1
|
Zhang J, Chen C, Yang Q, Xu J, Han Z, Ma W, Zhang X, Xu K, Zhao J, Chen X. Evolution of HD-ZIP transcription factors and their function in cabbage leafy head formation. FRONTIERS IN PLANT SCIENCE 2025; 16:1583110. [PMID: 40247941 PMCID: PMC12003273 DOI: 10.3389/fpls.2025.1583110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Introduction The HD-ZIP protein, a unique class of transcription factors in plants, plays a crucial role in plant growth and development. Although some HD-ZIP transcription factors have been associated with leafy head formation in Chinese cabbage, their regulatory mechanisms remain poorly understood. Methods This study identified the HD-ZIP family using HMM and TBtools, constructed a phylogenetic tree with OrthoFinder, and analyzed gene family expansion and contraction using CAFE. Conserved features were analyzed with MAFFT, MEME, and TBtools; regulatory networks were predicted using ATRM and PlantTFDB; and gene expression was validated by qRT-PCR. Results and discussion In this study, HD-ZIP gene sequences from 87 species were analyzed to explore the evolutionary history of this gene family. Despite significant variation in gene family expansion and contraction across species, our findings indicated that HD-ZIP family proteins were conserved in both lower (Charophyta) and higher plants, where they were potentially involved in root, stem, and leaf differentiation. In our analysis of 22 Brassica species, HD-ZIP III protein sequences and domains were conserved. However, within the pan-genome A of 18 Brassica rapa species, differences were observed in auxin-related cis-elements within the HD-ZIP III promoter regions between heading and non-heading cabbage varieties. RNA-seq analysis of wild-type A03 (heading) and mutant fg-1 (non-heading) revealed that 131 genes formed a protein interaction network or clustered in the same branch as HD-ZIP family genes. Through GO enrichment and qRT-PCR, several key candidate genes of Brassica rapa ssp. pekinensis A03 associated with leafy head formation in cabbage were identified. These findings established a foundation for understanding the molecular mechanisms by which the HD-ZIP gene family regulated head growth in Chinese cabbage.
Collapse
Affiliation(s)
- Ju Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan International Joint Laboratory of Translational Biology, Zhoukou Normal University, Zhoukou, Henan, China
| | - Can Chen
- Key Laboratory of Plant Genetics and Molecular Breeding, Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan International Joint Laboratory of Translational Biology, Zhoukou Normal University, Zhoukou, Henan, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qihang Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Jie Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan International Joint Laboratory of Translational Biology, Zhoukou Normal University, Zhoukou, Henan, China
| | - Zizhuo Han
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan International Joint Laboratory of Translational Biology, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
Lee K, Hyun JO, Cho HT. An inquiry into the radial patterning of root hair cell distribution in eudicots. THE NEW PHYTOLOGIST 2024; 244:1931-1946. [PMID: 39327901 DOI: 10.1111/nph.20148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
The root epidermis of tracheophytes consists of hair-forming cells (HCs) and nonhair cells (NCs). The HC distribution pattern is classified into three types: random (Type I), vertically alternating (Type II), and radial (Type III). Type III is found only in core eudicots and is known to be position-dependent in superrosids with HCs positioned between two underlying cortical cells. However, the evolution of Type III and the universality of its position dependency in eudicots remain unclear. We surveyed the HC distribution in basal and Type III-exhibiting core eudicots and conducted genomic analyses to get insight into whether eudicots share the same genetic network to establish Type III. Our survey revealed no canonical Type III in basal eudicots but a reverse Type III, with NCs between two cortical cells and HCs on a single cortical cell, in Papaveraceae of basal eudicots. Type III-exhibiting species from both superrosids and superasterids showed the canonical position dependency of HCs. However, some key components for Type III determination were absent in the genomes of Papaveraceae and Type III-exhibiting superasterids. Our findings identify a novel position-dependent type of HC patterning, reverse Type III, and suggest that Type III emerged independently or diversified during eudicot evolution.
Collapse
Affiliation(s)
- Kyeonghoon Lee
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Jin-Oh Hyun
- Northeastern Asia Biodiversity Institute, Gyeonggi-do, 12982, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
3
|
Zhang D, Zhao X, Huang Y, Zhang MM, He X, Yin W, Lan S, Liu ZJ, Ma L. Genome-wide characterization and expression profiling of the HD-ZIP gene family in Acoraceae under salinity and cold stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1372580. [PMID: 38736444 PMCID: PMC11082295 DOI: 10.3389/fpls.2024.1372580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The Homeodomain-Leucine Zipper (HD-ZIP) transcription factors play a pivotal role in governing various aspects of plant growth, development, and responses to abiotic stress. Despite the well-established importance of HD-ZIPs in many plants, their functions in Acoraceae, the basal lineage of monocots, remain largely unexplored. Using recently published whole-genome data, we identified 137 putative HD-ZIPs in two Acoraceae species, Acorus gramineus and Acorus calamus. These HD-ZIP genes were further classified into four subfamilies (I, II, III, IV) based on phylogenetic and conserved motif analyses, showcasing notable variations in exon-intron patterns among different subfamilies. Two microRNAs, miR165/166, were found to specifically target HD-ZIP III genes with highly conserved binding sites. Most cis-acting elements identified in the promoter regions of Acoraceae HD-ZIPs are involved in modulating light and phytohormone responsiveness. Furthermore, our study revealed an independent duplication event in Ac. calamus and a one-to-multiple correspondence between HD-ZIP genes of Ac. calamus and Ac. gramineus. Expression profiles obtained from qRT-PCR demonstrated that HD-ZIP I genes are strongly induced by salinity stress, while HD-ZIP II members have contrasting stress responses in two species. HD-ZIP III and IV genes show greater sensitivity in stress-bearing roots. Taken together, these findings contribute valuable insights into the roles of HD-ZIP genes in stress adaptation and plant resilience in basal monocots, illuminating their multifaceted roles in plant growth, development, and response to abiotic stress.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng-Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin He
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liang Ma
- School of Pharmacy, Fujian Health Vocational and Technical College, Fuzhou, China
| |
Collapse
|
4
|
