1
|
Fang J, Zheng L, Liu G, Zhu H. Comparative Analysis of Chloroplast Genomes in Cephaleuros and Its Related Genus ( Trentepohlia): Insights into Adaptive Evolution. Genes (Basel) 2024; 15:839. [PMID: 39062618 PMCID: PMC11275322 DOI: 10.3390/genes15070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Cephaleuros species are well-known as plant pathogens that cause red rust or algae spot diseases in many economically cultivated plants that grow in shady and humid environments. Despite their prevalence, the adaptive evolution of these pathogens remains poorly understood. We sequenced and characterized three Cephaleuros (Cephaleuros lagerheimii, Cephaleuros diffusus, and Cephaleuros virescens) chloroplast genomes, and compared them with seven previously reported chloroplast genomes. The chloroplast sequences of C. lagerheimii, C. diffusus, and C. virescens were 480,613 bp, 383,846 bp, and 472,444 bp in length, respectively. These chloroplast genomes encoded 94 genes, including 27 tRNA genes, 3 rRNA genes, and 64 protein-coding genes. Comparative analysis uncovered that the variation in genome size was principally due to the length of intergenic spacer sequences, followed by introns. Furthermore, several highly variable regions (trnY-GTA, trnL-TAG, petA, psbT, trnD-GTC, trnL-TAA, ccsA, petG, psaA, psaB, rps11, rps2, and rps14) were identified. Codon bias analysis revealed that the codon usage pattern of Cephaleuros is predominantly shaped by natural selection. Additionally, six chloroplast protein-coding genes (atpF, chlN, psaA, psaB, psbA, and rbcL) were determined to be under positive selection, suggesting they may play a vital roles in the adaptation of Cephaleuros to low-light intensity habitats.
Collapse
Affiliation(s)
- Jiao Fang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China;
| | - Lingling Zheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (L.Z.); (G.L.)
| | - Guoxiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (L.Z.); (G.L.)
| | - Huan Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (L.Z.); (G.L.)
| |
Collapse
|
2
|
Sougrakpam Y, Deswal R. Identification of nitric oxide regulated low abundant myrosinases from seeds and seedlings of Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111932. [PMID: 38030037 DOI: 10.1016/j.plantsci.2023.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Myrosinases constitute an important component of the glucosinolate-myrosinase system responsible for interaction of plants with microorganisms, insects, pest, and herbivores. It is a distinctive feature of Brassicales. Multiple isozymes of myrosinases are present in the vacuoles. Active myrosinases are also present in the apoplast and the nucleus however, the similarity or difference in the biochemical properties with the vacuolar myrosinases are not known. Here, we have attempted to isolate, characterize, and identify myrosinases from seeds, seedlings, apoplast, and nucleus to understand these forms. 2D-CN/SDS-PAGE coupled with western blotting and MS have shown low abundant myrosinases (65/70/72/75 kDa) in seeds and seedlings and apoplast & nucleus of seedlings to exist as dimers, oligomers, and as protein complex. Nuclear membrane associated form of myrosinase was also identified. The present study for the first time has shown enzymatically active myrosinase-alpha-mannosidase complex in seedlings. Both 65 and 70 kDa myrosinase in seedlings were S-nitrosated. Nitric oxide donor treatment (GSNO) led to 25% reduction in myrosinase activity which was reversed by DTT suggesting redox regulation of myrosinase. These S-nitrosated myrosinases might be a component of NO signalling in B. juncea.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
3
|
Macher JN, Coots NL, Poh YP, Girard EB, Langerak A, Muñoz-Gómez SA, Sinha SD, Jirsová D, Vos R, Wissels R, Gile GH, Renema W, Wideman JG. Single-Cell Genomics Reveals the Divergent Mitochondrial Genomes of Retaria (Foraminifera and Radiolaria). mBio 2023; 14:e0030223. [PMID: 36939357 PMCID: PMC10127745 DOI: 10.1128/mbio.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria. Using single-cell approaches, we determined two complete mitochondrial genomes of Foraminifera and two nearly complete mitochondrial genomes of radiolarians. We report the complete coding content of an additional 14 foram species. We show that foraminiferan and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. In contrast to animals and fungi, many protists encode a diverse set of proteins on their mitochondrial genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages (euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial gene content and lack all ribosomal genes. Similar to these reduced outliers, we show that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-coding genes, including nad1, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radiolarians additionally carrying nad2 and nad6, respectively. In radiolarian mitogenomes, a noncanonical genetic code was identified in which all three stop codons encode amino acids. Collectively, these results add to our understanding of mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial sequence databases. IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genomic approaches, we found that foraminiferan and radiolarian mitochondrial genomes contain an overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. An alternative genetic code was identified in radiolarian mitogenomes in which all three stop codons encode amino acids. Collectively, these results shed light on the divergent nature of the mitochondrial genomes from an ecologically important group, warranting further questions into the biological underpinnings of gene content variability and genetic code variation between mitochondrial genomes.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Nicole L. Coots
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yu-Ping Poh
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Elsa B. Girard
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Anouk Langerak
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | | | - Savar D. Sinha
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Dagmar Jirsová
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Rutger Vos
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Richard Wissels
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity Group, Leiden, The Netherlands
- University of Amsterdam, Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, Amsterdam, The Netherlands
| | - Jeremy G. Wideman
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Pawlak K, Błażej P, Mackiewicz D, Mackiewicz P. The Influence of the Selection at the Amino Acid Level on Synonymous Codon Usage from the Viewpoint of Alternative Genetic Codes. Int J Mol Sci 2023; 24:ijms24021185. [PMID: 36674703 PMCID: PMC9866869 DOI: 10.3390/ijms24021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Synonymous codon usage can be influenced by mutations and/or selection, e.g., for speed of protein translation and correct folding. However, this codon bias can also be affected by a general selection at the amino acid level due to differences in the acceptance of the loss and generation of these codons. To assess the importance of this effect, we constructed a mutation-selection model model, in which we generated almost 90,000 stationary nucleotide distributions produced by mutational processes and applied a selection based on differences in physicochemical properties of amino acids. Under these conditions, we calculated the usage of fourfold degenerated (4FD) codons and compared it with the usage characteristic of the pure mutations. We considered both the standard genetic code (SGC) and alternative genetic codes (AGCs). The analyses showed that a majority of AGCs produced a greater 4FD codon bias than the SGC. The mutations producing more thymine or adenine than guanine and cytosine increased the differences in usage. On the other hand, the mutational pressures generating a lot of cytosine or guanine with a low content of adenine and thymine decreased this bias because the nucleotide content of most 4FD codons stayed in the compositional equilibrium with these pressures. The comparison of the theoretical results with those for real protein coding sequences showed that the influence of selection at the amino acid level on the synonymous codon usage cannot be neglected. The analyses indicate that the effect of amino acid selection cannot be disregarded and that it can interfere with other selection factors influencing codon usage, especially in AT-rich genomes, in which AGCs are usually used.
