. Chromosome-level genome and the identification of sex chromosomes in Uloborus diversus. Gigascience 2022; 12:giad002. [PMID: 36762707 PMCID: PMC9912274 DOI: 10.1093/gigascience/giad002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
The orb web is a remarkable example of animal architecture that is observed in families of spiders that diverged over 200 million years ago. While several genomes exist for araneid orb-weavers, none exist for other orb-weaving families, hampering efforts to investigate the genetic basis of this complex behavior. Here we present a chromosome-level genome assembly for the cribellate orb-weaving spider Uloborus diversus. The assembly reinforces evidence of an ancient arachnid genome duplication and identifies complete open reading frames for every class of spidroin gene, which encode the proteins that are the key structural components of spider silks. We identified the 2 X chromosomes for U. diversus and identify candidate sex-determining loci. This chromosome-level assembly will be a valuable resource for evolutionary research into the origins of orb-weaving, spidroin evolution, chromosomal rearrangement, and chromosomal sex determination in spiders.
Collapse
Affiliation(s)
- Jeremiah Miller
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Correa-Garhwal SM, Baker RH, Clarke TH, Ayoub NA, Hayashi CY. The evolutionary history of cribellate orb-weaver capture thread spidroins. BMC Ecol Evol 2022; 22:89. [PMID: 35810286 PMCID: PMC9270836 DOI: 10.1186/s12862-022-02042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Background Spiders have evolved two types of sticky capture threads: one with wet adhesive spun by ecribellate orb-weavers and another with dry adhesive spun by cribellate spiders. The evolutionary history of cribellate capture threads is especially poorly understood. Here, we use genomic approaches to catalog the spider-specific silk gene family (spidroins) for the cribellate orb-weaver Uloborus diversus. Results We show that the cribellar spidroin, which forms the puffy fibrils of cribellate threads, has three distinct repeat units, one of which is conserved across cribellate taxa separated by ~ 250 Mya. We also propose candidates for a new silk type, paracribellar spidroins, which connect the puffy fibrils to pseudoflagelliform support lines. Moreover, we describe the complete repeat architecture for the pseudoflagelliform spidroin (Pflag), which contributes to extensibility of pseudoflagelliform axial fibers. Conclusions Our finding that Pflag is closely related to Flag, supports homology of the support lines of cribellate and ecribellate capture threads. It further suggests an evolutionary phase following gene duplication, in which both Flag and Pflag were incorporated into the axial lines, with subsequent loss of Flag in uloborids, and increase in expression of Flag in ecribellate orb-weavers, explaining the distinct mechanical properties of the axial lines of these two groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02042-5.
Collapse
|
10
|
Arakawa K, Kono N, Malay AD, Tateishi A, Ifuku N, Masunaga H, Sato R, Tsuchiya K, Ohtoshi R, Pedrazzoli D, Shinohara A, Ito Y, Nakamura H, Tanikawa A, Suzuki Y, Ichikawa T, Fujita S, Fujiwara M, Tomita M, Blamires SJ, Chuah JA, Craig H, Foong CP, Greco G, Guan J, Holland C, Kaplan DL, Sudesh K, Mandal BB, Norma-Rashid Y, Oktaviani NA, Preda RC, Pugno NM, Rajkhowa R, Wang X, Yazawa K, Zheng Z, Numata K. 1000 spider silkomes: Linking sequences to silk physical properties. SCIENCE ADVANCES 2022; 8:eabo6043. [PMID: 36223455 PMCID: PMC9555773 DOI: 10.1126/sciadv.abo6043] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Ali D. Malay
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Ayaka Tateishi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Nao Ifuku
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198, Japan
| | - Ryota Sato
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Rintaro Ohtoshi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | | | | | - Yusuke Ito
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroyuki Nakamura
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Spiber Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Akio Tanikawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yuya Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Takeaki Ichikawa
- Kokugakuin Kugayama High School, Suginami, Tokyo 168-0082, Japan
| | - Shohei Fujita
- Graduate School of Agriculture, Saga University, Saga 840-8502, Japan
| | - Masayuki Fujiwara
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Sean J. Blamires
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jo-Ann Chuah
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hamish Craig
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Choon P. Foong
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Gabriele Greco
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
| | - Juan Guan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Chris Holland
- Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781 039 Assam, India
- Center for Nanotechnology, IITG, Guwahati, 781 039 Assam, India
- School of Health Sciences and Technology, IITG, Guwahati, 781 039 Assam, India
| | - Y. Norma-Rashid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur A. Oktaviani
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Rucsanda C. Preda
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nicola M. Pugno
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Xiaoqin Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Kenjiro Yazawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Zhaozhu Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Wen R, Yang D, Wang K, Zan X. Characterization of two full-length Araneus ventricosus major ampullate silk protein genes. Int J Biol Macromol 2022; 213:297-304. [PMID: 35654219 DOI: 10.1016/j.ijbiomac.2022.05.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Major ampullate silk is noted for its great tensile strength and extensibility. The impressive material properties of major ampullate silk result from their component proteins that encoded by members of the spidroin (spider fibroin) gene family. Although the major ampullate spidroin type has evolved multiple variants within specific-species, most sequences are fragmented. Here, we present two complete major ampullate spidroin genes from the orb-weaving spider Araneus ventricosus. Due to the abundant GPG motifs in their repetitive region, the two MaSp genes were grouped in MaSp2 subclass and named MaSp2C and MaSp2D, respectively. Analysis of the full-length gene sequences reveals that both of them include a single enormous exon (10,851 bp for MaSp2C and 8640 bp for MaSp2D) that mainly translates into a central repetitive region containing multiple amino acid motifs that can be organized into five ensemble types. We use gene-specific PCR primers to search the cDNA from major ampullate glands and find evidence for alternative splicing of MaSp2D transcripts into a minor spliceoform lacking the entire repetitive domain as well as the partial terminal regions. Our results not only provide new templates for protein-based materials with tailored properties, but suggest gene and transcriptional diversity of major ampullate silk.
Collapse
Affiliation(s)
- Rui Wen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Kangkang Wang
- Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| |
Collapse
|
12
|
Babb PL, Gregorič M, Lahens NF, Nicholson DN, Hayashi CY, Higgins L, Kuntner M, Agnarsson I, Voight BF. Characterization of the genome and silk-gland transcriptomes of Darwin's bark spider (Caerostris darwini). PLoS One 2022; 17:e0268660. [PMID: 35666730 PMCID: PMC9170102 DOI: 10.1371/journal.pone.0268660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022] Open
Abstract
Natural silks crafted by spiders comprise some of the most versatile materials known. Artificial silks-based on the sequences of their natural brethren-replicate some desirable biophysical properties and are increasingly utilized in commercial and medical applications today. To characterize the repertoire of protein sequences giving silks their biophysical properties and to determine the set of expressed genes across each unique silk gland contributing to the formation of natural silks, we report here draft genomic and transcriptomic assemblies of Darwin's bark spider, Caerostris darwini, an orb-weaving spider whose dragline is one of the toughest known biomaterials on Earth. We identify at least 31 putative spidroin genes, with expansion of multiple spidroin gene classes relative to the golden orb-weaver, Trichonephila clavipes. We observed substantial sharing of spidroin repetitive sequence motifs between species as well as new motifs unique to C. darwini. Comparative gene expression analyses across six silk gland isolates in females plus a composite isolate of all silk glands in males demonstrated gland and sex-specific expression of spidroins, facilitating putative assignment of novel spidroin genes to classes. Broad expression of spidroins across silk gland types suggests that silks emanating from a given gland represent composite materials to a greater extent than previously appreciated. We hypothesize that the extraordinary toughness of C. darwini major ampullate dragline silk may relate to the unique protein composition of major ampullate spidroins, combined with the relatively high expression of stretchy flagelliform spidroins whose union into a single fiber may be aided by novel motifs and cassettes that act as molecule-binding helices. Our assemblies extend the catalog of sequences and sets of expressed genes that confer the unique biophysical properties observed in natural silks.