Zhang H, Sui Y, Liu W, Yan M, Wang Z, Yan X, Cui H. Identification of a cis-element for long glandular trichome-specific gene expression, which is targeted by a HD-ZIP IV protein. Int J Biol Macromol 2024; 264:130579. [PMID: 38432280 DOI: 10.1016/j.ijbiomac.2024.130579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Glandular trichomes are epidermal outgrowths that secret a variety of secondary metabolites, which not only help plants adapt to environmental stresses but also have important commercial value in fragrances, pharmaceuticals, and pesticides. In Nicotiana tabacum, it has been confirmed that a B-type cyclin, CycB2, negatively regulates the formation of long glandular trichomes (LGTs). This study aimed to identify the upstream regulatory gene involved in LGT formation by screening LGT-specific cis-elements within the NtCycB2 promoter. Using GUS as a reporter gene, the tissue-driven ability of NtCycB2 promoter showed that NtCycB2 promoter could drive GUS expression specifically in LGTs. Function analysis of a series of successive 5' truncations and synthetic segments of the NtCycB2 promoter indicated that the 87-bp region from -1221 to -1134 of the NtCycB2 promoter was required for gene expression in LGTs, and the L1-element (5'-AAAATTAATAAGAG-3') located in the 87-bp region contributed to the gene expression in the stalk of LGTs. Further Y1H and LUC assays confirmed that this L1-element exclusively binds to a HD-Zip IV protein, NtHD13. Gene function analysis revealed that NtHD13 positively controlled LGT formation, as overexpression of NtHD13 resulted in a high number of LGTs, whereas knockout of NtHD13 led to a decrease in LGTs. These findings demonstrate that NtHD13 can bind to an L1-element within the NtCycB2 promoter to regulate LGT formation.
Collapse
Affiliation(s)
- Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yalin Sui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Liu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Meiqi Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaojun Wang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Cui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
5
|
Schrick K, Ahmad B, Nguyen HV. HD-Zip IV transcription factors: Drivers of epidermal cell fate integrate metabolic signals. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102417. [PMID: 37441837 PMCID: PMC10527651 DOI: 10.1016/j.pbi.2023.102417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
The leaf epidermis comprises the outermost layer of cells that protect plants against environmental stresses such as drought, ultraviolet radiation, and pathogen attack. Research over the past decades highlights the role of class IV homeodomain leucine-zipper (HD-Zip IV) transcription factors (TFs) in driving differentiation of various epidermal cell types, such as trichomes, guard cells, and pavement cells. Evolutionary origins of this family in the charophycean green algae and HD-Zip-specific gene expression in the maternal genome provide clues to unlocking their secrets which include ties to cell cycle regulation. A distinguishing feature of these TFs is the presence of a lipid binding pocket that integrates metabolic information with gene expression. Identities of metabolic partners are beginning to emerge, uncovering feedback loops to maintain epidermal cell specification. Discoveries of associated molecular mechanisms are revealing fascinating links to phospholipid and sphingolipid metabolism and mechanical signaling.
Collapse
Affiliation(s)
- Kathrin Schrick
- Molecular, Cellular, and Developmental Biology, Kansas State University, Manhattan, KS 66506, USA; Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | - Bilal Ahmad
- Molecular, Cellular, and Developmental Biology, Kansas State University, Manhattan, KS 66506, USA; Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Hieu V Nguyen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
Wang L, Wan MC, Liao RY, Xu J, Xu ZG, Xue HC, Mai YX, Wang JW. The maturation and aging trajectory of Marchantia polymorpha at single-cell resolution. Dev Cell 2023; 58:1429-1444.e6. [PMID: 37321217 DOI: 10.1016/j.devcel.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Bryophytes represent a sister to the rest of land plants. Despite their evolutionary importance and relatively simple body plan, a comprehensive understanding of the cell types and transcriptional states that underpin the temporal development of bryophytes has not been achieved. Using time-resolved single-cell RNA sequencing, we define the cellular taxonomy of Marchantia polymorpha across asexual reproduction phases. We identify two maturation and aging trajectories of the main plant body of M. polymorpha at single-cell resolution: the gradual maturation of tissues and organs along the tip-to-base axis of the midvein and the progressive decline of meristem activities in the tip along the chronological axis. Specifically, we observe that the latter aging axis is temporally correlated with the formation of clonal propagules, suggesting an ancient strategy to optimize allocation of resources to producing offspring. Our work thus provides insights into the cellular heterogeneity that underpins the temporal development and aging of bryophytes.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Mu-Chun Wan
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ren-Yu Liao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hao-Chen Xue
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; Core Facility Center of CEMPS, SIPPE, CAS, Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
7
|
Mahtha SK, Kumari K, Gaur V, Yadav G. Cavity architecture based modulation of ligand binding tunnels in plant START domains. Comput Struct Biotechnol J 2023; 21:3946-3963. [PMID: 37635766 PMCID: PMC10448341 DOI: 10.1016/j.csbj.2023.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
The Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain represents an evolutionarily conserved superfamily of lipid transfer proteins widely distributed across the tree of life. Despite significant expansion in plants, knowledge about this domain remains inadequate in plants. In this work, we explore the role of cavity architectural modulations in START protein evolution and functional diversity. We use deep-learning approaches to generate plant START domain models, followed by surface accessibility studies and a comprehensive structural investigation of the rice START family. We validate 28 rice START domain models, delineate binding cavities, measure pocket volumes, and compare these with mammalian counterparts to understand evolution of binding preferences. Overall, plant START domains retain the ancestral α/β helix-grip signature, but we find subtle variation in cavity architectures, resulting in significantly smaller ligand-binding tunnels in the plant kingdom. We identify cavity lining residues (CLRs) responsible for reduction in ancestral tunnel space, and these appear to be class specific, and unique to plants, providing a mechanism for the observed shift in domain function. For instance, mammalian cavity lining residues A135, G181 and A192 have evolved to larger CLRs across the plant kingdom, contributing to smaller sizes, minimal STARTs being the largest, while members of type-IV HD-Zip family show almost complete obliteration of lipid binding cavities, consistent with their present-day DNA binding functions. In summary, this work quantifies plant START structural & functional divergence, bridging current knowledge gaps.
