1
|
Jiang LJ, Zhao J, Wang JG, Landrein S, Shi JP, Huang CJ, Luo M, Zhou XM, Niu HB, He ZR. Deciphering the evolution and biogeography of ant-ferns Lecanopteris s.s. Mol Phylogenet Evol 2024; 201:108199. [PMID: 39278383 DOI: 10.1016/j.ympev.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris s.s., attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris s.s. first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris s.s.. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.
Collapse
Affiliation(s)
- Li-Ju Jiang
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Sven Landrein
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong Special Administrative Region of China
| | - Ji-Pu Shi
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Miao Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Hong-Bin Niu
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China.
| |
Collapse
|
2
|
Zhao J, Huang CJ, Jiang LJ, He ZR, Yang S, Zhu ZM, Zhang L, Yu H, Zhou XM, Wang JG. Phylogenomic analyses of the pantropical Platycerium Desv. (Platycerioideae) reveal their complex evolution and historical biogeography. Mol Phylogenet Evol 2024; 201:108213. [PMID: 39393764 DOI: 10.1016/j.ympev.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Platycerium is a genus of pantropical epiphytic ferns consisting of ca. 18 species and are highly sought after by horticultural enthusiasts. Although the monophyly of this genus has been well supported in previous molecular studies, as an intercontinentally disjunct genus, the origin and distribution pattern of Platycerium were elusive and controversial. This is mainly due to limited taxon sampling, a plastid representing only a single coalescent history, the lack of fossil evidence, and so on. Here, by utilizing genome-skimming sequencing, transcriptome sequencing, and flow cytometry, we integrated chloroplast genomes, data of single-copy nuclear genes, ploidy levels, morphology, and geographic distribution to understand the species phylogeny and the evolutionary and biogeographic history of Platycerium. Our major results include: (1) based on both plastid and nuclear datasets, Platycerium is consistently resolved into three fully supported clades: the Afro-American (AA) clade, the Javan-Australian (JA) clade, and the Malayan-Asian (MA) clade. The AA clade and MA clade are further divided into three and two subclades, respectively; (2) a large amount of gene tree conflict, as well as cytonuclear discordance, was found and can be explained by hybridization and incomplete lineage sorting, and most of the hybridization hypotheses represented ancient hybridization events; (3) through molecular dating, the crown age of Platycerium is determined to be at approximately 32.79 Ma based on the plastid dataset or 29.08 Ma based on the nuclear dataset in the Middle Oligocene; (4) ancestral area reconstruction analysis from different datasets showed that Platycerium most likely originated from Indochina; (5) current distribution patterns are resultant from long-distance dispersals, ancient orogeny, and an ancient climate event; and (6) species diversification was driven by polyploidization, dispersal, and hybridization. This study presented here will help understand the evolution of tropical plant flora and provide a reference for the cultivation and breeding of staghorn ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Li-Ju Jiang
- Gardening and Horticulture Center, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Shuai Yang
- Plant Fairyland, Boda Road, Chenggong District, Kunming 650503, Yunnan, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
3
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Wang XX, Huang CH, Morales-Briones DF, Wang XY, Hu Y, Zhang N, Zhao PG, Wei XM, Wei KH, Hemu X, Tan NH, Wang QF, Chen LY. Phylotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis. Nat Commun 2024; 15:9663. [PMID: 39511218 PMCID: PMC11543798 DOI: 10.1038/s41467-024-53943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Asparagales, the largest monocot order, is renowned for its ecological, economic, and medicinal significance. Here, we leverage transcriptome data from 455 Asparagales species to explore the phylogeny of Asparagales. Moreover, we investigate the evolutionary patterns of the genes involved in allium flavor formation. We not only establish a robust bifurcating phylogeny of Asparagales but also explore their reticulate relationships. Notably, we find that eight genes involved in the biosynthesis of allium flavor compounds underwent expansion in Allium species. Furthermore, we observe Allium-specific mutations in one amino acid within alliinase and three within lachrymatory factor synthase. Overall, our findings highlight the role of gene expansion, increased expression, and amino acid mutations in driving the evolution of Allium-specific compounds. These insights not only deepen our understanding of the phylogeny of Asparagales but also illuminate the genetic mechanisms underpinning specialized compounds.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China
| | - Chien-Hsun Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, 010021, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Diego F Morales-Briones
- Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, 80638, Munich, Germany
| | - Xiang-Yu Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Ying Hu
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China
| | - Na Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Pu-Guang Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiao-Mei Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China
| | - Kun-Hua Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, School of Chinese Materia Medica, Guangdong Pharmaceutical University, 510006, Guangzhou, China.