Collapse
Affiliation(s)
- Paul L. Babb
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Matjaž Gregorič
- Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | - Nicholas F. Lahens
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - David N. Nicholson
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cheryl Y. Hayashi
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States of America
| | - Linden Higgins
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Matjaž Kuntner
- Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, United States of America
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Benjamin F. Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
13
|
Jorge I, Ruiz V, Lavado-García J, Vázquez J, Hayashi C, Rojo FJ, Atienza JM, Elices M, Guinea GV, Pérez-Rigueiro J. Expression of spidroin proteins in the silk glands of golden orb-weaver spiders. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:241-253. [PMID: 34981640 DOI: 10.1002/jez.b.23117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The expression of spidroins in the major ampullate, minor ampullate, flagelliform, and tubuliform silk glands of Trichonephila clavipes spiders was analyzed using proteomics analysis techniques. Spidroin peptides were identified and assigned to different gene products based on sequence concurrence when compared with the whole genome of the spider. It was found that only a relatively low proportion of the spidroin genes are expressed as proteins in any of the studied glands. In addition, the expression of spidroin genes in different glands presents a wide range of patterns, with some spidroins being found in a single gland exclusively, while others appear in the content of several glands. The combination of precise genomics, proteomics, microstructural, and mechanical data provides new insights both on the design principles of these materials and how these principles might be translated for the production of high-performance bioinspired artificial fibers.
Collapse
Affiliation(s)
- Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Víctor Ruiz
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jesús Lavado-García
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departament d'Enginyeria Química, Grup d'Enginyeria Cel·lular i de Bioprocessos (GECIB), Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cheryl Hayashi
- Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA
| | - Francisco J Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - José M Atienza
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
14
|
Li X, Fan JS, Shi M, Lai CC, Li J, Meng Q, Yang D. C-Terminal Domains of Spider Silk Proteins Having Divergent Structures but Conserved Functional Roles. Biomacromolecules 2022; 23:1643-1651. [PMID: 35312302 DOI: 10.1021/acs.biomac.1c01513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spider silk is self-assembled from silk proteins or spidroins. C-terminal domains (CTDs) of various types of spidroins are relatively conserved in amino acid sequences and are suggested to adopt similar structures and perform similar functional roles in spidroin storage and silk formation. Here, we solved the structure of the CTD from a capture-spiral silk protein (CTDFl) and characterized its stability and fibril formation in the presence and absence of a reducing agent at different pH values. CTDFl adopts a dimeric structure with 8 helices, but the CTDs of other types of spidroins exist in a domain-swapped dimeric structure with 10 helices. Despite the structural differences, CTDFl is pH-responsive in stability and fibril formation, similar to the CTDs from minor and major ampullate spidroins. Thus, the functional role of CTDs in silk fiber formation seems conserved. Comparing wild-type CTDFl and its mutants, we found that the pH-responsive behavior results from the protonation of H76, which is conserved from different spider species. In addition, the fibril formation rate of CTDFl correlates with its instability, suggesting that structural changes are involved in fibril formation.
Collapse
Affiliation(s)
- Xue Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Mengqi Shi
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Chong Cheong Lai
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Jiaxin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Qing Meng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
15
|
Ramezaniaghdam M, Nahdi ND, Reski R. Recombinant Spider Silk: Promises and Bottlenecks. Front Bioeng Biotechnol 2022; 10:835637. [PMID: 35350182 PMCID: PMC8957953 DOI: 10.3389/fbioe.2022.835637] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 02/02/2023] Open
Abstract
Spider silk threads have exceptional mechanical properties such as toughness, elasticity and low density, which reach maximum values compared to other fibre materials. They are superior even compared to Kevlar and steel. These extraordinary properties stem from long length and specific protein structures. Spider silk proteins can consist of more than 20,000 amino acids. Polypeptide stretches account for more than 90% of the whole protein, and these domains can be repeated more than a hundred times. Each repeat unit has a specific function resulting in the final properties of the silk. These properties make them attractive for innovative material development for medical or technical products as well as cosmetics. However, with livestock breeding of spiders it is not possible to reach high volumes of silk due to the cannibalistic behaviour of these animals. In order to obtain spider silk proteins (spidroins) on a large scale, recombinant production is attempted in various expression systems such as plants, bacteria, yeasts, insects, silkworms, mammalian cells and animals. For viable large-scale production, cost-effective and efficient production systems are needed. This review describes the different types of spider silk, their proteins and structures and discusses the production of these difficult-to-express proteins in different host organisms with an emphasis on plant systems.
Collapse
Affiliation(s)
- Maryam Ramezaniaghdam
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Nadia D. Nahdi
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Liu FYC, Liu JYX, Yao X, Wang B. Hybrid sequencing reveals the full-length Nephila pilipes pyriform spidroin 1 (PySp1). Int J Biol Macromol 2022; 200:362-369. [PMID: 34973986 DOI: 10.1016/j.ijbiomac.2021.12.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
Araneid spider silk glands can spin seven silk types that have task-specific properties owing to the higher order structure of spider silk proteins. This gives silks superior potential as novel biomaterials. Nephila pilipes, the giant golden orb-weaver, is one of the largest spiders and spins silk with exceptional torsional deformation, toughness, and other properties to support its mass; further investigation relies on a complete amino acid sequence. However, there are no full-length N. pilipes spidroin sequences; in fact, across species, most sequences remain fragmentary because of repetitive region assembly difficulties in short-read sequencing. Here, we develop a hybrid sequencing method that utilizes short-read sequencing to identify seven spidroin terminals in N. pilipes, and long-read sequencing to confirm the full-length pyriform spidroin 1 (PySp1) gene. PySp1 is 11,181 base pairs, with a single exon encoding a 3,726 amino acid protein, the QQ(x)4Qx motif, and lower repeat homogenization, distinct characteristics of genera Nephilinae PySp1. The full-length N. pilipes PySp1 sequences sheds light on spidroin evolution and demonstrates a helpful strategy to find full-length spidroins.
Collapse
Affiliation(s)
- Frank Y C Liu
- Department of Biology, Link-Spider Co. Ltd., Room D-E, Floor 22, Caifu Building, Fuhua 3rd Rd., Shenzhen, Guangdong 518000, China; Science Department, Newton South High School, 140 Brandeis Rd., Newton, MA 02459, USA.
| | - Jessica Y X Liu
- Department of Biology, Link-Spider Co. Ltd., Room D-E, Floor 22, Caifu Building, Fuhua 3rd Rd., Shenzhen, Guangdong 518000, China; Department of Material Science and Engineering, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| | - Xiu Yao
- Department of Biology, Link-Spider Co. Ltd., Room D-E, Floor 22, Caifu Building, Fuhua 3rd Rd., Shenzhen, Guangdong 518000, China.
| | - Boxiang Wang
- Department of Biology, Link-Spider Co. Ltd., Room D-E, Floor 22, Caifu Building, Fuhua 3rd Rd., Shenzhen, Guangdong 518000, China.
| |
Collapse
|
17
|
Wen R, Wang K, Yang D, Yu T, Zan X, Meng Q. The novel aciniform silk protein (AcSp2-v2) reveals the unique repetitive domain with high acid and thermal stability and self-assembly capability. Int J Biol Macromol 2021; 202:91-101. [PMID: 34973994 DOI: 10.1016/j.ijbiomac.2021.12.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
Orb-weaving spiders spin a mechanically and functionally diverse range of silk fibers, each composed of one or more specific silk proteins. Of all silk types, wrapping silk combines high strength and extensibility and is made of multiple aciniform silk proteins (AcSp) that can be grouped into two AcSp types (AcSp1 and AcSp2) according to their distinct repetitive regions. Here, we present a novel and complete AcSp gene from orb weaving spider Araneus ventricosus. Phylogenetic analysis of the terminal regions of spidroins reveals that the new silk protein and the published A. ventricosus AcSp2 together form a subclade, indicating that this protein is a member of AcSp2 subclass and therefore named AcSp2 variant 2 (AcSp2-v2). The repetitive region of A. ventricosus AcSp2-v2 contains 24 cysteine residues, which is the first time that cysteine has been found in repetitive regions of spidroins. Moreover, the discovery of the ability of AcSp2-v2 repetitive domain to self-assemble into silk fibers expands the repertoire of known self-assembling sequences.