Collapse
|
5
|
Knoppová J, Sobotka R, Yu J, Bečková M, Pilný J, Trinugroho JP, Csefalvay L, Bína D, Nixon PJ, Komenda J. Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins. PLANT PHYSIOLOGY 2022; 189:790-804. [PMID: 35134246 PMCID: PMC9157124 DOI: 10.1093/plphys/kiac045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Martina Bečková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jan Pilný
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Joko P Trinugroho
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ladislav Csefalvay
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice 370 05, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| |
Collapse
|
6
|
Pascual-Aznar G, Konert G, Bečkov M, Kotabov E, Gardian Z, Knoppov J, Bučinsk L, Kaňa R, Sobotka R, Komenda J. Psb35 Protein Stabilizes the CP47 Assembly Module and Associated High-Light Inducible Proteins during the Biogenesis of Photosystem II in the Cyanobacterium Synechocystis sp. PCC6803. PLANT & CELL PHYSIOLOGY 2021; 62:178-190. [PMID: 33258963 DOI: 10.1093/pcp/pcaa148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 05/07/2023]
Abstract
Photosystem II (PSII) is a large membrane protein complex performing primary charge separation in oxygenic photosynthesis. The biogenesis of PSII is a complicated process that involves a coordinated linking of assembly modules in a precise order. Each such module consists of one large chlorophyll (Chl)-binding protein, number of small membrane polypeptides, pigments and other cofactors. We isolated the CP47 antenna module from the cyanobacterium Synechocystis sp. PCC 6803 and found that it contains a 11-kDa protein encoded by the ssl2148 gene. This protein was named Psb35 and its presence in the CP47 module was confirmed by the isolation of FLAG-tagged version of Psb35. Using this pulldown assay, we showed that the Psb35 remains attached to CP47 after the integration of CP47 into PSII complexes. However, the isolated Psb35-PSIIs were enriched with auxiliary PSII assembly factors like Psb27, Psb28-1, Psb28-2 and RubA while they lacked the lumenal proteins stabilizing the PSII oxygen-evolving complex. In addition, the Psb35 co-purified with a large unique complex of CP47 and photosystem I trimer. The absence of Psb35 led to a lower accumulation and decreased stability of the CP47 antenna module and associated high-light-inducible proteins but did not change the growth rate of the cyanobacterium under the variety of light regimes. Nevertheless, in comparison with WT, the Psb35-less mutant showed an accelerated pigment bleaching during prolonged dark incubation. The results suggest an involvement of Psb35 in the life cycle of cyanobacterial Chl-binding proteins, especially CP47.
Collapse
Affiliation(s)
- Guillem Pascual-Aznar
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovsk� 1760, Česk� Budějovice 37005, Czech Republic
| | - Grzegorz Konert
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Martina Bečkov
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Eva Kotabov
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Zdenko Gardian
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovsk� 1760, Česk� Budějovice 37005, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovsk� 31, Česk� Budějovice 37005, Czech Republic
| | - Jana Knoppov
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Lenka Bučinsk
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovick� ml�n, Novohradsk� 237, Třeboň 37981, Czech Republic
| |
Collapse
|
7
|
Meade MJ, Proulex GCR, Manoylov KM, Cahoon AB. Chloroplast mRNAs are 3' polyuridylylated in the Green Alga Pithophora roettleri (Cladophorales). JOURNAL OF PHYCOLOGY 2020; 56:1124-1134. [PMID: 32464681 DOI: 10.1111/jpy.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Species within the green algal order Cladophorales have an unconventional plastome structure where individual coding regions or small numbers of genes occur as linear single-stranded DNAs folded into hairpin structures. Another group of photosynthetic organisms with an equivalently reduced chloroplast genome are the peridinin dinoflagellates of the Alveolata eukaryotic lineage whose plastomes are mini-circles carrying one or a few genes required for photosynthesis. One unusual aspect of the Alveolata is the polyuridylylation of mRNA 3' ends among peridinin dinoflagellates and the chromerid algae. This study was conducted to understand if an unconventional highly reduced plastome structure co-occurs with unconventional RNA processing. To address this, the 5' and 3' mRNA termini of the known chloroplast genes of Pithophora roettleri (order Cladophorales) were analyzed for evidence of post-transcriptional processing. Circular Reverse Transcriptase PCR (cRT-PCR) followed by deep sequencing of the amplicons was used to analyze 5' and 3' mRNA termini. Evidence of several processing events were collected, most notably the 3' termini of six of the eight genes were polyuridylylated, which has not been reported for any lineage outside of the Alveolata. Other processing events include poly(A) and heteropolymeric 3' additions, 5' primary transcript start sites, as well as the presence of circularized RNAs. Five other species representing other green algal lineages were also tested and poly(U) additions appear to be limited to the order Cladophorales. These results demonstrate that chloroplast mRNA polyuridylylation is not the sole provenance of photosynthetic alveolates and may have convergently evolved in two distinct photosynthetic lineages.
Collapse
Affiliation(s)
- Marcus J Meade
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Ave., Wise, Virginia, 24293, USA
| | - Grayson C R Proulex
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Ave., Wise, Virginia, 24293, USA
| | - Kalina M Manoylov
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, 31061, USA
| | - A Bruce Cahoon
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Ave., Wise, Virginia, 24293, USA
| |
Collapse
|
8
|
Dorrell RG. Convergence in the RNA processing of fractured algal organelle genomes. JOURNAL OF PHYCOLOGY 2020; 56:1121-1123. [PMID: 33460118 DOI: 10.1111/jpy.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Richard G Dorrell
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| |
Collapse
|
9
|
Smith DR. Revisiting Ceriantharian (Anthozoa) Mitochondrial Genomes: Casting Doubts about Their Structure and Size. Genome Biol Evol 2020; 12:1440-1443. [PMID: 32589745 PMCID: PMC7487158 DOI: 10.1093/gbe/evaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 01/22/2023] Open
Abstract
Recently, Stampar et al. (2019. Linear mitochondrial genome in Anthozoa (Cnidaria): a case study in. Sci Rep. 9(1):6094.) uncovered highly atypical mitochondrial genome structures in the cnidarian species Pachycerianthus magnus and Isarachnanthus nocturnus (Anthozoa, Ceriantharia). These two mitochondrial DNAs assembled as linear fragmented genomes, comprising eight and five chromosomes, respectively—architectures unlike any other anthozoan mitogenome described to date. What’s more, they have cumulative lengths of 77.8 (P. magnus) and 80.9 kb (I. nocturnus), making them the largest animal mitochondrial DNAs on record, a finding which garnered significant attention by various news media. Here, I take a closer look at the work of Stampar et al. and question their key results. I provide evidence that the currently available mitogenome sequences for I. nocturnus and P. magnus, including their structures, sizes, and chromosome numbers, should be treated with caution. More work must be done on these genomes before one can say with any certainty that they are linear, fragmented, or the largest animal mitogenomes observed to date.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Tomčala A, Michálek J, Schneedorferová I, Füssy Z, Gruber A, Vancová M, Oborník M. Fatty Acid Biosynthesis in Chromerids. Biomolecules 2020; 10:E1102. [PMID: 32722284 PMCID: PMC7464705 DOI: 10.3390/biom10081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.