| | - Xinya Hemu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Ning-Hua Tan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, 430074, Wuhan, China.
| | - Ling-Yun Chen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| |
Collapse
|
5
|
Xie DF, Li J, Sun JH, Cheng RY, Wang Y, Song BN, He XJ, Zhou SD. Peering through the hedge: Multiple datasets yield insights into the phylogenetic relationships and incongruences in the tribe Lilieae (Liliaceae). Mol Phylogenet Evol 2024; 200:108182. [PMID: 39222738 DOI: 10.1016/j.ympev.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| | - Juan Li
- Southwest Minzu University, Institute Of Qinghai-Tibetan Plateau, 610225 Chengdu, Sichuan, PR China
| | - Jia-Hui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Yuan Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| |
Collapse
|
6
|
Lanfear R, Hahn MW. The Meaning and Measure of Concordance Factors in Phylogenomics. Mol Biol Evol 2024; 41:msae214. [PMID: 39418118 PMCID: PMC11532913 DOI: 10.1093/molbev/msae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
As phylogenomic datasets have grown in size, researchers have developed new ways to measure biological variation and to assess statistical support for specific branches. Larger datasets have more sites and loci and therefore less sampling variance. While we can more accurately measure the mean signal in these datasets, lower sampling variance is often reflected in uniformly high measures of branch support-such as the bootstrap and posterior probability-limiting their utility. Larger datasets have also revealed substantial biological variation in the topologies found across individual loci, such that the single species tree inferred by most phylogenetic methods represents a limited summary of the data for many purposes. In contrast to measures of statistical support, the degree of underlying topological variation among loci should be approximately constant regardless of the size of the dataset. "Concordance factors" (CFs) and similar statistics have therefore become increasingly important tools in phylogenetics. In this review, we explain why CFs should be thought of as descriptors of topological variation rather than as measures of statistical support, and argue that they provide important information about the predictive power of the species tree not contained in measures of support. We review a growing suite of statistics for measuring concordance, compare them in a common framework that reveals their interrelationships, and demonstrate how to calculate them using an example from birds. We also discuss how measures of topological variation might change in the future as we move beyond estimating a single "tree of life" toward estimating the myriad evolutionary histories underlying genomic variation.
Collapse
Affiliation(s)
- Robert Lanfear
- Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| |
Collapse
|
7
|
Wang H, Wu Z, Li T, Zhao J. Phylogenomics resolves the backbone of Poales and identifies signals of hybridization and polyploidy. Mol Phylogenet Evol 2024; 200:108184. [PMID: 39209045 DOI: 10.1016/j.ympev.2024.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Poales, as one of the largest orders of angiosperm, holds crucial economic and ecological importance. Nevertheless, achieving a consensus topology has been challenging in previous studies due to limited molecular data and sparse taxon sampling. The uneven distribution of species diversity among families and the factors leading to elevated species richness in certain lineages have also been subjects of ongoing discussion and investigation. In this study, we conducted a comprehensive sampling, including representatives from all 14 families and 85 taxa of Poales, along with five additional outgroups. To reconstruct the phylogeny of Poales, we employed a combination of coalescent and concatenation methods on three nuclear gene sets (1093, 491, 143) and one plastid gene set (53), which were inferenced from genomic data. We also conducted phylogenetic hypothesis analyses to evaluate two major conflicting nodes detected in phylogenetic analyses. As a result, we successfully resolved the backbone of Poales and provided a timeline for its evolutionary history. We recovered the sister relationship between Typhaceae and Bromeliaceae as the earliest diverging families within Poales. The clade consisting of Ecdeiocoleaceae and Joinvilleaceae was recovered as the sister group of Poaceae. Within the xyrid clade, Mayacaceae and Erioaculaceae + Xyridaceae successively diverged along the backbone of Poales. The topology of [Aristidoideae, ((Micrairoideae, Panicoideae), (Arundinoideae, (Chloridoideae, Danthonioideae)))] within the PACMAD clade has received strong support from multiple findings. We also delved into the underlying biological factors that contributed to the conflicting nodes observed in the phylogenetic analysis. Apart from the uncertainty regarding the sister group of Poaceae caused by cytonuclear discordance, frequent hybridization and polyploidy may have contributed to other conflicting nodes. We identified 26 putative whole-genome duplication (WGD) events within Poales. However, apart from the σ-WGD and the ρ-WGD, we did not observe any potential polyploid events that could be directly linked to the species diversification in specific lineages. Furthermore, there was a significant increase in the net diversification rate of Poales following the K-Pg boundary.