Collapse
Affiliation(s)
- Rui Wen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kangkang Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Tiantian Yu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
18
|
Critical role of minor eggcase silk component in promoting spidroin chain alignment and strong fiber formation. Proc Natl Acad Sci U S A 2021; 118:2100496118. [PMID: 34531321 DOI: 10.1073/pnas.2100496118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 11/18/2022] Open
Abstract
Natural spider silk with extraordinary mechanical properties is typically spun from more than one type of spidroin. Although the main components of various spider silks have been widely studied, little is known about the molecular role of the minor silk components in spidroin self-assembly and fiber formation. Here, we show that the minor component of spider eggcase silk, TuSp2, not only accelerates self-assembly but remarkably promotes molecular chain alignment of spidroins upon physical shearing. NMR structure of the repetitive domain of TuSp2 reveals that its dimeric structure with unique charged surface serves as a platform to recruit different domains of the main eggcase component TuSp1. Artificial fiber spun from the complex between TuSp1 and TuSp2 minispidroins exhibits considerably higher strength and Young's modulus than its native counterpart. These results create a framework for rationally designing silk biomaterials based on distinct roles of silk components.
Collapse
|
19
|
Chaw RC, Clarke TH, Arensburger P, Ayoub NA, Hayashi CY. Gene expression profiling reveals candidate genes for defining spider silk gland types. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 135:103594. [PMID: 34052321 DOI: 10.1016/j.ibmb.2021.103594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Molecular studies of the secretory glands involved in spider silk production have revealed candidate genes for silk synthesis and a complicated history of spider silk gene evolution. However, differential gene expression profiles of the multiple silk gland types within an individual orb-web weaving spider are lacking. Each of these gland types produces a functionally distinct silk type. Comparison of gene expression among spider silk gland types would provide insight into the genes that define silk glands generally from non-silk gland tissues, and the genes that define silk glands from each other. Here, we perform 3' tag digital gene expression profiling of the seven silk gland types of the silver garden orb weaver Argiope argentata. Five of these gland types produce silks that are non-adhesive fibers, one silk includes both fibers and glue-like adhesives, and one silk is exclusively glue-like. We identify 1275 highly expressed, significantly upregulated, and tissue specific silk gland specific transcripts (SSTs). These SSTs include seven types of spider silk protein encoding genes known as spidroin genes. We find that the fiber-producing major ampullate and minor ampullate silk glands have more similar expression profiles than any other pair of glands. We also find that a subset of the SSTs is enriched for transmembrane transport and oxidoreductases, and that these transcripts highlight differences and similarities among the major ampullate, minor ampullate, and aggregate silk glands. Furthermore, we show that the wet glue-producing aggregate glands have the most unique SSTs, but still share some SSTs with fiber producing glands. Aciniform glands were the only gland type to share a majority of SSTs with other silk gland types, supporting previous hypotheses that duplication of aciniform glands and subsequent divergence of the duplicates gave rise to the multiple silk gland types within an individual spider.
Collapse
Affiliation(s)
- R Crystal Chaw
- University of California, Riverside, Department of Evolution, Ecology, and Organismal Biology, 2710 Life Science Building, Riverside, CA, 92521, USA.
| | - Thomas H Clarke
- Washington and Lee University, Department of Biology, Howe Hall, Lexington, VA, 24450, USA.
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, 91768, USA.
| | - Nadia A Ayoub
- Washington and Lee University, Department of Biology, Howe Hall, Lexington, VA, 24450, USA.
| | - Cheryl Y Hayashi
- University of California, Riverside, Department of Evolution, Ecology, and Organismal Biology, 2710 Life Science Building, Riverside, CA, 92521, USA.
| |
Collapse
|
20
|
Onofrei D, Stengel D, Jia D, Johnson HR, Trescott S, Soni A, Addison B, Muthukumar M, Holland GP. Investigating the Atomic and Mesoscale Interactions that Facilitate Spider Silk Protein Pre-Assembly. Biomacromolecules 2021; 22:3377-3385. [PMID: 34251190 DOI: 10.1021/acs.biomac.1c00473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Black widow spider dragline silk is one of nature's high-performance biological polymers, exceeding the strength and toughness of most man-made materials including high tensile steel and Kevlar. Major ampullate (Ma), or dragline silk, is primarily comprised of two spidroin proteins (Sp) stored within the Ma gland. In the native gland environment, the MaSp1 and MaSp2 proteins self-associate to form hierarchical 200-300 nm superstructures despite being intrinsically disordered proteins (IDPs). Here, dynamic light scattering (DLS), three-dimensional (3D) triple resonance solution NMR, and diffusion NMR is utilized to probe the MaSp size, molecular structure, and dynamics of these protein pre-assemblies diluted in 4 M urea and identify specific regions of the proteins important for silk protein pre-assembly. 3D NMR indicates that the Gly-Ala-Ala and Ala-Ala-Gly motifs flanking the poly(Ala) runs, which comprise the β-sheet forming domains in fibers, are perturbed by urea, suggesting that these regions may be important for silk protein pre-assembly stabilization.
Collapse
Affiliation(s)
- David Onofrei
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Dillan Stengel
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Di Jia
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hannah R Johnson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Samantha Trescott
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Ashana Soni
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| |
Collapse
|
21
|
Correa-Garhwal SM, Babb PL, Voight BF, Hayashi CY. Golden orb-weaving spider (Trichonephila clavipes) silk genes with sex-biased expression and atypical architectures. G3-GENES GENOMES GENETICS 2021; 11:6044138. [PMID: 33561241 PMCID: PMC8022711 DOI: 10.1093/g3journal/jkaa039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Spider silks are renowned for their high-performance mechanical properties. Contributing to these properties are proteins encoded by the spidroin (spider fibroin) gene family. Spidroins have been discovered mostly through cDNA studies of females based on the presence of conserved terminal regions and a repetitive central region. Recently, genome sequencing of the golden orb-web weaver, Trichonephila clavipes, provided a complete picture of spidroin diversity. Here, we refine the annotation of T. clavipes spidroin genes including the reclassification of some as non-spidroins. We rename these non-spidroins as spidroin-like (SpL) genes because they have repetitive sequences and amino acid compositions like spidroins, but entirely lack the archetypal terminal domains of spidroins. Insight into the function of these spidroin and SpL genes was then examined through tissue- and sex-specific gene expression studies. Using qPCR, we show that some silk genes are upregulated in male silk glands compared to females, despite males producing less silk in general. We also find that an enigmatic spidroin that lacks a spidroin C-terminal domain is highly expressed in silk glands, suggesting that spidroins could assemble into fibers without a canonical terminal region. Further, we show that two SpL genes are expressed in silk glands, with one gene highly evolutionarily conserved across species, providing evidence that particular SpL genes are important to silk production. Together, these findings challenge long-standing paradigms regarding the evolutionary and functional significance of the proteins and conserved motifs essential for producing spider silks.
Collapse
Affiliation(s)
- Sandra M Correa-Garhwal
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Paul L Babb
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl Y Hayashi
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
22
|
Li F, Bian C, Li D, Shi Q. Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications. Protein Pept Lett 2021; 28:255-269. [PMID: 32895035 DOI: 10.2174/0929866527666200907104401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Spider silks have received extensive attention from scientists and industries around the world because of their remarkable mechanical properties, which include high tensile strength and extensibility. It is a leading-edge biomaterial resource, with a wide range of potential applications. Spider silks are composed of silk proteins, which are usually very large molecules, yet many silk proteins still remain largely underexplored. While there are numerous reviews on spider silks from diverse perspectives, here we provide a most up-to-date overview of the spider silk component protein family in terms of its molecular structure, evolution, hydrophobicity, and biomedical applications. Given the confusion regarding spidroin naming, we emphasize the need for coherent and consistent nomenclature for spidroins and provide recommendations for pre-existing spidroin names that are inconsistent with nomenclature. We then review recent advances in the components, identification, and structures of spidroin genes. We next discuss the hydrophobicity of spidroins, with particular attention on the unique aquatic spider silks. Aquatic spider silks are less known but may inspire innovation in biomaterials. Furthermore, we provide new insights into antimicrobial peptides from spider silk glands. Finally, we present possibilities for future uses of spider silks.