Collapse
Affiliation(s)
- Aleš Tomčala
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia, Husova 458/102, 370 05 České Budějovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Ivana Schneedorferová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zoltán Füssy
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Ansgar Gruber
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Marie Vancová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Miroslav Oborník
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
11
|
Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. Highly Reduced Plastid Genomes of the Non-photosynthetic Dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) Are Retained for tRNA-Glu-Based Organellar Heme Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:602455. [PMID: 33329672 PMCID: PMC7728698 DOI: 10.3389/fpls.2020.602455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Organisms that have lost their photosynthetic capabilities are present in a variety of eukaryotic lineages, such as plants and disparate algal groups. Most of such non-photosynthetic eukaryotes still carry plastids, as these organelles retain essential biological functions. Most non-photosynthetic plastids possess genomes with varied protein-coding contents. Such remnant plastids are known to be present in the non-photosynthetic, bacteriovorous alga Pteridomonas danica (Dictyochophyceae, Ochrophyta), which, regardless of its obligatory heterotrophic lifestyle, has been reported to retain the typically plastid-encoded gene for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit (rbcL). The presence of rbcL without photosynthetic activity suggests that investigating the function of plastids in Pteridomonas spp. would likely bring unique insights into understanding the reductive evolution of plastids, their genomes, and plastid functions retained after the loss of photosynthesis. In this study, we demonstrate that two newly established strains of the non-photosynthetic genus Pteridomonas possess highly reduced plastid genomes lacking rbcL gene, in contrast to the previous report. Interestingly, we discovered that all plastid-encoded proteins in Pteridomonas spp. are involved only in housekeeping processes (e.g., transcription, translation and protein degradation), indicating that all metabolite synthesis pathways in their plastids are supported fully by nuclear genome-encoded proteins. Moreover, through an in-depth survey of the available transcriptomic data of another strain of the genus, we detected no candidate sequences for nuclear-encoded, plastid-directed Fe-S cluster assembly pathway proteins, suggesting complete loss of this pathway in the organelle, despite its widespread conservation in non-photosynthetic plastids. Instead, the transcriptome contains plastid-targeted components of heme biosynthesis, glycolysis, and pentose phosphate pathways. The retention of the plastid genomes in Pteridomonas spp. is not explained by the Suf-mediated constraint against loss of plastid genomes, previously proposed for Alveolates, as they lack Suf genes. Bearing all these findings in mind, we propose the hypothesis that plastid DNA is retained in Pteridomonas spp. for the purpose of providing glutamyl-tRNA, encoded by trnE gene, as a substrate for the heme biosynthesis pathway.
Collapse
Affiliation(s)
- Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- *Correspondence: Anna Karnkowska,
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Ryoma Kamikawa,
| |
Collapse
|
12
|
Dorrell RG, Nisbet RER, Barbrook AC, Rowden SJL, Howe CJ. Integrated Genomic and Transcriptomic Analysis of the Peridinin Dinoflagellate Amphidinium carterae Plastid. Protist 2019; 170:358-373. [PMID: 31415953 DOI: 10.1016/j.protis.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an integrated plastid genome and transcriptome for the model peridinin dinoflagellate Amphidinium carterae, identifying a previously undescribed minicircle. We also profile transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present evidence that antisense transcripts are produced within the A. carterae plastid, but show that these transcripts undergo different end cleavage events from sense transcripts, and do not receive 3' poly(U) tails. The difference in processing events between sense and antisense transcripts may enable the removal of non-coding transcripts from peridinin dinoflagellate plastid transcript pools.
Collapse
Affiliation(s)
| | - R Ellen R Nisbet
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
13
|
Many alternative and theoretical genetic codes are more robust to amino acid replacements than the standard genetic code. J Theor Biol 2019; 464:21-32. [DOI: 10.1016/j.jtbi.2018.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
|
14
|
Abstract
Organisms display astonishing levels of cell and molecular diversity, including genome size, shape, and architecture. In this chapter, we review how the genome can be viewed as both a structural and an informational unit of biological diversity and explicitly define our intended meaning of genetic information. A brief overview of the characteristic features of bacterial, archaeal, and eukaryotic cell types and viruses sets the stage for a review of the differences in organization, size, and packaging strategies of their genomes. We include a detailed review of genetic elements found outside the primary chromosomal structures, as these provide insights into how genomes are sometimes viewed as incomplete informational entities. Lastly, we reassess the definition of the genome in light of recent advancements in our understanding of the diversity of genomic structures and the mechanisms by which genetic information is expressed within the cell. Collectively, these topics comprise a good introduction to genome biology for the newcomer to the field and provide a valuable reference for those developing new statistical or computation methods in genomics. This review also prepares the reader for anticipated transformations in thinking as the field of genome biology progresses.