Collapse
Affiliation(s)
| | - Kamlesh Kumari
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
8
|
Zhang H, Xu H, Xu M, Yan X, Wang Z, Yu J, Lei B, Cui H. Transcription factors NtHD9 and NtHD12 control long glandular trichome formation via jasmonate signaling. PLANT PHYSIOLOGY 2023; 191:2385-2399. [PMID: 36617228 PMCID: PMC10069880 DOI: 10.1093/plphys/kiad003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Glandular trichomes are universal epidermal structures that produce abundant specialized metabolites. However, knowledge of the initiation of glandular heads in glandular trichomes is limited. Herein, we found an intrinsic link of morphogenesis between glandular trichomes and non-glandular trichomes. Two novel homeodomain leucine zipper II members in tobacco (Nicotiana tabacum), NtHD9 and NtHD12, played important roles in long glandular trichome formation: NtHD9 was responsible for glandular head formation, while NtHD12 simultaneously controlled the formation of stalks and glandular heads. DAP-seq analysis suggested that NtHD9 can bind to the KKGCATTWAWTR motif of the cytochromes P450 94C1 (NtCYP94C1) promoter, which is involved in jasmonoyl-isoleucine oxidation. RNA-seq analysis of non-transformed tobacco and nthd9 plants revealed that NtHD9 modulates the expression of jasmonate (JA) signaling- and six trichome development-related genes. Notably, MeJA treatment restored the morphogenesis of long glandular trichomes in nthd9 and nthd12 plants, and the size of glandular heads increased with increasing MeJA concentration. However, the phenotype of long glandular trichome absence in double mutants of NtHD9 and NtHD12 could not be restored by MeJA. Our data demonstrate that NtHD9 and NtHD12 have distinct major functions yet overlapping roles in long glandular trichome formation via JA signaling.
Collapse
Affiliation(s)
- Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hanchi Xu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengxiao Xu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaojun Wang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Bo Lei
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Hong Cui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Wang D, Gong Y, Li Y, Nie S. Genome-wide analysis of the homeodomain-leucine zipper family in Lotus japonicus and the overexpression of LjHDZ7 in Arabidopsis for salt tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:955199. [PMID: 36186025 PMCID: PMC9515785 DOI: 10.3389/fpls.2022.955199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) family participates in plant growth, development, and stress responses. Here, 40 HD-Zip transcription factors of Lotus japonicus were identified and gave an overview of the phylogeny and gene structures. The expression pattern of these candidate genes was determined in different organs and their response to abiotic stresses, including cold, heat, polyethylene glycol and salinity. The expression of the LjHDZ7 was strongly induced by abiotic stress, especially salt stress. Subsequently, LjHDZ7 gene was overexpressed in Arabidopsis. The transgenic plants grew obviously better than Col-0 plants under salt stress. Furthermore, LjHDZ7 transgenic lines accumulated higher proline contents and showed lower electrolyte leakage and MDA contents than Col-0 plants under salt stress. Antioxidant activities of the LjHDZ7 overexpression lines leaf were significantly higher than those of the Col-0 plants under salt stress. The concentration of Na+ ion in LjHDZ7 overexpression lines was significantly lower than that of Col-0 in leaf and root parts. The concentration of K+ ion in LjHDZ7 overexpression lines was significantly higher than that of Col-0 in the leaf parts. Therefore, these results showed that overexpression of LjHDZ7 increased resistance to salt stress in transgenic Arabidopsis plants, and certain genes of this family can be used as valuable tools for improving abiotic stresses.
Collapse
|
10
|
Mao K, Zhang M, Kong Y, Dai S, Wang Y, Meng Q, Ma N, Lv W. Origin, Expansion, and Divergence of ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE Transcription Factors During Streptophytes Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:858477. [PMID: 35645995 PMCID: PMC9136324 DOI: 10.3389/fpls.2022.858477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The transition of plants to land required several regulatory adaptive mechanisms. Little is known about these mechanisms, but they no doubt involved the evolution of transcription factor (TF) families. ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) transcription factors (TFs) are core components of the ethylene signaling pathway that play important roles in almost every aspect of plant development and environmental responses by regulating the transcription of numerous genes. However, the evolutionary history of EIN3/EIL TFs, which are present in a wide range of streptophytes, is still not clear. Here, to explore the evolution and functions of EIN3/EIL TFs, we performed phylogenetic analysis of these TFs and investigated their gene and protein structures as well as sequence features. Our results suggest that the EIN3/EIL TF family was already was already present in the ancestor of streptophyte algae. Phylogenetic analysis divided the EIN3/EIL TFs into three groups (Group A-C). Analysis of gene and protein structure revealed that most of the structural features of these TFs had already formed in ancient lineages. Further investigation suggested that all groups have undergone several duplication events related to whole-genome duplications in plants, generating multiple, functionally diverse gene copies. Therefore, as plants colonized terrestrial habitats and evolved key traits, the EIN3/EIL TF family expanded broadly via multiple duplication events, which could have promoted their fundamental neo- and sub-functionalization to help plants adapt to terrestrial life. Our findings shed light on the functional evolution of the EIN3/EIL TF family in the streptophytes.