Collapse
Affiliation(s)
- Huijun Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jindong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Jin Y, Du X, Jiang C, Ji W, Yang P. Disentangling sources of gene tree discordance for Hordeum species via target-enriched sequencing assays. Mol Phylogenet Evol 2024; 199:108160. [PMID: 39019201 DOI: 10.1016/j.ympev.2024.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Hordeum is an economically and evolutionarily important genus within the Triticeae tribe of the family Poaceae, and contains 33 widely distributed and diverse species which cytologically represent four subgenomes (H, Xa, Xu and I). These wild species (except Hordeum spontaneum, which is the primary gene pool of barley) are secondary or tertiary gene-pool germplasms for barley and wheat improvement, and uncovering their complicated evolutionary relationships would benefit for future breeding programs. Here, we developed a complexity-reduced pipeline via capturing genome-wide distributed fragments via two novel target-enriched assays (HorCap v1.0 and BarPlex v1.0) in conjugation with high-throughput sequencing of the enrichments. Both assays were tested for genotyping 40 species from three genera (Hordeum, Triticum, and Aegilops) containing 82 samples 67 accessions. Either of both assays worked efficiently in genotyping, while integration of both assays can significantly improve the robustness and resolution of the Hordeum phylogenetic trees. Interestingly, the incomplete lineage sorting (ILS) was inferred for the first time as the major factor causing phylogenetic discordance among the four subgenomes, whereas in New World species (carrying I genome) post-speciation introgression events were revealed. Through revising the evolutionary relationships of the Hordeum species based on an ancestral state reconstruction for the diploids and parental donor inference for the polyploids, our results raised new queries about the Hordeum phylogeny. Moreover, both newly-developed assays are applicable in genotyping and phylogenetic analysis of Hordeum and other Triticeae wild species.
Collapse
Affiliation(s)
- Yanlong Jin
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Xin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Liu J, Zhou SZ, Liu YL, Zhao BY, Yu D, Zhong MC, Jiang XD, Cui WH, Zhao JX, Qiu J, Liu LM, Guo ZH, Li HT, Tan DY, Hu JY, Li DZ. Genomes of Meniocus linifolius and Tetracme quadricornis reveal the ancestral karyotype and genomic features of core Brassicaceae. PLANT COMMUNICATIONS 2024; 5:100878. [PMID: 38475995 PMCID: PMC11287156 DOI: 10.1016/j.xplc.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bin-Yan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Qiu
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liang-Min Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dun-Yan Tan
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
10
|
Przelomska NAS, Diaz RA, Ávila FA, Ballen GA, Cortés-B R, Kistler L, Chitwood DH, Charitonidou M, Renner SS, Pérez-Escobar OA, Antonelli A. Morphometrics and Phylogenomics of Coca (Erythroxylum spp.) Illuminate Its Reticulate Evolution, With Implications for Taxonomy. Mol Biol Evol 2024; 41:msae114. [PMID: 38982580 PMCID: PMC11233275 DOI: 10.1093/molbev/msae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 07/11/2024] Open
Abstract
South American coca (Erythroxylum coca and E. novogranatense) has been a keystone crop for many Andean and Amazonian communities for at least 8,000 years. However, over the last half-century, global demand for its alkaloid cocaine has driven intensive agriculture of this plant and placed it in the center of armed conflict and deforestation. To monitor the changing landscape of coca plantations, the United Nations Office on Drugs and Crime collects annual data on their areas of cultivation. However, attempts to delineate areas in which different varieties are grown have failed due to limitations around identification. In the absence of flowers, identification relies on leaf morphology, yet the extent to which this is reflected in taxonomy is uncertain. Here, we analyze the consistency of the current naming system of coca and its four closest wild relatives (the "coca clade"), using morphometrics, phylogenomics, molecular clocks, and population genomics. We include name-bearing type specimens of coca's closest wild relatives E. gracilipes and E. cataractarum. Morphometrics of 342 digitized herbarium specimens show that leaf shape and size fail to reliably discriminate between species and varieties. However, the statistical analyses illuminate that rounder and more obovate leaves of certain varieties could be associated with the subtle domestication syndrome of coca. Our phylogenomic data indicate extensive gene flow involving E. gracilipes which, combined with morphometrics, supports E. gracilipes being retained as a single species. Establishing a robust evolutionary-taxonomic framework for the coca clade will facilitate the development of cost-effective genotyping methods to support reliable identification.