Collapse
|
15
|
Klinger CM, Paoli L, Newby RJ, Wang MYW, Carroll HD, Leblond JD, Howe CJ, Dacks JB, Bowler C, Cahoon AB, Dorrell RG, Richardson E. Plastid Transcript Editing across Dinoflagellate Lineages Shows Lineage-Specific Application but Conserved Trends. Genome Biol Evol 2018; 10:1019-1038. [PMID: 29617800 PMCID: PMC5888634 DOI: 10.1093/gbe/evy057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Dinoflagellates are a group of unicellular protists with immense ecological and evolutionary significance and cell biological diversity. Of the photosynthetic dinoflagellates, the majority possess a plastid containing the pigment peridinin, whereas some lineages have replaced this plastid by serial endosymbiosis with plastids of distinct evolutionary affiliations, including a fucoxanthin pigment-containing plastid of haptophyte origin. Previous studies have described the presence of widespread substitutional RNA editing in peridinin and fucoxanthin plastid genes. Because reports of this process have been limited to manual assessment of individual lineages, global trends concerning this RNA editing and its effect on the biological function of the plastid are largely unknown. Using novel bioinformatic methods, we examine the dynamics and evolution of RNA editing over a large multispecies data set of dinoflagellates, including novel sequence data from the peridinin dinoflagellate Pyrocystis lunula and the fucoxanthin dinoflagellate Karenia mikimotoi. We demonstrate that while most individual RNA editing events in dinoflagellate plastids are restricted to single species, global patterns, and functional consequences of editing are broadly conserved. We find that editing is biased toward specific codon positions and regions of genes, and generally corrects otherwise deleterious changes in the genome prior to translation, though this effect is more prevalent in peridinin than fucoxanthin lineages. Our results support a model for promiscuous editing application subsequently shaped by purifying selection, and suggest the presence of an underlying editing mechanism transferred from the peridinin-containing ancestor into fucoxanthin plastids postendosymbiosis, with remarkably conserved functional consequences in the new lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Paoli
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Robert J Newby
- Department of Biology, Middle Tennessee State University
| | - Matthew Yu-Wei Wang
- Center for Computational Science and Department of Computer Science, Columbus State University, Columbus, GA 31907
| | - Hyrum D Carroll
- Center for Computational Science and Department of Computer Science, Columbus State University, Columbus, GA 31907
| | | | | | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Aubery Bruce Cahoon
- Department of Natural Sciences, The University of Virginia's College at Wise
| | - Richard G Dorrell
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | | |
Collapse
|
16
|
Bec Ková M, Yu J, Krynická V, Kozlo A, Shao S, Koník P, Komenda J, Murray JW, Nixon PJ. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0394. [PMID: 28808107 PMCID: PMC5566888 DOI: 10.1098/rstb.2016.0394] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Collapse
Affiliation(s)
- Martina Bec Ková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vendula Krynická
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Amanda Kozlo
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Koník
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic .,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
17
|
Del Cortona A, Leliaert F, Bogaert KA, Turmel M, Boedeker C, Janouškovec J, Lopez-Bautista JM, Verbruggen H, Vandepoele K, De Clerck O. The Plastid Genome in Cladophorales Green Algae Is Encoded by Hairpin Chromosomes. Curr Biol 2017; 27:3771-3782.e6. [PMID: 29199074 DOI: 10.1016/j.cub.2017.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022]
Abstract
Virtually all plastid (chloroplast) genomes are circular double-stranded DNA molecules, typically between 100 and 200 kb in size and encoding circa 80-250 genes. Exceptions to this universal plastid genome architecture are very few and include the dinoflagellates, where genes are located on DNA minicircles. Here we report on the highly deviant chloroplast genome of Cladophorales green algae, which is entirely fragmented into hairpin chromosomes. Short- and long-read high-throughput sequencing of DNA and RNA demonstrated that the chloroplast genes of Boodlea composita are encoded on 1- to 7-kb DNA contigs with an exceptionally high GC content, each containing a long inverted repeat with one or two protein-coding genes and conserved non-coding regions putatively involved in replication and/or expression. We propose that these contigs correspond to linear single-stranded DNA molecules that fold onto themselves to form hairpin chromosomes. The Boodlea chloroplast genes are highly divergent from their corresponding orthologs, and display an alternative genetic code. The origin of this highly deviant chloroplast genome most likely occurred before the emergence of the Cladophorales, and coincided with an elevated transfer of chloroplast genes to the nucleus. A chloroplast genome that is composed only of linear DNA molecules is unprecedented among eukaryotes, and highlights unexpected variation in plastid genome architecture.
Collapse
Affiliation(s)
- Andrea Del Cortona
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Zwijnaarde, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Frederik Leliaert
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium; Botanic Garden Meise, Nieuwelaan 38, 1860 Meise, Belgium
| | - Kenny A Bogaert
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Pavillon Charles-Eugène-Marchand 1030, Avenue de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Christian Boedeker
- School of Biological Sciences, Victoria University of Wellington, New Kirk Building, Kelburn Parade, P.O. Box 600, Wellington 6012, New Zealand
| | - Jan Janouškovec
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Juan M Lopez-Bautista
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35484-0345, USA
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Professors Walk, Melbourne, VIC 3010, Australia
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Zwijnaarde, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 2017; 7:13214. [PMID: 29038514 PMCID: PMC5643376 DOI: 10.1038/s41598-017-13575-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.
Collapse
|
19
|
Hamaji T, Kawai-Toyooka H, Toyoda A, Minakuchi Y, Suzuki M, Fujiyama A, Nozaki H, Smith DR. Multiple Independent Changes in Mitochondrial Genome Conformation in Chlamydomonadalean Algae. Genome Biol Evol 2017; 9:993-999. [PMID: 31972029 PMCID: PMC5398295 DOI: 10.1093/gbe/evx060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chlamydomonadalean green algae are no stranger to linear mitochondrial genomes, particularly members of the Reinhardtinia clade. At least nine different Reinhardtinia species are known to have linear mitochondrial DNAs (mtDNAs), including the model species Chlamydomonas reinhardtii. Thus, it is no surprise that some have suggested that the most recent common ancestor of the Reinhardtinia clade had a linear mtDNA. But the recent uncovering of circular-mapping mtDNAs in a range of Reinhardtinia algae, such as Volvox carteri and Tetrabaena socialis, has shed doubt on this hypothesis. Here, we explore mtDNA sequence and structure within the colonial Reinhardtinia algae Yamagishiella unicocca and Eudorina sp. NIES-3984, which occupy phylogenetically intermediate positions between species with opposing mtDNA mapping structures. Sequencing and gel electrophoresis data indicate that Y. unicocca has a linear monomeric mitochondrial genome with long (3 kb) palindromic telomeres. Conversely, the mtDNA of Eudorina sp., despite having an identical gene order to that of Y. unicocca, assembled as a circular-mapping molecule. Restriction digests of Eudorina sp. mtDNA supported its circular map, but also revealed a linear monomeric form with a matching architecture and gene order to the Y. unicocca mtDNA. Based on these data, we suggest that there have been at least three separate shifts in mtDNA conformation in the Reinhardtinia, and that the common ancestor of this clade had a linear monomeric mitochondrial genome with palindromic telomeres.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan.,Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yohei Minakuchi
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahiro Suzuki
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Bečková M, Gardian Z, Yu J, Konik P, Nixon PJ, Komenda J. Association of Psb28 and Psb27 Proteins with PSII-PSI Supercomplexes upon Exposure of Synechocystis sp. PCC 6803 to High Light. MOLECULAR PLANT 2017; 10:62-72. [PMID: 27530366 DOI: 10.1016/j.molp.2016.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/29/2016] [Accepted: 08/04/2016] [Indexed: 05/23/2023]
Abstract
Formation of the multi-subunit oxygen-evolving photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the localization and possible function of two homologous PSII assembly factors, Psb28-1 and Psb28-2, from the cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that FLAG-tagged Psb28-2 is present in both the monomeric PSII core complex and a PSII core complex lacking the inner antenna CP43 (RC47), whereas Psb28-1 preferentially binds to RC47. When cells are exposed to increased irradiance, both tagged Psb28 proteins additionally associate with oligomeric forms of PSII and with PSII-PSI supercomplexes composed of trimeric photosystem I (PSI) and two PSII monomers as deduced from electron microscopy. The presence of the Psb27 accessory protein in these complexes suggests the involvement of PSI in PSII biogenesis, possibly by photoprotecting PSII through energy spillover. Under standard culture conditions, the distribution of PSII complexes is similar in the wild type and in each of the single psb28 null mutants except for loss of RC47 in the absence of Psb28-1. In comparison with the wild type, growth of mutants lacking Psb28-1 and Psb27, but not Psb28-2, was retarded under high-light conditions and, especially, intermittent high-light/dark conditions, emphasizing the physiological importance of PSII assembly factors for light acclimation.