Collapse
|
11
|
Fang J, Guo T, Xie Z, Chun Y, Zhao J, Peng L, Zafar SA, Yuan S, Xiao L, Li X. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. PLANT PHYSIOLOGY 2021; 185:1722-1744. [PMID: 33793928 PMCID: PMC8133684 DOI: 10.1093/plphys/kiaa121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 05/31/2023]
Abstract
Moderate leaf rolling is beneficial for leaf erectness and compact plant architecture. However, our understanding regarding the molecular mechanisms of leaf rolling is still limited. Here, we characterized a semi-dominant rice (Oryza sativa L.) mutant upward rolled leaf 1 (Url1) showing adaxially rolled leaves due to a decrease in the number and size of bulliform cells. Map-based cloning revealed that URL1 encodes the homeodomain-leucine zipper (HD-Zip) IV family member RICE OUTERMOST CELL-SPECIFIC 8 (ROC8). A single-base substitution in one of the two conserved complementary motifs unique to the 3'-untranslated region of this family enhanced URL1 mRNA stability and abundance in the Url1 mutant. URL1 (UPWARD ROLLED LEAF1) contains an ethylene-responsive element binding factor-associated amphiphilic repression motif and functions as a transcriptional repressor via interaction with the TOPLESS co-repressor OsTPL2. Rather than homodimerizing, URL1 heterodimerizes with another HD-ZIP IV member ROC5. URL1 could bind directly to the promoter and suppress the expression of abaxially curled leaf 1 (ACL1), a positive regulator of bulliform cell development. Knockout of OsTPL2 or ROC5 or overexpression of ACL1 in the Url1 mutant partially suppressed the leaf-rolling phenotype. Our results reveal a regulatory network whereby a transcriptional repression complex composed of URL1, ROC5, and the transcriptional corepressor TPL2 suppresses the expression of the ACL1 gene, thus modulating bulliform cell development and leaf rolling in rice.
Collapse
Affiliation(s)
- Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Zhiwei Xie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoujiang Yuan
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Tan Y, Barnbrook M, Wilson Y, Molnár A, Bukys A, Hudson A. Shared Mutations in a Novel Glutaredoxin Repressor of Multicellular Trichome Fate Underlie Parallel Evolution of Antirrhinum Species. Curr Biol 2020; 30:1357-1366.e4. [DOI: 10.1016/j.cub.2020.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
13
|
Zhang H, Ma X, Li W, Niu D, Wang Z, Yan X, Yang X, Yang Y, Cui H. Genome-wide characterization of NtHD-ZIP IV: different roles in abiotic stress response and glandular Trichome induction. BMC PLANT BIOLOGY 2019; 19:444. [PMID: 31651252 PMCID: PMC6814048 DOI: 10.1186/s12870-019-2023-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/10/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND The plant-specific homeodomain-leucine zipper class IV (HD-ZIP IV) gene family has been involved in the regulation of epidermal development. RESULTS Fifteen genes coding for HD-ZIP IV proteins were identified (NtHD-ZIP-IV-1 to NtHD-ZIP-IV-15) based on the genome of N. tabacum. Four major domains (HD, ZIP, SAD and START) were present in these proteins. Tissue expression pattern analysis indicated that NtHD-ZIP-IV-1, - 2, - 3, - 10, and - 12 may be associated with trichome development; NtHD-ZIP-IV-8 was expressed only in cotyledons; NtHD-ZIP-IV-9 only in the leaf and stem epidermis; NtHD-ZIP-IV-11 only in leaves; and NtHD-ZIP-IV-15 only in the root and stem epidermis. We found that jasmonates may induce the generation of glandular trichomes, and that NtHD-ZIP-IV-1, - 2, - 5, and - 7 were response to MeJA treatment. Dynamic expression under abiotic stress and after application of phytohormones indicated that most NtHD-ZIP IV genes were induced by heat, cold, salt and drought. Furthermore, most of these genes were induced by gibberellic acid, 6-benzylaminopurine, and salicylic acid, but were inhibited by abscisic acid. NtHD-ZIP IV genes were sensitive to heat, but insensitive to osmotic stress. CONCLUSION NtHD-ZIP IV genes are implicated in a complex regulatory gene network controlling epidermal development and abiotic stress responses. The present study provides evidence to elucidate the gene functions of NtHD-ZIP IVs during epidermal development and stress response.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xudong Ma
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Wenjiao Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Dexin Niu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xiaoxiao Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xinling Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000 China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000 China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
14
|
Hoffmeier A, Gramzow L, Bhide AS, Kottenhagen N, Greifenstein A, Schubert O, Mummenhoff K, Becker A, Theißen G. A Dead Gene Walking: Convergent Degeneration of a Clade of MADS-Box Genes in Crucifers. Mol Biol Evol 2019; 35:2618-2638. [PMID: 30053121 DOI: 10.1093/molbev/msy142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genes are "born," and eventually they "die." These processes shape the phenotypic evolution of organisms and are hence of great biological interest. If genes die in plants, they generally do so quite rapidly. Here, we describe the fate of GOA-like genes that evolve in a dramatically different manner. GOA-like genes belong to the subfamily of Bsister genes of MIKC-type MADS-box genes. Typical MIKC-type genes encode conserved transcription factors controlling plant development. We show that ABS-like genes, a clade of Bsister genes, are indeed highly conserved in crucifers (Brassicaceae) maintaining the ancestral function of Bsister genes in ovule and seed development. In contrast, their closest paralogs, the GOA-like genes, have been undergoing convergent gene death in Brassicaceae. Intriguingly, erosion of GOA-like genes occurred after millions of years of coexistence with ABS-like genes. We thus describe Delayed Convergent Asymmetric Degeneration, a so far neglected but possibly frequent pattern of duplicate gene evolution that does not fit classical scenarios. Delayed Convergent Asymmetric Degeneration of GOA-like genes may have been initiated by a reduction in the expression of an ancestral GOA-like gene in the stem group of Brassicaceae and driven by dosage subfunctionalization. Our findings have profound implications for gene annotations in genomics, interpreting patterns of gene evolution and using genes in phylogeny reconstructions of species.