Collapse
Affiliation(s)
- Fan Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
23
|
Harper JR, Sripada N, Kher P, Whittall JB, Edgerly JS. Interpreting nature's finest insect silks (Order Embioptera): hydropathy, interrupted repetitive motifs, and fiber-to-film transformation for two neotropical species. ZOOLOGY 2021; 146:125923. [PMID: 33901836 DOI: 10.1016/j.zool.2021.125923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Silks produced by webspinners (Order Embioptera) interact with water by transforming from fiber to film, which then becomes slippery and capable of shedding water. We chose to explore this mechanism by analyzing and comparing the silk protein transcripts of two species with overlapping distributions in Trinidad but from different taxonomic families. The transcript of one, Antipaluria urichi (Clothodidae), was partially characterized in 2009 providing a control for our methods to characterize a second species: Pararhagadochir trinitatis (Scelembiidae), a family that adds to the taxon sampling for this little known order of insects. Previous reports showed that embiopteran silk protein (dubbed Efibroin) consists of a protein core of repetitive motifs largely composed of glycine (Gly), serine (Ser), and alanine (Ala) and a highly conserved C-terminal region. Based on mRNA extracted from silk glands, Next Generation sequencing, and de novo assembly, P. trinitatis silk can be characterized by repetitive motifs of Gly-Ser followed periodically by Gly-Asparagine (Asn-an unusual amino acid for Efibroins) and by a lack of Ala which is otherwise common in Efibroins. The putative N-terminal domain, composed mostly of polar, charged and bulky amino acids, is ten amino acids long with cysteine in the 10th position-a feature likely related to stabilization of the silk fibers. The 29 amino acids of the C-terminus for P. trinitatis silk closely resemble that of other Efibroin sequences, which show 74% shared identity on average. Examination of hydropathicity of Efibroins of both P. trinitatis and An. urichi revealed that these proteins are largely hydrophilic despite having a thin lipid coating on each nano-fiber. We deduced that the hydrophilic quality differs for the two species: due to Ser and Asn for P. trinitatis silk and to previously undetected spacers in An. urichi silk. Spacers are known from some spider and silkworm silks but this is the first report of such for Embioptera. Analysis of hydropathicity revealed the largely hydrophilic quality of these silks and this feature likely explains why water causes the transformation from fiber to film. We compared spun silk to the transcript and detected not insignificant differences between the two measurements implying that as yet undetermined post-translational modifications of their silk may occur. In addition, we found evidence for codon bias in the nucleotides of the putative silk transcript for P. trinitatis, a feature also known for other embiopteran silk genes.
Collapse
Affiliation(s)
- J René Harper
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Neeraja Sripada
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Pooja Kher
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Justen B Whittall
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| | - Janice S Edgerly
- Department of Biology, 500 El Camino Real, Santa Clara University, Santa Clara, California, 95053, USA.
| |
Collapse
|
24
|
Sheffer MM, Hoppe A, Krehenwinkel H, Uhl G, Kuss AW, Jensen L, Jensen C, Gillespie RG, Hoff KJ, Prost S. Chromosome-level reference genome of the European wasp spider Argiope bruennichi: a resource for studies on range expansion and evolutionary adaptation. Gigascience 2021; 10:giaa148. [PMID: 33410470 PMCID: PMC7788392 DOI: 10.1093/gigascience/giaa148] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Argiope bruennichi, the European wasp spider, has been investigated intensively as a focal species for studies on sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies. FINDINGS We generated, de novo, a 1.67 Gb genome assembly of A. bruennichi using 21.8× Pacific Biosciences sequencing, polished with 19.8× Illumina paired-end sequencing data, and proximity ligation (Hi-C)-based scaffolding. This resulted in an N50 scaffold size of 124 Mb and an N50 contig size of 288 kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high-quality assembly. CONCLUSIONS We present the first chromosome-level genome assembly in the order Araneae. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation not only in A. bruennichi but also in arachnids overall, shedding light on questions such as the genomic architecture of traits, whole-genome duplication, and the genomic mechanisms behind silk and venom evolution.
Collapse
Affiliation(s)
- Monica M Sheffer
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Anica Hoppe
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Henrik Krehenwinkel
- Department of Biogeography, University of Trier, Universitätsring 15, 54296 Trier, Germany
| | - Gabriele Uhl
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Andreas W Kuss
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Lars Jensen
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Corinna Jensen
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Rosemary G Gillespie
- Department of Environmental Science Policy and Management, University of California Berkeley, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- South African National Biodiversity Institute, National Zoological Gardens of South Africa, 232 Boom St., Pretoria 0001, South Africa
| |
Collapse
|
25
|
Miller J, Vienneau-Hathaway J, Dendev E, Lan M, Ayoub NA. The common house spider, Parasteatoda tepidariorum, maintains silk gene expression on sub-optimal diet. PLoS One 2020; 15:e0237286. [PMID: 33296374 PMCID: PMC7725297 DOI: 10.1371/journal.pone.0237286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022] Open
Abstract
Cobweb weaving spiders and their relatives spin multiple task-specific fiber types. The unique material properties of each silk type result from differences in amino acid sequence and structure of their component proteins, primarily spidroins (spider fibrous proteins). Amino acid content and gene expression measurements of spider silks suggest some spiders change expression patterns of individual protein components in response to environmental cues. We quantified mRNA abundance of three spidroin encoding genes involved in prey capture in the common house spider, Parasteatoda tepidariorum (Theridiidae), fed different diets. After 10 days of acclimation to the lab on a diet of mealworms, spiders were split into three groups: (1) individuals were immediately dissected, (2) spiders were fed high-energy crickets, or (3) spiders were fed low-energy flies, for 1 month. All spiders gained mass during the acclimation period and cricket-fed spiders continued to gain mass, while fly-fed spiders either maintained or lost mass. Using quantitative PCR, we found no significant differences in the absolute or relative abundance of dragline gene transcripts, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2), among groups. In contrast, prey-wrapping minor ampullate spidroin (MiSp) gene transcripts were significantly less abundant in fly-fed than lab-acclimated spiders. However, when measured relative to Actin, cricket-fed spiders showed the lowest expression of MiSp. Our results suggest that house spiders are able to maintain silk production, even in the face of a low-quality diet.
Collapse
Affiliation(s)
- Jeremy Miller
- Department of Biology, Washington and Lee University, Lexington, VA, United States of America
| | | | - Enkhbileg Dendev
- Department of Biology, Washington and Lee University, Lexington, VA, United States of America
| | - Merrina Lan
- Department of Biology, Washington and Lee University, Lexington, VA, United States of America
| | - Nadia A. Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zhou SY, Dong QL, Zhu KS, Gao L, Chen X, Xiang H. Long-read transcriptomic analysis of orb-weaving spider Araneus ventricosus indicates transcriptional diversity of spidroins. Int J Biol Macromol 2020; 168:395-402. [PMID: 33275979 DOI: 10.1016/j.ijbiomac.2020.11.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/31/2020] [Accepted: 11/26/2020] [Indexed: 12/01/2022]
Abstract
Spider silk, which is composed of diverse silk proteins (spidroin), is a kind of natural high-mass biomaterial with great potential. However, due to the complexity of both the structure and the composition of the spidroins in natural spider silk, application of this valuable biomass is still limited to date. There are diverse kinds of spider silk in the orb-weaving spider with different mechanical and structural characteristics. In order to systematically illustrate the landscape of all the different spidrons, here we chose Araneus ventricosus, an orb-weaving spider with superior silk mechanical features and genome information, to generate a long-read whole body transcriptome. We deciphered the repeat arrangements of each kind of spidroin, based on which we found that there are substantially transcriptional diversity of each spidroin gene. Some repeat motifs are not documented before. Specifically, we discovered novel full-lengh MaSp transcript as well as a relatively small full-length AcSp isoforms, which are potential promising materials for bioengineering of recombinant spidroin. Our study provided a batch of new spidron resources with detail sequential information. The finding of transcriptional diversity may provide cues in understanding of within-species variation of the mechanical properties of the natural spider silk and further molecular designing of recombinant spidroin.