Collapse
Affiliation(s)
- Martina Bečková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Konik
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
21
|
High photochemical trapping efficiency in Photosystem I from the red clade algae Chromera velia and Phaeodactylum tricornutum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:56-63. [DOI: 10.1016/j.bbabio.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/23/2022]
|
22
|
Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci U S A 2016; 114:E171-E180. [PMID: 28028238 DOI: 10.1073/pnas.1614842114] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dinoflagellates are key species in marine environments, but they remain poorly understood in part because of their large, complex genomes, unique molecular biology, and unresolved in-group relationships. We created a taxonomically representative dataset of dinoflagellate transcriptomes and used this to infer a strongly supported phylogeny to map major morphological and molecular transitions in dinoflagellate evolution. Our results show an early-branching position of Noctiluca, monophyly of thecate (plate-bearing) dinoflagellates, and paraphyly of athecate ones. This represents unambiguous phylogenetic evidence for a single origin of the group's cellulosic theca, which we show coincided with a radiation of cellulases implicated in cell division. By integrating dinoflagellate molecular, fossil, and biogeochemical evidence, we propose a revised model for the evolution of thecal tabulations and suggest that the late acquisition of dinosterol in the group is inconsistent with dinoflagellates being the source of this biomarker in pre-Mesozoic strata. Three distantly related, fundamentally nonphotosynthetic dinoflagellates, Noctiluca, Oxyrrhis, and Dinophysis, contain cryptic plastidial metabolisms and lack alternative cytosolic pathways, suggesting that all free-living dinoflagellates are metabolically dependent on plastids. This finding led us to propose general mechanisms of dependency on plastid organelles in eukaryotes that have lost photosynthesis; it also suggests that the evolutionary origin of bioluminescence in nonphotosynthetic dinoflagellates may be linked to plastidic tetrapyrrole biosynthesis. Finally, we use our phylogenetic framework to show that dinoflagellate nuclei have recruited DNA-binding proteins in three distinct evolutionary waves, which included two independent acquisitions of bacterial histone-like proteins.
Collapse
|
23
|
Dorrell RG, Klinger CM, Newby RJ, Butterfield ER, Richardson E, Dacks JB, Howe CJ, Nisbet ER, Bowler C. Progressive and Biased Divergent Evolution Underpins the Origin and Diversification of Peridinin Dinoflagellate Plastids. Mol Biol Evol 2016; 34:361-379. [DOI: 10.1093/molbev/msw235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 2016; 100:238-256. [PMID: 27036362 DOI: 10.1016/j.freeradbiomed.2016.03.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 01/03/2023]
Abstract
Eukaryotic cells require orchestrated communication between nuclear and organellar genomes, perturbations in which are linked to stress response and disease in both animals and plants. In addition to mitochondria, which are found across eukaryotes, plant cells contain a second organelle, the plastid. Signaling both among the organelles (cytoplasmic) and between the cytoplasm and the nucleus (i.e. nuclear-cytoplasmic interactions (NCI)) is essential for proper cellular function. A deeper understanding of NCI and its impact on development, stress response, and long-term health is needed in both animal and plant systems. Here we focus on the role of plant mitochondria in development and stress response. We compare and contrast features of plant and animal mitochondrial genomes (mtDNA), particularly highlighting the large and highly dynamic nature of plant mtDNA. Plant-based tools are powerful, yet underutilized, resources for enhancing our fundamental understanding of NCI. These tools also have great potential for improving crop production. Across taxa, mitochondria are most abundant in cells that have high energy or nutrient demands as well as at key developmental time points. Although plant mitochondria act as integrators of signals involved in both development and stress response pathways, little is known about plant mtDNA diversity and its impact on these processes. In humans, there are strong correlations between particular mitotypes (and mtDNA mutations) and developmental differences (or disease). We propose that future work in plants should focus on defining mitotypes more carefully and investigating their functional implications as well as improving techniques to facilitate this research.
Collapse
Affiliation(s)
- Katie L Liberatore
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States.
| | | | - Marisa E Miller
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Shahryar F Kianian
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
25
|
Knoppová J, Yu J, Konik P, Nixon PJ, Komenda J. CyanoP is Involved in the Early Steps of Photosystem II Assembly in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:1921-31. [PMID: 27388341 DOI: 10.1093/pcp/pcw115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 05/07/2023]
Abstract
Although the PSII complex is highly conserved in cyanobacteria and chloroplasts, the PsbU and PsbV subunits stabilizing the oxygen-evolving Mn4CaO5 cluster in cyanobacteria are absent in chloroplasts and have been replaced by the PsbP and PsbQ subunits. There is, however, a distant cyanobacterial homolog of PsbP, termed CyanoP, of unknown function. Here we show that CyanoP plays a role in the early stages of PSII biogenesis in Synechocystis sp. PCC 6803. CyanoP is present in the PSII reaction center assembly complex (RCII) lacking both the CP47 and CP43 modules and binds to the smaller D2 module. A small amount of larger PSII core complexes co-purifying with FLAG-tagged CyanoP indicates that CyanoP can accompany PSII on most of its assembly pathway. A role in biogenesis is supported by the accumulation of unassembled D1 precursor and impaired formation of RCII in a mutant lacking CyanoP. Interestingly, the pull-down preparations of CyanoP-FLAG from a strain lacking CP47 also contained PsbO, indicating engagement of this protein with PSII at a much earlier stage in assembly than previously assumed.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Konik
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic
| |
Collapse
|
26
|
Nisbet RER, McKenzie JL. Transcription of the apicoplast genome. Mol Biochem Parasitol 2016; 210:5-9. [PMID: 27485555 PMCID: PMC5404108 DOI: 10.1016/j.molbiopara.2016.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 01/31/2023]
Abstract
Many members of the Apicomplexa contain a remnant chloroplast, known as an apicoplast. The apicoplast encodes numerous genes, and loss of the organelle is lethal. Here, we present a summary of what is known about apicoplast transcription. Unlike plant chloroplasts, there is a single RNA polymerase, and initial transcription is polycistronic. RNA is then cleaved into tRNA, mRNA and rRNA molecules. Significant levels of antisense transcription have been reported, together with a single case of RNA editing. Polycistronic transcription is also observed in the related algae Chromera and Vitrella, which retain a photosynthetic chloroplast. Surprisingly, a polyU tail is added to Chromera and Vitrella transcripts which encode proteins involved in photosynthesis. No such tail is added to Plasmodium transcripts. Transcription in the Apicomplexa is remarkably similar to that seen in the chloroplast of the related peridinin dinoflagellate algae, reflecting the common evolutionary origins of the organelle.