Collapse
Affiliation(s)
- Andrea Hoffmeier
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lydia Gramzow
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Amey S Bhide
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nina Kottenhagen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Andreas Greifenstein
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Olesia Schubert
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Osnabrück, Germany
| | - Annette Becker
- Plant Developmental Biology Group, Institute of Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Günter Theißen
- Genetics, Matthias Schleiden Institute, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
15
|
Honkanen S, Thamm A, Arteaga-Vazquez MA, Dolan L. Negative regulation of conserved RSL class I bHLH transcription factors evolved independently among land plants. eLife 2018; 7:38529. [PMID: 30136925 PMCID: PMC6141232 DOI: 10.7554/elife.38529] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Basic helix-loop-helix transcription factors encoded by RSL class I genes control a gene regulatory network that positively regulates the development of filamentous rooting cells – root hairs and rhizoids – in land plants. The GLABRA2 transcription factor negatively regulates these genes in the angiosperm Arabidopsis thaliana. To find negative regulators of RSL class I genes in early diverging land plants we conducted a mutant screen in the liverwort Marchantia polymorpha. This identified FEW RHIZOIDS1 (MpFRH1) microRNA (miRNA) that negatively regulates the RSL class I gene MpRSL1. The miRNA and its mRNA target constitute a feedback mechanism that controls epidermal cell differentiation. MpFRH1 miRNA target sites are conserved among liverwort RSL class I mRNAs but are not present in RSL class I mRNAs of other land plants. These findings indicate that while RSL class I genes are ancient and conserved, independent negative regulatory mechanisms evolved in different lineages during land plant evolution. Plants colonised the land sometime more than 500 million years ago. The ancestors of the first land plants were algae that were most likely simple with a few different types of cell. Yet, when faced with the challenges of life on land, plants evolved new cell types and specialised structures with roles such as anchorage, nutrient uptake and gas exchange. Many of these specialised structures, including the root hairs and rhizoids that allow plants to collect water and minerals from the soil, first develop as outgrowths from cells in the outer layer of the plant. An ancient and conserved mechanism activates the development of these outgrowths via genes belonging to a group known as RSL class I. In the flowering plant Arabidopsis thaliana, a protein switches off RSL class I genes in a subset of these outer cells, to stop too many root hairs forming. To see whether this kind of negative regulation is also conserved among land plants, Honkanen et al. looked for regulators of RSL class I genes in liverworts. Small and without flowers, liverworts are a group of plants that first appeared during the earliest stages of land plant evolution. Honkanen et al. discovered that RSL class I genes in liverworts are negatively regulated by a molecule named FEW RHIZOIDS1 (or FRH1). However, rather than being a protein, FRH1 is a microRNA – a short strand of genetic code that reduces how much protein is produced from a given gene. The FRH1 microRNA is conserved among liverworts and most likely evolved very early in the history of these plants. The findings indicate that different groups of land plants have evolved different negative regulators to control the conserved genes behind some of the specialised structures crucial to life on land.
Collapse
Affiliation(s)
- Suvi Honkanen
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.,Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| | - Anna Thamm
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Mario A Arteaga-Vazquez
- Laboratory of Epigenetics and Developmental Biology, Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Colonia Emiliano Zapata, Mexico
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Romani F, Reinheimer R, Florent SN, Bowman JL, Moreno JE. Evolutionary history of HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land. THE NEW PHYTOLOGIST 2018; 219:408-421. [PMID: 29635737 DOI: 10.1111/nph.15133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/26/2018] [Indexed: 05/15/2023]
Abstract
Plant transition to land required several regulatory adaptations. The mechanisms behind these changes remain unknown. Since the evolution of transcription factors (TFs) families accompanied this transition, we studied the HOMEODOMAIN LEUCINE ZIPPER (HDZ) TF family known to control key developmental and environmental responses. We performed a phylogenetic and bioinformatics analysis of HDZ genes using transcriptomic and genomic datasets from a wide range of Viridiplantae species. We found evidence for the existence of HDZ genes in chlorophytes and early-divergent charophytes identifying several HDZ members belonging to the four known classes (I-IV). Furthermore, we inferred a progressive incorporation of auxiliary motifs. Interestingly, most of the structural features were already present in ancient lineages. Our phylogenetic analysis inferred that the origin of classes I, III, and IV is monophyletic in land plants in respect to charophytes. However, class IIHDZ genes have two conserved lineages in charophytes and mosses that differ in the CPSCE motif. Our results indicate that the HDZ family was already present in green algae. Later, the HDZ family expanded accompanying critical plant traits. Once on land, the HDZ family experienced multiple duplication events that promoted fundamental neo- and subfunctionalizations for terrestrial life.
Collapse
Affiliation(s)
- Facundo Romani
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| | - Renata Reinheimer
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Ciencias Agrarias, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| | - Stevie N Florent
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Javier E Moreno
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| |
Collapse
|
17
|
Ishizaki K. Evolution of land plants: insights from molecular studies on basal lineages. Biosci Biotechnol Biochem 2017; 81:73-80. [DOI: 10.1080/09168451.2016.1224641] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
The invasion of the land by plants, or terrestrialization, was one of the most critical events in the history of the Earth. The evolution of land plants included significant transformations in body plans: the emergence of a multicellular diploid sporophyte, transition from gametophyte-dominant to sporophyte-dominant life histories, and development of many specialized tissues and organs, such as stomata, vascular tissues, roots, leaves, seeds, and flowers. Recent advances in molecular genetics in two model basal plants, bryophytes Physcomitrella patens and Marchantia polymorpha, have begun to provide answers to several key questions regarding land plant evolution. This paper discusses the evolution of the genes and regulatory mechanisms that helped drive such significant morphological innovations among land-based plants.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
18
|
Vasco A, Smalls TL, Graham SW, Cooper ED, Wong GKS, Stevenson DW, Moran RC, Ambrose BA. Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes. THE NEW PHYTOLOGIST 2016; 212:745-758. [PMID: 27385116 DOI: 10.1111/nph.14075] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/23/2016] [Indexed: 05/06/2023]
Abstract
Despite the extraordinary significance leaves have for life on Earth, their origin and development remain vigorously debated. More than a century of paleobotanical, morphological, and phylogenetic research has still not resolved fundamental questions about leaves. Developmental genetic data are sparse in ferns, and comparative studies of lycophytes and seed plants have reached opposing conclusions on the conservation of a leaf developmental program. We performed phylogenetic and expression analyses of a leaf developmental regulator (Class III HD-Zip genes; C3HDZs) spanning lycophytes and ferns. We show that a duplication and neofunctionalization of C3HDZs probably occurred in the ancestor of euphyllophytes, and that there is a common leaf developmental mechanism conserved between ferns and seed plants. We show C3HDZ expression in lycophyte and fern sporangia and show that C3HDZs have conserved expression patterns during initiation of lateral primordia (leaves or sporangia). This expression is maintained throughout sporangium development in lycophytes and ferns and indicates an ancestral role of C3HDZs in sporangium development. We hypothesize that there is a deep homology of all leaves and that a sporangium-specific developmental program was coopted independently for the development of lycophyte and euphyllophyte leaves. This provides molecular genetic support for a paradigm shift in theories of lycophyte leaf evolution.