Collapse
Affiliation(s)
- Shi-Yi Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qing-Lin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ke-Sen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
27
|
Wang J, Yuan W, Qin R, Fan T, Fan JS, Huang W, Yang D, Lin Z. Self-assembly of tubuliform spidroins driven by hydrophobic interactions among terminal domains. Int J Biol Macromol 2020; 166:1141-1148. [PMID: 33157141 DOI: 10.1016/j.ijbiomac.2020.10.269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 11/26/2022]
Abstract
Spider silk has remarkable physical and biocompatible properties. Investigation of structure-function relationship and self-assembly process of spidroins is necessary for uncovering the mechanism of silk fiber formation. Nevertheless, how the terminal domains initiate self-assembly of soluble tubuliform spidroins to form solid eggcase silk is still not fully understood. Here we investigate the roles of both terminal domains of tubuliform spidroin 1 (TuSp1) in the silk fiber formation. We found that interactions among the terminal domains drive rapid TuSp1 self-assembly and fiber formation, which is insensitive to pH changes from 6.0 to 7.0. These interactions also contribute to the spidroin chain alignment in fiber formation upon shear-force exposure. Structural analysis and site-directed mutagenesis identified eight critical surface-exposed residues involved in hydrophobic interactions among terminal domains. Spidroins with single-point mutations of these residues fail to form intermediate micelle-like structures. The structural docking model indicates that multiple terminal domains of TuSp1 may interact with each other based on hydrophobic interactions and surface complementarity, which may lead to forming the surface of the micelle-like structure. Our results provide new insights into the structural mechanism of eggcase silk formation and the basis for designing and producing novel biomaterials derived from spider eggcase silk.
Collapse
Affiliation(s)
- Jingxia Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Ruiqi Qin
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Tiantian Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
28
|
Wen R, Wang K, Meng Q. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials. Acta Biomater 2020; 115:210-219. [PMID: 32798722 DOI: 10.1016/j.actbio.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Spiders spin a range of silks from different glands for distinct functions, and each silk type exhibits distinct material properties. Silk extruded by the aciniform gland is used for prey wrapping and egg case construction and displays high toughness and extensibility. So far, only the aciniform spidroin 1 (AcSp1) gene which was firstly identified as a silk gene in aciniform gland has been obtained. Here we present the gene sequence for the second type of full-length aciniform silk protein, AcSp2. Analysis of the AcSp2 primary sequence reveals relatively conserved terminal regions and a distinct repetitive sequence relative to AcSp1. A fraction of the gene can be expressed in recombinant systems. Secondary structure analysis of the recombinant AcSp2 protein in solution reveals that the protein adopts mainly an α-helical conformation. Artificial spinning of recombinant AcSp2 demonstrates that the spidroins can be spun into fine fibers which display up to 142% extensibility. The silk fibers are dominated by β-sheet and β-turn secondary structures. Moreover, the mechanical data collected from these synthetic fibers revealed that the mechanical properties are partly correlated with the molecular weights. Overall, our studies enrich our knowledge of spidroin gene family members and provide a new insight into creation of high-performance silk fibers for next generation biomaterials. STATEMENT OF SIGNIFICANCE: In this study, we presented the second type of aciniform silk protein (AcSp2) gene sequence of orb-weaving spider Araneus ventricosus, expanding the spider silk gene family members. The primary structure revealed the central repetitive sequence of the new spidroin gene is distinctly different from other AcSp1 genes. Characterization of the recombinant minispidroin fibers of AcSp2 revealed the mechanical properties are partly correlate with the molecular weights, and the spidroins can be spun into fine fibers which display up to 142% extensibility. Overall, our studies enrich our knowledge of spidroin gene family members and provide a new insight into creation of high-performance silk fibers for next generation biomaterials.
Collapse
Affiliation(s)
- Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, 2999 North Renmin Road 201620, Shanghai 201620, China
| | - Kangkang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, 2999 North Renmin Road 201620, Shanghai 201620, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, 2999 North Renmin Road 201620, Shanghai 201620, China.
| |
Collapse
|
29
|
Novel Highly Soluble Chimeric Recombinant Spidroins with High Yield. Int J Mol Sci 2020; 21:ijms21186905. [PMID: 32962298 PMCID: PMC7554824 DOI: 10.3390/ijms21186905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
Spider silk has been a hotspot in the study of biomaterials for more than two decades due to its outstanding mechanical properties. Given that spiders cannot be farmed, and their low silk productivity, many attempts have been made to produce recombinant spidroins as an alternative. Herein, we present novel chimeric recombinant spidroins composed of 1 to 4 repetitive units of aciniform spidroin (AcSp) flanked by the nonrepetitive N- and C-terminal domains of the minor ampullate spidroin (MiSp), all from Araneus ventricosus. The spidroins were expressed in the form of inclusion body in E. coli with high yield. Remarkably, the aqueous solubility of the four spidroins ranged from 13.4% to over 50% (m/v). The four spidroins could self-assemble into silk-like fibers by hand-drawing. The secondary structures of these proteins, determined by circular dichroism spectrum (CD) and Fourier transform infrared spectrum (FTIR), indicated a prominent transformation from α-helix to β-sheet after fiber formation. The mechanical properties of the hand-drawn fibers showed a positive correlation with the spidroin molecular weight. In summary, this study describes promising biomaterials for further study and wide application.
Collapse
|
30
|
Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach. MATERIALS 2020; 13:ma13163596. [PMID: 32823912 PMCID: PMC7475873 DOI: 10.3390/ma13163596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023]
Abstract
The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily on the analysis of dragline silk proteins, MaSp1 and MaSp2. Our work seeks to broaden the mechanical properties of silk-based biomaterials by establishing two libraries containing genes from the repetitive core region of the native Latrodectus hesperus silk genome (Library A: genes masp1, masp2, tusp1, acsp1; Library B: genes acsp1, pysp1, misp1, flag). The expressed and purified proteins were analyzed through Fourier Transform Infrared Spectrometry (FTIR). Some of these new proteins revealed a higher portion of β-sheet content in recombinant proteins produced from gene constructs containing a combination of masp1/masp2 and acsp1/tusp1 genes than recombinant proteins which consisted solely of dragline silk genes (Library A). A higher portion of β-turn and random coil content was identified in recombinant proteins from pysp1 and flag genes (Library B). Mechanical characterization of selected proteins purified from Library A and Library B formed into films was assessed by Atomic Force Microscopy (AFM) and suggested Library A recombinant proteins had higher elastic moduli when compared to Library B recombinant proteins. Both libraries had higher elastic moduli when compared to native spider silk proteins. The preliminary approach demonstrated here suggests that repetitive core regions of the aforementioned genes can be used as building blocks for new silk-based biomaterials with varying mechanical properties.
Collapse
|
31
|
Chakraborty R, Fan JS, Lai CC, Raghuvamsi PV, Chee PX, Anand GS, Yang D. Structural Basis of Oligomerization of N-Terminal Domain of Spider Aciniform Silk Protein. Int J Mol Sci 2020; 21:ijms21124466. [PMID: 32586030 PMCID: PMC7352312 DOI: 10.3390/ijms21124466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023] Open
Abstract
Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen–deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein.
Collapse
|
32
|
Wen R, Wang K, Meng Q. Two novel tubuliform silk gene sequences from Araneus ventricosus provide evidence for multiple loci in genome. Int J Biol Macromol 2020; 160:806-813. [PMID: 32446899 DOI: 10.1016/j.ijbiomac.2020.05.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/29/2022]
Abstract
Spiders produce a diversity of silk fibers from multiple morphologically distinct silk glands for specific tasks, and each silk type primarily composed of one or more particular silk proteins encoded by silk gene family members believed to generated by duplication and divergence of ancient silk genes. Egg case silks spun from tubuliform glands are used to construct the tough outer structure of egg cases, are important for their reproduction. Here we present two novel complete TuSp1 sequences from orb weaving spider Araneus ventricosus. Alignment of the two spidroin iterated repeats showed both extreme intragenic homogenization. The pairwise Ka/Ks analysis revealed the terminal and repetitive regions for three TuSp1 loci including the reported TuSp1 gene are all under purifying selection. Phylogenetic analysis showed the two new TuSp1 variants could derive from recent duplication events.