Collapse
Affiliation(s)
- Natalia A S Przelomska
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Rudy A Diaz
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | | | - Gustavo A Ballen
- Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Rocío Cortés-B
- Herbario Forestal Universidad Distrital, Campus El Vivero, CR 5E 15-82 Bogotá, Colombia
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Martha Charitonidou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, SE 41319 Göteborg, Sweden
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
11
|
Wang T, Yu ZG, Li J. CGRWDL: alignment-free phylogeny reconstruction method for viruses based on chaos game representation weighted by dynamical language model. Front Microbiol 2024; 15:1339156. [PMID: 38572227 PMCID: PMC10987876 DOI: 10.3389/fmicb.2024.1339156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/23/2024] [Indexed: 04/05/2024] Open
Abstract
Traditional alignment-based methods meet serious challenges in genome sequence comparison and phylogeny reconstruction due to their high computational complexity. Here, we propose a new alignment-free method to analyze the phylogenetic relationships (classification) among species. In our method, the dynamical language (DL) model and the chaos game representation (CGR) method are used to characterize the frequency information and the context information of k-mers in a sequence, respectively. Then for each DNA sequence or protein sequence in a dataset, our method converts the sequence into a feature vector that represents the sequence information based on CGR weighted by the DL model to infer phylogenetic relationships. We name our method CGRWDL. Its performance was tested on both DNA and protein sequences of 8 datasets of viruses to construct the phylogenetic trees. We compared the Robinson-Foulds (RF) distance between the phylogenetic tree constructed by CGRWDL and the reference tree by other advanced methods for each dataset. The results show that the phylogenetic trees constructed by CGRWDL can accurately classify the viruses, and the RF scores between the trees and the reference trees are smaller than that with other methods.
Collapse
Affiliation(s)
- Ting Wang
- National Center for Applied Mathematics in Hunan, Xiangtan University, Xiangtan, Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, Hunan, China
| | - Zu-Guo Yu
- National Center for Applied Mathematics in Hunan, Xiangtan University, Xiangtan, Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, Hunan, China
| | - Jinyan Li
- School of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Pierpont CL, Baroch JJ, Church MJ, Miller SR. Idiosyncratic genome evolution of the thermophilic cyanobacterium Synechococcus at the limits of phototrophy. THE ISME JOURNAL 2024; 18:wrae184. [PMID: 39319368 PMCID: PMC11456837 DOI: 10.1093/ismejo/wrae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Thermophilic microorganisms are expected to have smaller cells and genomes compared with mesophiles, a higher proportion of horizontally acquired genes, and distinct nucleotide and amino acid composition signatures. Here, we took an integrative approach to investigate these apparent correlates of thermophily for Synechococcus A/B cyanobacteria, which include the most heat-tolerant phototrophs on the planet. Phylogenomics confirmed a unique origin of different thermotolerance ecotypes, with low levels of continued gene flow between ecologically divergent but overlapping populations, which has shaped the distribution of phenotypic traits along these geothermal gradients. More thermotolerant strains do have smaller genomes, but genome reduction is associated with a decrease in community richness and metabolic diversity, rather than with cell size. Horizontal gene transfer played only a limited role during Synechococcus evolution, but, the most thermotolerant strains have acquired a Thermus tRNA modification enzyme that may stabilize translation at high temperatures. Although nucleotide base composition was not associated with thermotolerance, we found a general replacement of aspartate with glutamate, as well as a dramatic remodeling of amino acid composition at the highest temperatures that substantially differed from previous predictions. We conclude that Synechococcus A/B genome diversification largely does not conform to the standard view of temperature adaptation. In addition, carbon fixation was more thermolabile than photosynthetic oxygen evolution for the most thermotolerant strains compared with less tolerant lineages. This suggests that increased flow of reducing power generated during the light reactions to an electron sink(s) beyond carbon dioxide has emerged during temperature adaptation of these bacteria.
Collapse
Affiliation(s)
- C Logan Pierpont
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. #4824, Missoula, MT 59812, United States
| | - Jacob J Baroch
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. #4824, Missoula, MT 59812, United States
| | - Matthew J Church
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. #4824, Missoula, MT 59812, United States
| | - Scott R Miller
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. #4824, Missoula, MT 59812, United States
| |
Collapse
|
13
|
Patané JSL, Martins J, Setubal JC. A Guide to Phylogenomic Inference. Methods Mol Biol 2024; 2802:267-345. [PMID: 38819564 DOI: 10.1007/978-1-0716-3838-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Phylogenomics aims at reconstructing the evolutionary histories of organisms taking into account whole genomes or large fractions of genomes. Phylogenomics has significant applications in fields such as evolutionary biology, systematics, comparative genomics, and conservation genetics, providing valuable insights into the origins and relationships of species and contributing to our understanding of biological diversity and evolution. This chapter surveys phylogenetic concepts and methods aimed at both gene tree and species tree reconstruction while also addressing common pitfalls, providing references to relevant computer programs. A practical phylogenomic analysis example including bacterial genomes is presented at the end of the chapter.