Collapse
Affiliation(s)
- Alejandra Vasco
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico DF, 04510, Mexico
| | - Tynisha L Smalls
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, BC, V6T 1Z4, Canada
| | - Endymion D Cooper
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Dennis W Stevenson
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
| | - Robbin C Moran
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
| | - Barbara A Ambrose
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA.
| |
Collapse
|
19
|
Song A, Li P, Xin J, Chen S, Zhao K, Wu D, Fan Q, Gao T, Chen F, Guan Z. Transcriptome-Wide Survey and Expression Profile Analysis of Putative Chrysanthemum HD-Zip I and II Genes. Genes (Basel) 2016; 7:genes7050019. [PMID: 27196930 PMCID: PMC4880839 DOI: 10.3390/genes7050019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/30/2022] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) transcription factor family is a key transcription factor family and unique to the plant kingdom. It consists of a homeodomain and a leucine zipper that serve in combination as a dimerization motif. The family can be classified into four subfamilies, and these subfamilies participate in the development of hormones and mediation of hormone action and are involved in plant responses to environmental conditions. However, limited information on this gene family is available for the important chrysanthemum ornamental species (Chrysanthemum morifolium). Here, we characterized 17 chrysanthemum HD-Zip genes based on transcriptome sequences. Phylogenetic analyses revealed that 17 CmHB genes were distributed in the HD-Zip subfamilies I and II and identified two pairs of putative orthologous proteins in Arabidopsis and chrysanthemum and four pairs of paralogous proteins in chrysanthemum. The software MEME was used to identify 7 putative motifs with E values less than 1e-3 in the chrysanthemum HD-Zip factors, and they can be clearly classified into two groups based on the composition of the motifs. A bioinformatics analysis predicted that 8 CmHB genes could be targeted by 10 miRNA families, and the expression of these 17 genes in response to phytohormone treatments and abiotic stresses was characterized. The results presented here will promote research on the various functions of the HD-Zip gene family members in plant hormones and stress responses.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peiling Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kunkun Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dan Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qingqing Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianwei Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Finet C, Floyd SK, Conway SJ, Zhong B, Scutt CP, Bowman JL. Evolution of the YABBY gene family in seed plants. Evol Dev 2016; 18:116-26. [PMID: 26763689 DOI: 10.1111/ede.12173] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants.
Collapse
Affiliation(s)
- Cédric Finet
- Université de Lyon, Laboratoire de Reproduction et Développement des Plantes, UMR 5667, CNRS, INRA, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, 46 allée d'Italie 69364 Lyon Cedex 07, France
| | - Sandra K Floyd
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Stephanie J Conway
- School of Botany, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Charles P Scutt
- Université de Lyon, Laboratoire de Reproduction et Développement des Plantes, UMR 5667, CNRS, INRA, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, 46 allée d'Italie 69364 Lyon Cedex 07, France
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.,Section of Plant Biology, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| |
Collapse
|
21
|
Pandey A, Misra P, Alok A, Kaur N, Sharma S, Lakhwani D, Asif MH, Tiwari S, Trivedi PK. Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HDZ IV) Gene Family from Musa accuminata. FRONTIERS IN PLANT SCIENCE 2016; 7:20. [PMID: 26870050 PMCID: PMC4740955 DOI: 10.3389/fpls.2016.00020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/08/2016] [Indexed: 05/12/2023]
Abstract
The homeodomain zipper family (HD-ZIP) of transcription factors is present only in plants and plays important role in the regulation of plant-specific processes. The subfamily IV of HDZ transcription factors (HD-ZIP IV) has primarily been implicated in the regulation of epidermal structure development. Though this gene family is present in all lineages of land plants, members of this gene family have not been identified in banana, which is one of the major staple fruit crops. In the present work, we identified 21 HDZIV encoding genes in banana by the computational analysis of banana genome resource. Our analysis suggested that these genes putatively encode proteins having all the characteristic domains of HDZIV transcription factors. The phylogenetic analysis of the banana HDZIV family genes further confirmed that after separation from a common ancestor, the banana, and poales lineages might have followed distinct evolutionary paths. Further, we conclude that segmental duplication played a major role in the evolution of banana HDZIV encoding genes. All the identified banana HDZIV genes expresses in different banana tissue, however at varying levels. The transcript levels of some of the banana HDZIV genes were also detected in banana fruit pulp, suggesting their putative role in fruit attributes. A large number of genes of this family showed modulated expression under drought and salinity stress. Taken together, the present work lays a foundation for elucidation of functional aspects of the banana HDZIV encoding genes and for their possible use in the banana improvement programs.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
- *Correspondence: Ashutosh Pandey
| | - Prashant Misra
- CSIR-National Botanical Research InstituteLucknow, India
| | - Anshu Alok
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | - Navneet Kaur
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | - Shivani Sharma
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | | | - Mehar H. Asif
- CSIR-National Botanical Research InstituteLucknow, India
| | - Siddharth Tiwari
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | - Prabodh K. Trivedi
- CSIR-National Botanical Research InstituteLucknow, India
- Prabodh K. Trivedi ;
| |
Collapse
|
22
|