Collapse
Affiliation(s)
- Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Kangkang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China.
| |
Collapse
|
33
|
Zhu H, Sun Y, Yi T, Wang S, Mi J, Meng Q. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process. Biochimie 2020; 175:77-84. [PMID: 32417459 DOI: 10.1016/j.biochi.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022]
Abstract
Due to its unique mechanical properties, spider silk shows great promise as a strong super-thin fiber in many fields. Although progress has been made in the field of synthesizing spider-silk fiber from recombinant spidroin (spider silk protein) in the last few decades, methods to obtain synthetic spider-silk fibers as tough as natural silk from small-sized recombinant protein with a simple spinning process have eluded scientists. In this paper, a recombinant spidroin (MW: 93.4 kDa) was used to spin tough synthetic spider-silk fibers with a simple wet-spinning process. Titanium oxide incorporation and formaldehyde cross-linking were used to improve the mechanical properties of synthetic spider-silk fibers. Fibers treated with incorporation or/and cross-linking varied in microstructure, strength and extensibility while all exhibited enhanced strength and toughness. In particular, one fiber possessed a toughness of 249 ± 22 MJ/m3. This paper presents a new method to successfully spin tough spider-silk fibers in a simple way.
Collapse
Affiliation(s)
- Hongnian Zhu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yuan Sun
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tuo Yi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Suyang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Junpeng Mi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
34
|
Wen R, Wang K, Meng Q. The three novel complete aciniform spidroin variants from Araneus ventricosus reveal diversity of gene sequences within specific spidroin type. Int J Biol Macromol 2020; 157:60-66. [PMID: 32335120 DOI: 10.1016/j.ijbiomac.2020.04.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Abstract
Orb-weaving spiders produce multiple types of silks with distinct functions and material features, and all these silks are mainly composed of proteins which encoded by specific spidroin (spider silk protein) gene family members. Moreover, nearly all spidroins have evolved one or more variants within specific-species. However, the majority of variant sequences are fragmentary, limiting us to investigate the molecular structures and evolution relationships between spidroin variant genes. As the silk that is used to wrap prey and form an egg case liner, aciniform silk is given high toughness and tensile strength. To date, only one aciniform spidroin 1 (AcSp1) gene sequence from orb weavers Araneus ventricosus was reported, and it is still unknown whether presence of multiple AcSp1 variants in this species. Here, we present three novel complete AcSp1 variant gene sequences from Araneus ventricosus. The primary structures revealed the varying length of these variants, and partial repetitive sequences of two AcSp1 variants were deleted. Phylogenetic analysis showed AcSp1 seems to undergo multiple rounds of gene duplication, and the AcSp1-v4 likely originates from a recent duplication event. In brief, the generation of multiple AcSp1 variant genes contributes to transcript diversification and could result in varying tensile properties of aciniform silks.
Collapse
Affiliation(s)
- Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Kangkang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China.
| |
Collapse
|
35
|
Zhou Y, Shen Q, Lin Y, Xu S, Meng Q. Evaluation of the potential of chimeric spidroins/poly(L-lactic-co-ε-caprolactone) (PLCL) nanofibrous scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110752. [PMID: 32279827 DOI: 10.1016/j.msec.2020.110752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/25/2019] [Accepted: 02/15/2020] [Indexed: 12/31/2022]
Abstract
In this study, a novel type of chimeric spider silk proteins (spidroins) NTW1-4CT was blended with poly(L-lactic-co-ε-caprolactone) (PLCL) to obtain nanofibrous scaffolds via electrospinning. Spidroins are composed of a N-terminal module (NT) from major ampullate spidroins, a C-terminal module (CT) from minor ampullate spidroins and 1-4 repeat modules (W) from aciniform spidroins. Physical characteristics and structures of NTW1-4CT/PLCL (25/75, w/w) blend scaffolds were carried out by scanning electron microscope (SEM), water contact angles measurements, Fourier transform infrared (FTIR) spectroscopy and tensile mechanical tests. Results showed that blending with spidroins decreased diameters of nanofibers and increased porosity and wettability of scaffolds. Additionally, chimeric spidroins undergone a similar structural transition in electrospinning process as with the formation process of native and artificial spider silks from other spidroins. With amounts of W modules increasing, the tensile strength and elongation of blend scaffolds were also increased. Particularly, NTW4CT/PLCL (25/75) scaffolds revealed much higher breaking stress than pure PLCL scaffolds. In vitro experiments, human umbilical vein endothelial cells (HUVEC) cultured on NTW4CT/PLCL (25/75) scaffolds displayed significantly higher activity of proliferation and adhesion than on pure PLCL scaffolds. All results suggested that chimeric spidroins/PLCL, especially NTW4CT/PLCL (25/75) blend nanofibrous scaffolds had promising potential for vascular tissue engineering.
Collapse
Affiliation(s)
- Yizhong Zhou
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Qingchun Shen
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shouying Xu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
36
|
The molecular structure of novel pyriform spidroin (PySp2) reveals extremely complex central repetitive region. Int J Biol Macromol 2019; 145:437-444. [PMID: 31843611 DOI: 10.1016/j.ijbiomac.2019.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
Orb-weaving spiders produce a diversity of silk fibers throughout their entire lifecycle, and each silk type is given a specific purpose. As a dry fiber material with wet glue, pyriform silks are different from other silk fibers and make the attachment discs which are used for bonding fibers together and attaching dragline silk to other substrates. To date, only two full-length pyriform spidroin 1 (PySp1) gene sequences were identified. Here we present a novel full-length pyriform spidroin 2 (PySp2) from orb-weaving spider, Araneus ventricosus. Although the A. ventricosus PySp2 lack the long linker regions, the central repetitive region of PySp2 is more complex than PySp1 and can be classified into four types of repetitive regions including three novel repetitive sequences and one type of repetitive region that is similar to PySp1 repeats. Prediction of hydrophobicity of A. ventricosus PySp2 reveals the two new repetitive regions display strong hydrophilicity. Analysis of CD spectrum and secondary structure prediction for A. ventricosus PySp2 repeat unit reveal α-helix conformation dominates the repetitive region. Furthermore, recombinant protein-based artificial fibers show the single repeat unit is sufficient for self-assembling into silk fiber.
Collapse
|
37
|
Correa-Garhwal SM, Clarke TH, Janssen M, Crevecoeur L, McQuillan BN, Simpson AH, Vink CJ, Hayashi CY. Spidroins and Silk Fibers of Aquatic Spiders. Sci Rep 2019; 9:13656. [PMID: 31541123 PMCID: PMC6754431 DOI: 10.1038/s41598-019-49587-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022] Open
Abstract
Spiders are commonly found in terrestrial environments and many rely heavily on their silks for fitness related tasks such as reproduction and dispersal. Although rare, a few species occupy aquatic or semi-aquatic habitats and for them, silk-related specializations are also essential to survive in aquatic environments. Most spider silks studied to date are from cob-web and orb-web weaving species, leaving the silks from many other terrestrial spiders as well as water-associated spiders largely undescribed. Here, we characterize silks from three Dictynoidea species: the aquatic spiders Argyroneta aquatica and Desis marina as well as the terrestrial Badumna longinqua. From silk gland RNA-Seq libraries, we report a total of 47 different homologs of the spidroin (spider fibroin) gene family. Some of these 47 spidroins correspond to known spidroin types (aciniform, ampullate, cribellar, pyriform, and tubuliform), while other spidroins represent novel branches of the spidroin gene family. We also report a hydrophobic amino acid motif (GV) that, to date, is found only in the spidroins of aquatic and semi-aquatic spiders. Comparison of spider silk sequences to the silks from other water-associated arthropods, shows that there is a diversity of strategies to function in aquatic environments.