Collapse
Affiliation(s)
- José S L Patané
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração/Heart Institute Hospital das Clínicas - Faculdade de Medicina da Universidade de São Paulo São Paulo, São Paulo, SP, Brazil
| | - Joaquim Martins
- Integrative Omics group, Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - João Carlos Setubal
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Xue TT, Janssens SB, Liu BB, Yu SX. Phylogenomic conflict analyses of the plastid and mitochondrial genomes via deep genome skimming highlight their independent evolutionary histories: A case study in the cinquefoil genus Potentilla sensu lato (Potentilleae, Rosaceae). Mol Phylogenet Evol 2024; 190:107956. [PMID: 37898296 DOI: 10.1016/j.ympev.2023.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.
Collapse
Affiliation(s)
- Tian-Tian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium; Department of Biology, KU Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven, Belgium.
| | - Bin-Bin Liu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sheng-Xiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Bowman J, Enard D, Lynch VJ. Phylogenomics reveals an almost perfect polytomy among the almost ungulates ( Paenungulata). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570590. [PMID: 38106080 PMCID: PMC10723481 DOI: 10.1101/2023.12.07.570590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Phylogenetic studies have resolved most relationships among Eutherian Orders. However, the branching order of elephants (Proboscidea), hyraxes (Hyracoidea), and sea cows (Sirenia) (i.e., the Paenungulata) has remained uncertain since at least 1758, when Linnaeus grouped elephants and manatees into a single Order (Bruta) to the exclusion of hyraxes. Subsequent morphological, molecular, and large-scale phylogenomic datasets have reached conflicting conclusions on the branching order within Paenungulates. We use a phylogenomic dataset of alignments from 13,388 protein-coding genes across 261 Eutherian mammals to infer phylogenetic relationships within Paenungulates. We find that gene trees almost equally support the three alternative resolutions of Paenungulate relationships and that despite strong support for a Proboscidea+Hyracoidea split in the multispecies coalescent (MSC) tree, there is significant evidence for gene tree uncertainty, incomplete lineage sorting, and introgression among Proboscidea, Hyracoidea, and Sirenia. Indeed, only 8-10% of genes have statistically significant phylogenetic signal to reject the hypothesis of a Paenungulate polytomy. These data indicate little support for any resolution for the branching order Proboscidea, Hyracoidea, and Sirenia within Paenungulata and suggest that Paenungulata may be as close to a real, or at least unresolvable, polytomy as possible.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology. University of Arizona, Tucson, AZ, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| |
Collapse
|
16
|
Martinez-Gutierrez CA, Uyeda JC, Aylward FO. A timeline of bacterial and archaeal diversification in the ocean. eLife 2023; 12:RP88268. [PMID: 38059790 DOI: 10.7554/elife.88268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Microbial plankton play a central role in marine biogeochemical cycles, but the timing in which abundant lineages diversified into ocean environments remains unclear. Here, we reconstructed the timeline in which major clades of bacteria and archaea colonized the ocean using a high-resolution benchmarked phylogenetic tree that allows for simultaneous and direct comparison of the ages of multiple divergent lineages. Our findings show that the diversification of the most prevalent marine clades spans throughout a period of 2.2 Ga, with most clades colonizing the ocean during the last 800 million years. The oldest clades - SAR202, SAR324, Ca. Marinimicrobia, and Marine Group II - diversified around the time of the Great Oxidation Event, during which oxygen concentration increased but remained at microaerophilic levels throughout the Mid-Proterozoic, consistent with the prevalence of some clades within these groups in oxygen minimum zones today. We found the diversification of the prevalent heterotrophic marine clades SAR11, SAR116, SAR92, SAR86, and Roseobacter as well as the Marine Group I to occur near to the Neoproterozoic Oxygenation Event (0.8-0.4 Ga). The diversification of these clades is concomitant with an overall increase of oxygen and nutrients in the ocean at this time, as well as the diversification of eukaryotic algae, consistent with the previous hypothesis that the diversification of heterotrophic bacteria is linked to the emergence of large eukaryotic phytoplankton. The youngest clades correspond to the widespread phototrophic clades Prochlorococcus, Synechococcus, and Crocosphaera, whose diversification happened after the Phanerozoic Oxidation Event (0.45-0.4 Ga), in which oxygen concentrations had already reached their modern levels in the atmosphere and the ocean. Our work clarifies the timing at which abundant lineages of bacteria and archaea colonized the ocean, thereby providing key insights into the evolutionary history of lineages that comprise the majority of prokaryotic biomass in the modern ocean.