Lehti-Shiu MD, Uygun S, Moghe GD, Panchy N, Fang L, Hufnagel DE, Jasicki HL, Feig M, Shiu SH. Molecular Evidence for Functional Divergence and Decay of a Transcription Factor Derived from Whole-Genome Duplication in Arabidopsis thaliana. PLANT PHYSIOLOGY 2015; 168:1717-34. [PMID: 26103993 PMCID: PMC4528766 DOI: 10.1104/pp.15.00689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/03/2015] [Indexed: 05/23/2023]
Abstract
Functional divergence between duplicate transcription factors (TFs) has been linked to critical events in the evolution of land plants and can result from changes in patterns of expression, binding site divergence, and/or interactions with other proteins. Although plant TFs tend to be retained post polyploidization, many are lost within tens to hundreds of million years. Thus, it can be hypothesized that some TFs in plant genomes are in the process of becoming pseudogenes. Here, we use a pair of salt tolerance-conferring transcription factors, DWARF AND DELAYED FLOWERING1 (DDF1) and DDF2, that duplicated through paleopolyploidy 50 to 65 million years ago, as examples to illustrate potential mechanisms leading to duplicate retention and loss. We found that the expression patterns of Arabidopsis thaliana (At)DDF1 and AtDDF2 have diverged in a highly asymmetric manner, and AtDDF2 has lost most inferred ancestral stress responses. Consistent with promoter disablement, the AtDDF2 promoter has fewer predicted cis-elements and a methylated repetitive element. Through comparisons of AtDDF1, AtDDF2, and their Arabidopsis lyrata orthologs, we identified significant differences in binding affinities and binding site preference. In particular, an AtDDF2-specific substitution within the DNA-binding domain significantly reduces binding affinity. Cross-species analyses indicate that both AtDDF1 and AtDDF2 are under selective constraint, but among A. thaliana accessions, AtDDF2 has a higher level of nonsynonymous nucleotide diversity compared with AtDDF1. This may be the result of selection in different environments or may point toward the possibility of ongoing functional decay despite retention for millions of years after gene duplication.
Collapse
Affiliation(s)
- Melissa D Lehti-Shiu
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Sahra Uygun
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Gaurav D Moghe
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Nicholas Panchy
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Liang Fang
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - David E Hufnagel
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Hannah L Jasicki
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Michael Feig
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| | - Shin-Han Shiu
- Department of Plant Biology (M.D.L.-S., D.E.H., S.-H.S.), Genetics Program (S.U., N.P., S.-H.S.), Department of Energy Plant Research Laboratory (S.U.), Department of Biochemistry and Molecular Biology (G.D.M., L.F., M.F.), and Department of Chemistry (M.F.), Michigan State University, East Lansing, Michigan 48824; andLaPorte High School, LaPorte, Indiana 46350 (H.L.J.)
| |
Collapse
|
23
|
Galletti R, Johnson KL, Scofield S, San-Bento R, Watt AM, Murray JAH, Ingram GC. DEFECTIVE KERNEL 1 promotes and maintains plant epidermal differentiation. Development 2015; 142:1978-83. [PMID: 25953348 DOI: 10.1242/dev.122325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
During plant epidermal development, many cell types are generated from protodermal cells, a process requiring complex co-ordination of cell division, growth, endoreduplication and the acquisition of differentiated cellular morphologies. Here we show that the Arabidopsis phytocalpain DEFECTIVE KERNEL 1 (DEK1) promotes the differentiated epidermal state. Plants with reduced DEK1 activity produce cotyledon epidermis with protodermal characteristics, despite showing normal growth and endoreduplication. Furthermore, in non-embryonic tissues (true leaves, sepals), DEK1 is required for epidermis differentiation maintenance. We show that the HD-ZIP IV family of epidermis-specific differentiation-promoting transcription factors are key, albeit indirect, targets of DEK1 activity. We propose a model in which DEK1 influences HD-ZIP IV gene expression, and thus epidermis differentiation, by promoting cell adhesion and communication in the epidermis.
Collapse
Affiliation(s)
- Roberta Galletti
- Laboratoire de Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, Lyon 69364, Cedex 07, France
| | - Kim L Johnson
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Simon Scofield
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Rita San-Bento
- Laboratoire de Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, Lyon 69364, Cedex 07, France
| | - Andrea M Watt
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - James A H Murray
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Gwyneth C Ingram
- Laboratoire de Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, Lyon 69364, Cedex 07, France
| |
Collapse
|
24
|
Flores-Sandoval E, Eklund DM, Bowman JL. A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha. PLoS Genet 2015; 11:e1005207. [PMID: 26020649 PMCID: PMC4447368 DOI: 10.1371/journal.pgen.1005207] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/13/2015] [Indexed: 02/06/2023] Open
Abstract
In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT inhibitor response 1 auxin receptor, single orthologs of each class of auxin response factor (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator auxin/indole-3-acetic acid (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway--chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors.
Collapse
Affiliation(s)
| | - D. Magnus Eklund
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
25
|
Floyd SK, Ryan JG, Conway SJ, Brenner E, Burris KP, Burris JN, Chen T, Edger PP, Graham SW, Leebens-Mack JH, Pires JC, Rothfels CJ, Sigel EM, Stevenson DW, Neal Stewart C, Wong GKS, Bowman JL. Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor. Mol Phylogenet Evol 2014; 81:159-73. [DOI: 10.1016/j.ympev.2014.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 10/24/2022]
|
26
|
Belamkar V, Weeks NT, Bharti AK, Farmer AD, Graham MA, Cannon SB. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics 2014; 15:950. [PMID: 25362847 PMCID: PMC4226900 DOI: 10.1186/1471-2164-15-950] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/16/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. RESULTS In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~13 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. CONCLUSIONS We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress.