Collapse
Affiliation(s)
- Sandra M Correa-Garhwal
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92591, USA.
| | - Thomas H Clarke
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92591, USA
- J. Craig Venter Institute, Rockville, MD, 28050, USA
| | | | - Luc Crevecoeur
- Limburg Dome for Nature Study, Provincial Nature Center, Genk, 3600, Belgium
| | | | | | - Cor J Vink
- Canterbury Museum, Christchurch, 8013, New Zealand
| | - Cheryl Y Hayashi
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92591, USA
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| |
Collapse
|
38
|
Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation. G3-GENES GENOMES GENETICS 2019; 9:1909-1919. [PMID: 30975702 PMCID: PMC6553539 DOI: 10.1534/g3.119.400065] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An individual orb weaving spider can spin up to seven different types of silk, each with unique functions and material properties. The capture spiral silk of classic two-dimensional aerial orb webs is coated with an amorphous glue that functions to retain prey that get caught in a web. This unique modified silk is partially comprised of spidroins (spider fibroins) encoded by two members of the silk gene family. The glue differs from solid silk fibers as it is a viscoelastic, amorphic, wet material that is responsive to environmental conditions. Most spidroins are encoded by extremely large, highly repetitive genes that cannot be sequenced using short read technology alone, as the repetitive regions are longer than read length. We sequenced for the first time the complete genomic Aggregate Spidroin 1 (AgSp1) and Aggregate Spidroin 2 (AgSp2) glue genes of orb weaving spider Argiope trifasciata using error-prone long reads to scaffold for high accuracy short reads. The massive coding sequences are 42,270 bp (AgSp1) and 20,526 bp (AgSp2) in length, the largest silk genes currently described. The majority of the predicted amino acid sequence of AgSp1 consists of two similar but distinct motifs that are repeated ∼40 times each, while AgSp2 contains ∼48 repetitions of an AgSp1-similar motif, interspersed by regions high in glutamine. Comparisons of AgSp repetitive motifs from orb web and cobweb spiders show regions of strict conservation followed by striking diversification. Glues from these two spider families have evolved contrasting material properties in adhesion (stickiness), extensibility (stretchiness), and elasticity (the ability of the material to resume its native shape), which we link to mechanisms established for related silk genes in the same family. Full-length aggregate spidroin sequences from diverse species with differing material characteristics will provide insights for designing tunable bio-inspired adhesives for a variety of unique purposes.
Collapse
|
39
|
Analysis of the Full-Length Pyriform Spidroin Gene Sequence. Genes (Basel) 2019; 10:genes10060425. [PMID: 31163680 PMCID: PMC6627382 DOI: 10.3390/genes10060425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/02/2023] Open
Abstract
Spiders often produce multiple types of silk, each with unique properties suiting them to certain tasks and biological functions. Orb-weaver spiders can generate more than six types of silk fibroins, with pyriform silk used to form attachment discs, adhering silk to other surfaces and substances. The unique higher-order structuring of silk fibroins has been cited as the source of their remarkable biomechanical properties. Even so, only one full-length gene sequence of pyriform silk protein 1 (PySp1) from Argiopeargentata has been reported, and studies on the mechanical properties of natural pyriform silk fibers are also lacking. To better understand the PySp1 family of genes, we used long-distance PCR (LD-PCR) to determine the sequence of PySp1 in the Araneusventricosus species. This full-length PySp1 gene is 11,931 bp in length, encoding for 3976 amino acids residues in non-repetitive N- and C-terminal domains with a central largely repetitive region made up of sixteen remarkably homogeneous units. This was similar to the previously reported A. argentata PySp1 sequence, with PySp1 from A. ventricosus also having a long repetitive N-linker that bridges the N-terminal and repetitive regions. Predictions of secondary structure and hydrophobicity of A. ventricosus PySp1 showed the pyriform silk fiber's functional properties. The amino acid compositions of PySp1 is obviously distinct from other spidroins. Our sequence makes an important contribution to understand pyriform silk protein structure and also provides a new template for recombinant pyriform silk proteins with attractive properties.
Collapse
|
40
|
Correa-Garhwal SM, Chaw RC, Dugger T, Clarke TH, Chea KH, Kisailus D, Hayashi CY. Semi-aquatic spider silks: transcripts, proteins, and silk fibres of the fishing spider, Dolomedes triton (Pisauridae). INSECT MOLECULAR BIOLOGY 2019; 28:35-51. [PMID: 30059178 DOI: 10.1111/imb.12527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To survive in terrestrial and aquatic environments, spiders often rely heavily on their silk. The vast majority of silks that have been studied are from orb-web or cob-web weaving species, leaving the silks of water-associated spiders largely undescribed. We characterize transcripts, proteins, and silk fibres from the semi-aquatic spider Dolomedes triton. From silk gland RNAseq libraries, we report 18 silk transcripts representing four categories of known silk protein types: aciniform, ampullate, pyriform, and tubuliform. Proteomic and structural analyses (scanning electron microscopy, energy dispersive X-ray spectrometry, contact angle) of the D. triton submersible egg sac reveal similarities to silks from aquatic caddisfly larvae. We identified two layers in D. triton egg sacs, notably a highly hydrophobic outer layer with a different elemental composition compared to egg sacs of terrestrial spiders. These features may provide D. triton egg sacs with their water repellent properties.
Collapse
Affiliation(s)
- S M Correa-Garhwal
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - R C Chaw
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - T Dugger
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - T H Clarke
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- J. Craig Venter Institute, Rockville, MD, USA
| | - K H Chea
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - D Kisailus
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - C Y Hayashi
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
41
|
Wen R, Wang K, Liu X, Li X, Mi J, Meng Q. Molecular cloning and analysis of the full-length aciniform spidroin gene from Araneus ventricosus. Int J Biol Macromol 2018; 117:1352-1360. [DOI: 10.1016/j.ijbiomac.2017.12.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/16/2017] [Accepted: 12/16/2017] [Indexed: 11/19/2022]
|
42
|
Silk genes and silk gene expression in the spider Tengella perfuga (Zoropsidae), including a potential cribellar spidroin (CrSp). PLoS One 2018; 13:e0203563. [PMID: 30235223 PMCID: PMC6147414 DOI: 10.1371/journal.pone.0203563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Most spiders spin multiple types of silk, including silks for reproduction, prey capture, and draglines. Spiders are a megadiverse group and the majority of spider silks remain uncharacterized. For example, nothing is known about the silk molecules of Tengella perfuga, a spider that spins sheet webs lined with cribellar silk. Cribellar silk is a type of adhesive capture thread composed of numerous fibrils that originate from a specialized plate-like spinning organ called the cribellum. The predominant components of spider silks are spidroins, members of a protein family synthesized in silk glands. Here, we use silk gland RNA-Seq and cDNA libraries to infer T. perfuga silks at the protein level. We show that T. perfuga spiders express 13 silk transcripts representing at least five categories of spider silk proteins (spidroins). One category is a candidate for cribellar silk and is thus named cribellar spidroin (CrSp). Studies of ontogenetic changes in web construction and spigot morphology in T. perfuga have documented that after sexual maturation, T. perfuga females continue to make capture webs but males halt web maintenance and cease spinning cribellar silk. Consistent with these observations, our candidate CrSp was expressed only in females. The other four spidroin categories correspond to paralogs of aciniform, ampullate, pyriform, and tubuliform spidroins. These spidroins are associated with egg sac and web construction. Except for the tubuliform spidroin, the spidroins from T. perfuga contain novel combinations of amino acid sequence motifs that have not been observed before in these spidroin types. Characterization of T. perfuga silk genes, particularly CrSp, expand the diversity of the spidroin family and inspire new structure/function hypotheses.
Collapse
|
43
|
Collin MA, Clarke TH, Ayoub NA, Hayashi CY. Genomic perspectives of spider silk genes through target capture sequencing: Conservation of stabilization mechanisms and homology-based structural models of spidroin terminal regions. Int J Biol Macromol 2018; 113:829-840. [DOI: 10.1016/j.ijbiomac.2018.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/06/2018] [Indexed: 11/30/2022]
|
44
|
Zhou Y, Rising A, Johansson J, Meng Q. Production and Properties of Triple Chimeric Spidroins. Biomacromolecules 2018; 19:2825-2833. [DOI: 10.1021/acs.biomac.8b00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yizhong Zhou
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Anna Rising
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
45
|
Wen R, Liu X, Meng Q. Characterization of full-length tubuliform spidroin gene from Araneus ventricosus. Int J Biol Macromol 2017; 105:702-710. [DOI: 10.1016/j.ijbiomac.2017.07.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
46
|
Evolutionary shifts in gene expression decoupled from gene duplication across functionally distinct spider silk glands. Sci Rep 2017; 7:8393. [PMID: 28827773 PMCID: PMC5566633 DOI: 10.1038/s41598-017-07388-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 11/08/2022] Open
Abstract
Spider silk synthesis is an emerging model for the evolution of tissue-specific gene expression and the role of gene duplication in functional novelty, but its potential has not been fully realized. Accordingly, we quantified transcript (mRNA) abundance in seven silk gland types and three non-silk gland tissues for three cobweb-weaving spider species. Evolutionary analyses based on expression levels of thousands of homologous transcripts and phylogenetic reconstruction of 605 gene families demonstrated conservation of expression for each gland type among species. Despite serial homology of all silk glands, the expression profiles of the glue-forming aggregate glands were divergent from fiber-forming glands. Also surprising was our finding that shifts in gene expression among silk gland types were not necessarily coupled with gene duplication, even though silk-specific genes belong to multi-paralog gene families. Our results challenge widely accepted models of tissue specialization and significantly advance efforts to replicate silk-based high-performance biomaterials.