Collapse
Affiliation(s)
- R E R Nisbet
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - J L McKenzie
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
27
|
Smith DR, Keeling PJ. Protists and the Wild, Wild West of Gene Expression: New Frontiers, Lawlessness, and Misfits. Annu Rev Microbiol 2016; 70:161-78. [PMID: 27359218 DOI: 10.1146/annurev-micro-102215-095448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA double helix has been called one of life's most elegant structures, largely because of its universality, simplicity, and symmetry. The expression of information encoded within DNA, however, can be far from simple or symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukaryotes). The nuclear and organelle genomes of protists are subject to the most tangled forms of gene expression yet identified. The complicated and extravagant picture of the underlying genetics of eukaryotic microbial life changes how we think about the flow of genetic information and the evolutionary processes shaping it. Here, we discuss the origins, diversity, and growing interest in noncanonical protist gene expression and its relationship to genomic architecture.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7;
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4;
| |
Collapse
|
28
|
Turmel M, de Cambiaire JC, Otis C, Lemieux C. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881. PLoS One 2016; 11:e0148934. [PMID: 26849226 PMCID: PMC4743939 DOI: 10.1371/journal.pone.0148934] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/23/2016] [Indexed: 12/29/2022] Open
Abstract
The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction.
Collapse
Affiliation(s)
- Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Québec, Canada
- * E-mail:
| | - Jean-Charles de Cambiaire
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Québec, Canada
| | - Christian Otis
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Québec, Canada
| | - Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Québec, Canada
| |
Collapse
|
29
|
Dorrell RG, Hinksman GA, Howe CJ. Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi. PLANT MOLECULAR BIOLOGY 2016; 90:233-47. [PMID: 26768263 PMCID: PMC4717168 DOI: 10.1007/s11103-015-0408-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/12/2015] [Indexed: 05/05/2023]
Abstract
Plastids produce a vast diversity of transcripts. These include mature transcripts containing coding sequences, and their processing precursors, as well as transcripts that lack direct coding functions, such as antisense transcripts. Although plastid transcriptomes have been characterised for many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga Karenia mikimotoi. This plastid lineage, acquired through tertiary endosymbiosis, utilises transcript processing pathways that are very different from those found in plants and green algae, including 3' poly(U) tail addition, and extensive substitutional editing of transcript sequences. We have sequenced the plastid transcriptome of K. mikimotoi, and have detected evidence for divergent evolution of fucoxanthin plastid genomes. We have additionally characterised polycistronic and monocistronic transcripts from two plastid loci, psbD-tRNA (Met)-ycf4 and rpl36-rps13-rps11. We find evidence for a range of transcripts produced from each locus that differ in terms of editing state, 5' end cleavage position, and poly(U) tail addition. Finally, we identify antisense transcripts in K. mikimotoi, which appear to undergo different processing events from the corresponding sense transcripts. Overall, our study provides insights into the diversity of transcripts and processing intermediates found in plastid lineages across the eukaryotes.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- School of Biology, École Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
30
|
Dorrell RG, Howe CJ. Integration of plastids with their hosts: Lessons learned from dinoflagellates. Proc Natl Acad Sci U S A 2015; 112:10247-54. [PMID: 25995366 PMCID: PMC4547248 DOI: 10.1073/pnas.1421380112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; School of Biology, École Normale Superieure, Paris 75005, France
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
31
|
Oborník M, Lukeš J. The Organellar Genomes of Chromera and Vitrella, the Phototrophic Relatives of Apicomplexan Parasites. Annu Rev Microbiol 2015; 69:129-44. [PMID: 26092225 DOI: 10.1146/annurev-micro-091014-104449] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are known to contain greatly reduced organellar genomes. Their mitochondrial genome carries only three protein-coding genes, and their plastid genome is reduced to a 35-kb-long circle. The discovery of coral-endosymbiotic algae Chromera velia and Vitrella brassicaformis, which share a common ancestry with Apicomplexa, provided an opportunity to study possibly ancestral forms of organellar genomes, a unique glimpse into the evolutionary history of apicomplexan parasites. The structurally similar mitochondrial genomes of Chromera and Vitrella differ in gene content, which is reflected in the composition of their respiratory chains. Thus, Chromera lacks respiratory complexes I and III, whereas Vitrella and apicomplexan parasites are missing only complex I. Plastid genomes differ substantially between these algae, particularly in structure: The Chromera plastid genome is a linear, 120-kb molecule with large and divergent genes, whereas the plastid genome of Vitrella is a highly compact circle that is only 85 kb long but nonetheless contains more genes than that of Chromera. It appears that organellar genomes have already been reduced in free-living phototrophic ancestors of apicomplexan parasites, and such reduction is not associated with parasitism.
Collapse
|
32
|
Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, Vlček Č, Lang BF, Oborník M, Worden AZ, Eliáš M. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 2015; 5:10134. [PMID: 26017773 PMCID: PMC4603697 DOI: 10.1038/srep10134] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/31/2015] [Indexed: 01/15/2023] Open
Abstract
Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
Collapse
Affiliation(s)
- Tereza Ševčíková
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.,University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Vladimír Klimeš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Veronika Zbránková
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Elif Demir-Hilton
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA
| | - Jerry Jenkins
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, 601 Genome Way NW, Huntsville, Alabama 35806, USA
| | - Pavel Přibyl
- Centre for Algology and Biorefinery Research Centre of Competence, Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Jan Fousek
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - B Franz Lang
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, 2900 Boulevard Edouard Montpetit, Montréal, Québec, H3C 3J7, Canada
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.,University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada
| | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
33
|
Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 2015; 112:10177-84. [PMID: 25814499 DOI: 10.1073/pnas.1422049112] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial and plastid genomes show a wide array of architectures, varying immensely in size, structure, and content. Some organelle DNAs have even developed elaborate eccentricities, such as scrambled coding regions, nonstandard genetic codes, and convoluted modes of posttranscriptional modification and editing. Here, we compare and contrast the breadth of genomic complexity between mitochondrial and plastid chromosomes. Both organelle genomes have independently evolved many of the same features and taken on similar genomic embellishments, often within the same species or lineage. This trend is most likely because the nuclear-encoded proteins mediating these processes eventually leak from one organelle into the other, leading to a high likelihood of processes appearing in both compartments in parallel. However, the complexity and intensity of genomic embellishments are consistently more pronounced for mitochondria than for plastids, even when they are found in both compartments. We explore the evolutionary forces responsible for these patterns and argue that organelle DNA repair processes, mutation rates, and population genetic landscapes are all important factors leading to the observed convergence and divergence in organelle genome architecture.