Collapse
Affiliation(s)
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, United States
| |
Collapse
|
17
|
Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet 2023; 24:834-850. [PMID: 37369847 PMCID: PMC11499941 DOI: 10.1038/s41576-023-00620-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
18
|
Pedroso LGA, Klimov PB, Mironov SV, OConnor BM, Braig HR, Pepato AR, Johnson KP, He Q, Hernandes FA. Horizontal transmission maintains host specificity and codiversification of symbionts in a brood parasitic host. Commun Biol 2023; 6:1171. [PMID: 37973862 PMCID: PMC10654585 DOI: 10.1038/s42003-023-05535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
In host-symbiont systems, interspecific transmissions create opportunities for host switches, potentially leading to cophylogenetic incongruence. In contrast, conspecific transmissions often result in high host specificity and congruent cophylogenies. In most bird-feather mite systems, conspecific transmission is considered dominant, while interspecific transmission is supposedly rare. However, while mites typically maintain high host specificity, incongruent cophylogenies are common. To explain this conundrum, we quantify the magnitude of conspecific vs. interspecific transmission in the brood parasitic shiny cowbird (Molothrus bonariensis). M. bonariensis lacks parental care, allowing the assessment of the role of horizontal transmission alone in maintaining host specificity. We found that despite frequent interspecific interactions via foster parental care, mite species dispersing via conspecific horizontal contacts are three times more likely to colonize M. bonariensis than mites transmitted vertically via foster parents. The results highlight the previously underappreciated rate of transmission via horizontal contacts in maintaining host specificity on a microevolutionary scale. On a macroevolutionary scale, however, host switches were estimated to have occurred as frequently as codivergences. This suggests that macroevolutionary patterns resulting from rare events cannot be easily generalized from short-term evolutionary trends.
Collapse
Affiliation(s)
- Luiz Gustavo A Pedroso
- Departamento de Zoologia, Av. 24-A, 1515, 13506-900, Universidade Estadual Paulista, Rio Claro, São Paulo State, Brazil.
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA.
| | - Pavel B Klimov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Tyumen State University, 10 Semakova Str., 625003, Tyumen, Russia.
- Bangor University, Brambell 503, School of Natural Sciences, Bangor, LL57 2 UW, Wales, UK.
| | - Sergey V Mironov
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| | - Barry M OConnor
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Henk R Braig
- Bangor University, Brambell 503, School of Natural Sciences, Bangor, LL57 2 UW, Wales, UK
- Institute and Museum of Natural Sciences, Faculty of Natural and Exact Sciences, National University of San Juan, San Juan, Argentina
| | - Almir R Pepato
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Fabio Akashi Hernandes
- Departamento de Zoologia, Av. 24-A, 1515, 13506-900, Universidade Estadual Paulista, Rio Claro, São Paulo State, Brazil
- Departamento de Ecologia e Zoologia, CCB/ECZ, Trindade, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
19
|
Kulkarni S, Wood HM, Hormiga G. Phylogenomics illuminates the evolution of orb webs, respiratory systems and the biogeographic history of the world's smallest orb-weaving spiders (Araneae, Araneoidea, Symphytognathoids). Mol Phylogenet Evol 2023:107855. [PMID: 37311493 DOI: 10.1016/j.ympev.2023.107855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
The miniature orb weaving spiders (symphytognathoids) are a group of small spiders (< 2 mm), including the smallest adult spider Patu digua (0.37 mm in body length), that have been classified into five families. The species of one of its constituent lineages, the family Anapidae, build a remarkable diversity of webs (ranging from orbs to sheet webs and irregular tangles) and even include a webless kleptoparasitic species. Anapids are also exceptional because of the extraordinary diversity of their respiratory systems. The phylogenetic relationships of symphytognathoid families have been recalcitrant with different classes of data, such as, monophyletic with morphology and its concatenation with Sanger-based six markers, paraphyletic (including a paraphyletic Anapidae) with solely Sanger-based six markers, and polyphyletic with transcriptomes. In this study, we capitalized on a large taxonomic sampling of symphytognathoids, focusing on Anapidae, and using de novo sequenced ultraconserved elements (UCEs) combined with UCEs recovered from available transcriptomes and genomes. We evaluated the conflicting relationships using a variety of support metrics and topology tests. We found support for the phylogenetic hypothesis proposed using morphology to obtain the "symphytognathoids'' clade, Anterior Tracheal System (ANTS) Clade and monophyly of the family Anapidae. Anapidae can be divided into three major lineages, the Vichitra Clade (including Teutoniella, Holarchaea, Sofanapis and Acrobleps), the subfamily Micropholcommatinae and the Orb-weaving anapids (Owa) Clade. Biogeographic analyses reconstructed a hypothesis of multiple long-distance transoceanic dispersal events, potentially influenced by the Antarctic Circumpolar Current and West Wind Drift. In symphytognathoids, the ancestral anterior tracheal system transformed to book lungs four times and reduced book lungs five times. The posterior tracheal system was lost six times. The orb web structure was lost four times independently and transformed into sheet web once.