Collapse
|
47
|
The Nephila clavipes genome highlights the diversity of spider silk genes and their complex expression. Nat Genet 2017; 49:895-903. [PMID: 28459453 DOI: 10.1038/ng.3852] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Spider silks are the toughest known biological materials, yet are lightweight and virtually invisible to the human immune system, and they thus have revolutionary potential for medicine and industry. Spider silks are largely composed of spidroins, a unique family of structural proteins. To investigate spidroin genes systematically, we constructed the first genome of an orb-weaving spider: the golden orb-weaver (Nephila clavipes), which builds large webs using an extensive repertoire of silks with diverse physical properties. We cataloged 28 Nephila spidroins, representing all known orb-weaver spidroin types, and identified 394 repeated coding motif variants and higher-order repetitive cassette structures unique to specific spidroins. Characterization of spidroin expression in distinct silk gland types indicates that glands can express multiple spidroin types. We find evidence of an alternatively spliced spidroin, a spidroin expressed only in venom glands, evolutionary mechanisms for spidroin diversification, and non-spidroin genes with expression patterns that suggest roles in silk production.
Collapse
|
48
|
Correa-Garhwal SM, Chaw RC, Clarke TH, Ayoub NA, Hayashi CY. Silk gene expression of theridiid spiders: implications for male-specific silk use. ZOOLOGY 2017; 122:107-114. [PMID: 28536006 DOI: 10.1016/j.zool.2017.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/15/2023]
Abstract
Spiders (order Araneae) rely on their silks for essential tasks, such as dispersal, prey capture, and reproduction. Spider silks are largely composed of spidroins, members of a protein family that are synthesized in silk glands. As needed, silk stored in silk glands is extruded through spigots on the spinnerets. Nearly all studies of spider silks have been conducted on females; thus, little is known about male silk biology. To shed light on silk use by males, we compared silk gene expression profiles of mature males to those of females from three cob-web weaving species (Theridiidae). We de novo assembled species-specific male transcriptomes from Latrodectus hesperus, Latrodectus geometricus, and Steatoda grossa followed by differential gene expression analyses. Consistent with their complement of silk spigots, male theridiid spiders express appreciable amounts of aciniform, major ampullate, minor ampullate, and pyriform spidroin genes but not tubuliform spidroin genes. The relative expression levels of particular spidroin genes varied between sexes and species. Because mature males desert their prey-capture webs and become cursorial in their search for mates, we anticipated that major ampullate (dragline) spidroin genes would be the silk genes most highly expressed by males. Indeed, major ampullate spidroin genes had the highest expression in S. grossa males. However, minor ampullate spidroin genes were the most highly expressed spidroin genes in L. geometricus and L. hesperus males. Our expression profiling results suggest species-specific adaptive divergence of silk use by male theridiids.
Collapse
Affiliation(s)
| | - R Crystal Chaw
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - Thomas H Clarke
- Department of Biology, University of California, Riverside, CA 92521, USA; Department of Biology, Washington and Lee University, Lexington, VA 24450, USA; J. Craig Venter Institute, Rockville, MD 20850, USA.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA 24450, USA.
| | - Cheryl Y Hayashi
- Department of Biology, University of California, Riverside, CA 92521, USA; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
49
|
Vienneau-Hathaway JM, Brassfield ER, Lane AK, Collin MA, Correa-Garhwal SM, Clarke TH, Schwager EE, Garb JE, Hayashi CY, Ayoub NA. Duplication and concerted evolution of MiSp-encoding genes underlie the material properties of minor ampullate silks of cobweb weaving spiders. BMC Evol Biol 2017; 17:78. [PMID: 28288560 PMCID: PMC5348893 DOI: 10.1186/s12862-017-0927-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Orb-web weaving spiders and their relatives use multiple types of task-specific silks. The majority of spider silk studies have focused on the ultra-tough dragline silk synthesized in major ampullate glands, but other silk types have impressive material properties. For instance, minor ampullate silks of orb-web weaving spiders are as tough as draglines, due to their higher extensibility despite lower strength. Differences in material properties between silk types result from differences in their component proteins, particularly members of the spidroin (spider fibroin) gene family. However, the extent to which variation in material properties within a single silk type can be explained by variation in spidroin sequences is unknown. Here, we compare the minor ampullate spidroins (MiSp) of orb-weavers and cobweb weavers. Orb-web weavers use minor ampullate silk to form the auxiliary spiral of the orb-web while cobweb weavers use it to wrap prey, suggesting that selection pressures on minor ampullate spidroins (MiSp) may differ between the two groups. RESULTS We report complete or nearly complete MiSp sequences from five cobweb weaving spider species and measure material properties of minor ampullate silks in a subset of these species. We also compare MiSp sequences and silk properties of our cobweb weavers to published data for orb-web weavers. We demonstrate that all our cobweb weavers possess multiple MiSp loci and that one locus is more highly expressed in at least two species. We also find that the proportion of β-spiral-forming amino acid motifs in MiSp positively correlates with minor ampullate silk extensibility across orb-web and cobweb weavers. CONCLUSIONS MiSp sequences vary dramatically within and among spider species, and have likely been subject to multiple rounds of gene duplication and concerted evolution, which have contributed to the diverse material properties of minor ampullate silks. Our sequences also provide templates for recombinant silk proteins with tailored properties.
Collapse
Affiliation(s)
| | | | - Amanda Kelly Lane
- Department of Biology, Washington and Lee University, Lexington, VA USA
| | | | | | - Thomas H. Clarke
- Department of Biology, Washington and Lee University, Lexington, VA USA
- Department of Biology, University of California, Riverside, CA USA
| | - Evelyn E. Schwager
- Department of Biological Sciences, University of Massachusetts, Lowell, MA USA
| | - Jessica E. Garb
- Department of Biological Sciences, University of Massachusetts, Lowell, MA USA
| | | | - Nadia A. Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA USA
| |
Collapse
|
50
|
Lin S, Chen G, Liu X, Meng Q. Chimeric spider silk proteins mediated by intein result in artificial hybrid silks. Biopolymers 2017; 105:385-92. [PMID: 26948769 DOI: 10.1002/bip.22828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/10/2022]
Abstract
Hybrid silks hold a great potential as specific biomaterials due to its controlled mechanical properties. To produce fibers with tunable properties, here we firstly made chimeric proteins in vitro, called W2C4CT and W2C8CT, with ligation of MaSp repetitive modules (C) with AcSp modules (W) by intein trans splicing technology from smaller precursors without final yield reduction. Intein mediated chimeric proteins form fibers at a low concentration of 0.4 mg/mL in 50 mM K3 PO4 pH 7.5 just drawn by hand. Hybrid fibers show smoother surface, and also have stronger chemical resistance as compared with fibers from W2CT (W fibers) and mixture of W2CT/C8CT (MHF8 fibers). Fibers from chimeric protein W2C4CT (HFH4) have improved mechanical properties than W fibers; however, with more C modules W2C8CT fibers (HFH8) properties decreased, indicates the length proportion of various modules is very important and should be optimized for fibers with specific properties. Generally, hybrid silks generated via chimeric proteins, which can be simplified by intein trans splicing, has greater potential to produce fibers with tunable properties. Our research shows that intein mediated directional protein ligation is a novel way to make large chimeric spider silk proteins and hybrid silks. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 385-392, 2016.
Collapse
Affiliation(s)
- Senzhu Lin
- Institute of Biological Sciences & Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China.,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | - Gefei Chen
- Institute of Biological Sciences & Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiangqin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | - Qing Meng
- Institute of Biological Sciences & Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| |
Collapse
|