Collapse
Affiliation(s)
- Vikas Belamkar
- />Interdepartmental Genetics, Iowa State University, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Nathan T Weeks
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Arvind K Bharti
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Andrew D Farmer
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Michelle A Graham
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Steven B Cannon
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| |
Collapse
|
27
|
Abstract
The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
28
|
Dwivedi KK, Roche DJ, Clemente TE, Ge Z, Carman JG. The OCL3 promoter from Sorghum bicolor directs gene expression to abscission and nutrient-transfer zones at the bases of floral organs. ANNALS OF BOTANY 2014; 114:489-98. [PMID: 25081518 PMCID: PMC4204675 DOI: 10.1093/aob/mcu148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/11/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS During seed fill in cereals, nutrients are symplasmically unloaded to vascular parenchyma in ovules, but thereafter nutrient transport is less certain. In Zea mays, two mechanisms of nutrient passage through the chalaza and nucellus have been hypothesized, apoplasmic and symplasmic. In a recent study, nutrients first passed non-selectively to the chalazal apoplasm and were then selectively absorbed by the nucellus before being released to the endosperm apoplasm. This study reports that the promoter of OUTER CELL LAYER3 (PSbOCL3) from Sorghum bicolor (sorghum) directs gene expression to chalazal cells where the apoplasmic barrier is thought to form. The aims were to elucidate PSbOCL3 expression patterns in sorghum and relate them to processes of nutrient pathway development in kernels and to recognized functions of the homeodomain-leucine zipper (HD-Zip) IV transcription factor family to which the promoter belongs. METHODS PSbOCL3 was cloned and transformed into sorghum as a promoter-GUS (β-glucuronidase) construct. Plant tissues from control and transformed plants were then stained for GUS, and kernels were cleared and characterized using differential interference contrast microscopy. KEY RESULTS A symplasmic disconnect between the chalaza and nucellus during seed fill is inferred by the combination of two phenomena: differentiation of a distinct nucellar epidermis adjacent to the chalaza, and lysis of GUS-stained chalazal cells immediately proximal to the nucellar epidermis. Compression of the GUS-stained chalazal cells during kernel maturation produced the kernel abscission zone (closing layer). CONCLUSIONS The results suggest that the HD-Zip IV transcription factor SbOCL3 regulates kernel nutrition and abscission. The latter is consistent with evidence that members of this transcription factor group regulate silique abscission and dehiscence in Arabidopsis thaliana. Collectively, the findings suggest that processes of floral organ abscission are conserved among angiosperms and may in some respects differ from processes of leaf abscission.
Collapse
Affiliation(s)
- Krishna K Dwivedi
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi (UP) 284003, India Plants, Soils and Climate Department, Utah State University, Logan, UT 84322-4820, USA
| | - Dominique J Roche
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA PhytoGen Seed Co. LLC, Western Research Station, 850 Plymouth Avenue, Corcoran, CA 93212, USA
| | - Tom E Clemente
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhengxiang Ge
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - John G Carman
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA Plants, Soils and Climate Department, Utah State University, Logan, UT 84322-4820, USA
| |
Collapse
|
29
|
Magnani E, de Klein N, Nam HI, Kim JG, Pham K, Fiume E, Mudgett MB, Rhee SY. A comprehensive analysis of microProteins reveals their potentially widespread mechanism of transcriptional regulation. PLANT PHYSIOLOGY 2014; 165:149-59. [PMID: 24616380 PMCID: PMC4012575 DOI: 10.1104/pp.114.235903] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/17/2014] [Indexed: 05/20/2023]
Abstract
Truncated transcription factor-like proteins called microProteins (miPs) can modulate transcription factor activities, thereby increasing transcriptional regulatory complexity. To understand their prevalence, evolution, and function, we predicted over 400 genes that encode putative miPs from Arabidopsis (Arabidopsis thaliana) using a bioinformatics pipeline and validated two novel miPs involved in flowering time and response to abiotic and biotic stress. We provide an evolutionary perspective for a class of miPs targeting homeodomain transcription factors in plants and metazoans. We identify domain loss as one mechanism of miP evolution and suggest the possible roles of miPs on the evolution of their target transcription factors. Overall, we reveal a prominent layer of transcriptional regulation by miPs, show pervasiveness of such proteins both within and across genomes, and provide a framework for studying their function and evolution.
Collapse
|
30
|
Takada S, Iida H. Specification of epidermal cell fate in plant shoots. FRONTIERS IN PLANT SCIENCE 2014; 5:49. [PMID: 24616724 PMCID: PMC3934432 DOI: 10.3389/fpls.2014.00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/01/2014] [Indexed: 05/07/2023]
Abstract
Land plants have evolved a single layer of epidermal cells, which are characterized by mostly anticlinal cell division patterns, formation of a waterproof coat called cuticle, and unique cell types such as stomatal guard cells and trichomes. The shoot epidermis plays important roles not only to protect plants from dehydration and pathogens but also to ensure their proper organogenesis and growth control. Extensive molecular genetic studies in Arabidopsis and maize have identified a number of genes that are required for epidermal cell differentiation. However, the mechanism that specifies shoot epidermal cell fate during plant organogenesis remains largely unknown. Particularly, little is known regarding positional information that should restrict epidermal cell fate to the outermost cell layer of the developing organs. Recent studies suggested that certain members of the HD-ZIP class IV homeobox genes are possible master regulators of shoot epidermal cell fate. Here, we summarize the roles of the regulatory genes that are involved in epidermal cell fate specification and discuss the possible mechanisms that limit the expression and/or activity of the master transcriptional regulators to the outermost cell layer in plant shoots.
Collapse
Affiliation(s)
- Shinobu Takada
- *Correspondence: Shinobu Takada, Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan e-mail:
| | | |
Collapse
|