Collapse
|
34
|
Flegontov P, Michálek J, Janouškovec J, Lai DH, Jirků M, Hajdušková E, Tomčala A, Otto TD, Keeling PJ, Pain A, Oborník M, Lukeš J. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol 2015; 32:1115-31. [PMID: 25660376 DOI: 10.1093/molbev/msv021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Four respiratory complexes and ATP-synthase represent central functional units in mitochondria. In some mitochondria and derived anaerobic organelles, a few or all of these respiratory complexes have been lost during evolution. We show that the respiratory chain of Chromera velia, a phototrophic relative of parasitic apicomplexans, lacks complexes I and III, making it a uniquely reduced aerobic mitochondrion. In Chromera, putative lactate:cytochrome c oxidoreductases are predicted to transfer electrons from lactate to cytochrome c, rendering complex III unnecessary. The mitochondrial genome of Chromera has the smallest known protein-coding capacity of all mitochondria, encoding just cox1 and cox3 on heterogeneous linear molecules. In contrast, another photosynthetic relative of apicomplexans, Vitrella brassicaformis, retains the same set of genes as apicomplexans and dinoflagellates (cox1, cox3, and cob).
Collapse
Affiliation(s)
- Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Michálek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Janouškovec
- Department of Botany, University of BC, Vancouver, Canada Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - De-Hua Lai
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Milan Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eva Hajdušková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Aleš Tomčala
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Thomas D Otto
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Patrick J Keeling
- Department of Botany, University of BC, Vancouver, Canada Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
35
|
Mann M, Hoppenz P, Jakob T, Weisheit W, Mittag M, Wilhelm C, Goss R. Unusual features of the high light acclimation of Chromera velia. PHOTOSYNTHESIS RESEARCH 2014; 122:159-169. [PMID: 24906888 DOI: 10.1007/s11120-014-0019-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
In the present study, the high light (HL) acclimation of Chromera velia (Chromerida) was studied. HL-grown cells exhibited an increased cell volume and dry weight compared to cells grown at medium light (ML). The chlorophyll (Chl) a-specific absorption spectra ([Formula: see text]) of the HL cells showed an increased absorption efficiency over a wavelength range from 400 to 750 nm, possibly due to differences in the packaging of Chl a molecules. In HL cells, the size of the violaxanthin (V) cycle pigment pool was strongly increased. Despite a higher concentration of de-epoxidized V cycle pigments, non-photochemical quenching (NPQ) of the HL cells was slightly reduced compared to ML cells. The analysis of NPQ recovery during low light (LL) after a short illumination with excess light showed a fast NPQ relaxation and zeaxanthin epoxidation. Purification of the pigment-protein complexes demonstrated that the HL-synthesized V was associated with the chromera light-harvesting complex (CLH). However, the difference absorption spectrum of HL minus ML CLH, together with the 77 K fluorescence excitation spectra, suggested that the additional V was not protein bound but localized in a lipid phase associated with the CLH. The polypeptide analysis of the pigment-protein complexes showed that one out of three known LHCr proteins was associated in higher concentration with photosystem I in the HL cells, whereas in ML cells, it was enriched in the CLH fraction. In conclusion, the acclimation of C. velia to HL illumination shows features that are comparable to those of diatoms, while other characteristics more closely resemble those of higher plants and green algae.
Collapse
Affiliation(s)
- Marcus Mann
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Krynická V, Tichý M, Krafl J, Yu J, Kaňa R, Boehm M, Nixon PJ, Komenda J. Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 2014; 94:609-24. [PMID: 25238320 DOI: 10.1111/mmi.12782] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 12/18/2022]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 expresses four different FtsH protease subunits (FtsH1-4) that assemble into specific homo- and heterocomplexes. The FtsH2/FtsH3 complex is involved in photoprotection but the physiological roles of the other complexes, notably the essential FtsH1/FtsH3 complex, remain unclear. Here we show that the FtsH1 and FtsH3 proteases are involved in the acclimation of cells to iron deficiency. A mutant conditionally depleted in FtsH3 was unable to induce normal expression of the IsiA chlorophyll-protein and FutA1 iron transporter upon iron deficiency due to a block in transcription, which is regulated by the Fur transcriptional repressor. Levels of Fur declined in the WT and the FtsH2 null mutant upon iron depletion but not in the FtsH3 downregulated strain. A similar stabilizing effect on Fur was also observed in a mutant conditionally depleted in the FtsH1 subunit. Moreover, a mutant overexpressing FtsH1 showed reduced levels of Fur and enhanced accumulation of both IsiA and FutA1 even under iron sufficiency. Analysis of GFP-tagged derivatives and biochemical fractionation supported a common location for FtsH1 and FtsH3 in the cytoplasmic membrane. Overall we propose that degradation of the Fur repressor mediated by the FtsH1/FtsH3 heterocomplex is critical for acclimation to iron depletion.
Collapse
Affiliation(s)
- Vendula Krynická
- Institute of Microbiology, Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Richardson E, Dorrell RG, Howe CJ. Genome-wide transcript profiling reveals the coevolution of plastid gene sequences and transcript processing pathways in the fucoxanthin dinoflagellate Karlodinium veneficum. Mol Biol Evol 2014; 31:2376-86. [PMID: 24925926 PMCID: PMC4137713 DOI: 10.1093/molbev/msu189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plastids utilize a complex gene expression machinery, which has coevolved with the underlying genome sequence. Relatively, little is known about the genome-wide evolution of transcript processing in algal plastids that have undergone complex endosymbiotic events. We present the first genome-wide study of transcript processing in a plastid acquired through serial endosymbiosis, in the fucoxanthin-containing dinoflagellate Karlodinium veneficum. The fucoxanthin dinoflagellate plastid has an extremely divergent genome and utilizes two unusual transcript processing pathways, 3'-poly(U) tail addition and sequence editing, which were acquired following the serial endosymbiosis event. We demonstrate that poly(U) addition and sequence editing are widespread features across the Karl. veneficum plastid transcriptome, whereas other dinoflagellate plastid lineages that have arisen through independent serial endosymbiosis events do not utilize either RNA processing pathway. These pathways constrain the effects of divergent sequence evolution in fucoxanthin plastids, for example by correcting mutations in the genomic sequence that would otherwise be deleterious, and are specifically associated with transcripts that encode functional plastid proteins over transcripts of recently generated pseudogenes. These pathways may have additionally facilitated divergent evolution within the Karl. veneficum plastid. Transcript editing, for example, has contributed to the evolution of a novel C-terminal sequence extension on the Karl. veneficum AtpA protein. We furthermore provide the first complete sequence of an episomal minicircle in a fucoxanthin dinoflagellate plastid, which contains the dnaK gene, and gives rise to polyuridylylated and edited transcripts. Our results indicate that RNA processing in fucoxanthin dinoflagellate plastids is evolutionarily dynamic, coevolving with the underlying genome sequence.