Collapse
Affiliation(s)
- Siddharth Kulkarni
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, D.C. 20052, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, 1000 Constitution Avenue NW, Washington, DC, 20560, USA; (currently) Department of Integrative Biology, University of Wisconsin-Madison, Madison, 53706, USA.
| | - Hannah M Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 1000 Constitution Avenue NW, Washington, DC, 20560, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, D.C. 20052, USA.
| |
Collapse
|
20
|
Zhao J, Zhou X, Fang S, Zhu Z, Li Y, Yu H, He Z. Transcriptome-Based Study on the Phylogeny and Hybridization of Marattialean Ferns (Marattiaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:2237. [PMID: 37375862 DOI: 10.3390/plants12122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Marattiaceae is a phylogenetically isolated family of tropical eusporangiate ferns including six genera with more than one-hundred species. In Marattiaceae, monophyly of genera has been well-supported phylogenetically. However, the phylogenetic relationships among them were elusive and controversial. Here, a dataset of 26 transcriptomes (including 11 newly generated) were used to assess single-copy nuclear genes and to obtain the organelle gene sequences. Through phylotranscriptomic analysis, the phylogeny and hybridization events of Marattiaceae were explored and a robust phylogenomic framework for the evolution of Marattiaceae was provided. Using both concatenation- and coalescent-based phylogenies, the gene-tree discordance, incomplete lineage sorting (ILS) simulations, and network inference were examined. Except the low support with mitochondrial genes of Marattiaceae, nuclear genes and chloroplast genes strongly supported a sister relationship between Marattiaceae and leptosporangiate ferns. At the genus level, all phylogenetic analysis based on nuclear genes datasets recovered five genera in Marattiaceae as monophyletic with strong support. Danaea and Ptisana were the first two diverged clades in turn. Christensenia was a sister clade to the clade Marattia + Angiopteris s.l. In Angiopteris s.l., three clades (Angiopteris s.s., the Archangiopteris group, and An. sparsisora) were well identified with maximum support. The Archangiopteris group was derived from Angiopteris s.s. at ca. 18 Ma. The putative hybrid species An. sparsisora between Angiopteris s.s. and the Archangiopteris group was verified by the species network analyses and the maternal plastid genes. This study will improve our understanding for using the phylotranscriptomic method to explore phylogeny and investigate hybridization events for difficult taxa in ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| | - Xinmao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shaoli Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhangming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuxin Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
21
|
Raiyemo DA, Tranel PJ. Comparative analysis of dioecious Amaranthus plastomes and phylogenomic implications within Amaranthaceae s.s. BMC Ecol Evol 2023; 23:15. [PMID: 37149567 PMCID: PMC10164334 DOI: 10.1186/s12862-023-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/28/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The genus Amaranthus L. consists of 70-80 species distributed across temperate and tropical regions of the world. Nine species are dioecious and native to North America; two of which are agronomically important weeds of row crops. The genus has been described as taxonomically challenging and relationships among species including the dioecious ones are poorly understood. In this study, we investigated the phylogenetic relationships among the dioecious amaranths and sought to gain insights into plastid tree incongruence. A total of 19 Amaranthus species' complete plastomes were analyzed. Among these, seven dioecious Amaranthus plastomes were newly sequenced and assembled, an additional two were assembled from previously published short reads sequences and 10 other plastomes were obtained from a public repository (GenBank). RESULTS Comparative analysis of the dioecious Amaranthus species' plastomes revealed sizes ranged from 150,011 to 150,735 bp and consisted of 112 unique genes (78 protein-coding genes, 30 transfer RNAs and 4 ribosomal RNAs). Maximum likelihood trees, Bayesian inference trees and splits graphs support the monophyly of subgenera Acnida (7 dioecious species) and Amaranthus; however, the relationship of A. australis and A. cannabinus to the other dioecious species in Acnida could not be established, as it appears a chloroplast capture occurred from the lineage leading to the Acnida + Amaranthus clades. Our results also revealed intraplastome conflict at some tree branches that were in some cases alleviated with the use of whole chloroplast genome alignment, indicating non-coding regions contribute valuable phylogenetic signals toward shallow relationship resolution. Furthermore, we report a very low evolutionary distance between A. palmeri and A. watsonii, indicating that these two species are more genetically related than previously reported. CONCLUSIONS Our study provides valuable plastome resources as well as a framework for further evolutionary analyses of the entire Amaranthus genus as more species are sequenced.