Collapse
Affiliation(s)
| | - Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
Mungpakdee S, Shinzato C, Takeuchi T, Kawashima T, Koyanagi R, Hisata K, Tanaka M, Goto H, Fujie M, Lin S, Satoh N, Shoguchi E. Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genome Biol Evol 2014; 6:1408-22. [PMID: 24881086 PMCID: PMC4079212 DOI: 10.1093/gbe/evu109] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly.
Collapse
Affiliation(s)
- Sutada Mungpakdee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Ryo Koyanagi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, JapanDNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Makiko Tanaka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Hiroki Goto
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| |
Collapse
|
39
|
Knoppová J, Sobotka R, Tichý M, Yu J, Konik P, Halada P, Nixon PJ, Komenda J. Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. THE PLANT CELL 2014; 26:1200-12. [PMID: 24681620 PMCID: PMC4001378 DOI: 10.1105/tpc.114.123919] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Efficient assembly and repair of the oxygen-evolving photosystem II (PSII) complex is vital for maintaining photosynthetic activity in plants, algae, and cyanobacteria. How chlorophyll is delivered to PSII during assembly and how vulnerable assembly complexes are protected from photodamage are unknown. Here, we identify a chlorophyll and β-carotene binding protein complex in the cyanobacterium Synechocystis PCC 6803 important for formation of the D1/D2 reaction center assembly complex. It is composed of putative short-chain dehydrogenase/reductase Ycf39, encoded by the slr0399 gene, and two members of the high-light-inducible protein (Hlip) family, HliC and HliD, which are small membrane proteins related to the light-harvesting chlorophyll binding complexes found in plants. Perturbed chlorophyll recycling in a Ycf39-null mutant and copurification of chlorophyll synthase and unassembled D1 with the Ycf39-Hlip complex indicate a role in the delivery of chlorophyll to newly synthesized D1. Sequence similarities suggest the presence of a related complex in chloroplasts.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Martin Tichý
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peter Konik
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences, 14220 Praha 4-Krč, Czech Republic
| | - Peter J. Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, London SW7 2AZ, United Kingdom
| | - Josef Komenda
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Address correspondence to
| |
Collapse
|
40
|
Kotabová E, Jarešová J, Kaňa R, Sobotka R, Bína D, Prášil O. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:734-43. [PMID: 24480388 DOI: 10.1016/j.bbabio.2014.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 02/04/2023]
Abstract
Chromera velia is an alveolate alga associated with scleractinian corals. Here we present detailed work on chromatic adaptation in C. velia cultured under either blue or red light. Growth of C. velia under red light induced the accumulation of a light harvesting antenna complex exhibiting unusual spectroscopic properties with red-shifted absorption and atypical 710nm fluorescence emission at room temperature. Due to these characteristic features the complex was designated "Red-shifted Chromera light harvesting complex" (Red-CLH complex). Its detailed biochemical survey is described in the accompanying paper (Bina et al. 2013, this issue). Here, we show that the accumulation of Red-CLH complex under red light represents a slow acclimation process (days) that is reversible with much faster kinetics (hours) under blue light. This chromatic adaptation allows C. velia to maintain all important parameters of photosynthesis constant under both light colors. We further demonstrated that the C. velia Red-CLH complex is assembled from a 17kDa antenna protein and is functionally connected to photosystem II as it shows variability of chlorophyll fluorescence. Red-CLH also serves as an additional locus for non-photochemical quenching. Although overall rates of oxygen evolution and carbon fixation were similar for both blue and red light conditions, the presence of Red-CLH in C. velia cells increases the light harvesting potential of photosystem II, which manifested as a doubled oxygen evolution rate at illumination above 695nm. This data demonstrates a remarkable long-term remodeling of C. velia light-harvesting system according to light quality and suggests physiological significance of 'red' antenna complexes.
Collapse
Affiliation(s)
- Eva Kotabová
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Jana Jarešová
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Radek Kaňa
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Roman Sobotka
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Ondřej Prášil
- Institute of Microbiology ASCR, Centrum Algatech, Laboratory of Photosynthesis, Opatovický mlýn, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
41
|
Dorrell RG, Drew J, Nisbet RER, Howe CJ. Evolution of chloroplast transcript processing in Plasmodium and its chromerid algal relatives. PLoS Genet 2014; 10:e1004008. [PMID: 24453981 PMCID: PMC3894158 DOI: 10.1371/journal.pgen.1004008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully photosynthetic relatives of parasitic apicomplexans have been identified, the ‘chromerid’ algae Chromera velia and Vitrella brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans. We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus on the addition of an unusual, 3′ poly(U) tail. We demonstrate that poly(U) tails in chromerids are preferentially added to transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are not polyuridylylated. We additionally present evidence that poly(U) tail addition in chromerids is involved in the alternative processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an important step in the loss of photosynthesis in ancestors of parasitic apicomplexans. Chloroplasts contain their own genomes, containing two broad functional types of gene: genes encoding proteins directly involved in photosynthesis, and genes with a non-photosynthesis function, such as cofactor biosynthesis, assembly of protein complexes, or expression of the chloroplast genome. Thus far, to our knowledge, no chloroplast gene expression pathways in any lineage have been found to target one functional category of gene specifically. Here, we show that a chloroplast RNA processing pathway – the addition of a 3′ poly(U) tail – is specifically associated with photosynthesis genes in two species of algae, the ‘chromerids’ Chromera and Vitrella. The addition of the poly(U) tail enables the precise processing of mature photosynthesis gene transcripts from precursor RNA, and is likely to be essential for expression of the chromerid photosynthesis machinery. The chromerid algae are the closest photosynthetic relatives of a parasitic group of eukaryotes, the apicomplexans, which include the malaria pathogen Plasmodium. Apicomplexans are descended from algae, and retain a reduced chloroplast, which contains genes only of non-photosynthesis function. We have confirmed that 3′ poly(U) tails are not added to Plasmodium chloroplast transcripts. The expression pathways associated with photosynthesis genes have therefore been lost in the evolution of the apicomplexan chloroplast, and this loss could potentially have driven the transition from photosynthesis to parasitism.
Collapse
Affiliation(s)
- Richard G. Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James Drew
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - R. Ellen R. Nisbet
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Christopher J. Howe
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|