Collapse
Affiliation(s)
- Damilola A Raiyemo
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
Yu J, Niu Y, You Y, Cox CJ, Barrett RL, Trias-Blasi A, Guo J, Wen J, Lu L, Chen Z. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. THE NEW PHYTOLOGIST 2023; 238:888-903. [PMID: 36305244 DOI: 10.1111/nph.18580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Hybridization caused by frequent environmental changes can lead both to species diversification (speciation) and to speciation reversal (despeciation), but the latter has rarely been demonstrated. Parthenocissus, a genus with its trifoliolate lineage in the Himalayan-Hengduan Mountains (HHM) region showing perplexing phylogenetic relationships, provides an opportunity for investigating speciation dynamics based on integrated evidence. We investigated phylogenetic discordance and reticulate evolution in Parthenocissus based on rigorous analyses of plastome and transcriptome data. We focused on reticulations in the trifoliolate lineage in the HHM region using a population-level genome resequencing dataset, incorporating evidence from morphology, distribution, and elevation. Comprehensive analyses confirmed multiple introgressions within Parthenocissus in a robust temporal-spatial framework. Around the HHM region, at least three hybridization hot spots were identified, one of which showed evidence of ongoing speciation reversal. We present a solid case study using an integrative methodological approach to investigate reticulate evolutionary history and its underlying mechanisms in plants. It demonstrates an example of speciation reversal through frequent hybridizations in the HHM region, which provides new perspectives on speciation dynamics in mountainous areas with strong topographic and environmental heterogeneity.
Collapse
Affiliation(s)
- Jinren Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanting Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yichen You
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-319, Portugal
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
| | | | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Limin Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
23
|
Labbé F, Abdeladhim M, Abrudan J, Araki AS, Araujo RN, Arensburger P, Benoit JB, Brazil RP, Bruno RV, Bueno da Silva Rivas G, Carvalho de Abreu V, Charamis J, Coutinho-Abreu IV, da Costa-Latgé SG, Darby A, Dillon VM, Emrich SJ, Fernandez-Medina D, Figueiredo Gontijo N, Flanley CM, Gatherer D, Genta FA, Gesing S, Giraldo-Calderón GI, Gomes B, Aguiar ERGR, Hamilton JGC, Hamarsheh O, Hawksworth M, Hendershot JM, Hickner PV, Imler JL, Ioannidis P, Jennings EC, Kamhawi S, Karageorgiou C, Kennedy RC, Krueger A, Latorre-Estivalis JM, Ligoxygakis P, Meireles-Filho ACA, Minx P, Miranda JC, Montague MJ, Nowling RJ, Oliveira F, Ortigão-Farias J, Pavan MG, Horacio Pereira M, Nobrega Pitaluga A, Proveti Olmo R, Ramalho-Ortigao M, Ribeiro JMC, Rosendale AJ, Sant’Anna MRV, Scherer SE, Secundino NFC, Shoue DA, da Silva Moraes C, Gesto JSM, Souza NA, Syed Z, Tadros S, Teles-de-Freitas R, Telleria EL, Tomlinson C, Traub-Csekö YM, Marques JT, Tu Z, Unger MF, Valenzuela J, Ferreira FV, de Oliveira KPV, Vigoder FM, Vontas J, Wang L, Weedall GD, Zhioua E, Richards S, Warren WC, Waterhouse RM, Dillon RJ, McDowell MA. Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World. PLoS Negl Trop Dis 2023; 17:e0010862. [PMID: 37043542 PMCID: PMC10138862 DOI: 10.1371/journal.pntd.0010862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/27/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023] Open
Abstract
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.
Collapse
Affiliation(s)
- Frédéric Labbé
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jenica Abrudan
- Genomic Sciences & Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Alejandra Saori Araki
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Rafaela V. Bruno
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gustavo Bueno da Silva Rivas
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Vinicius Carvalho de Abreu
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jason Charamis
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Greece
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Iliano V. Coutinho-Abreu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, California, United States of America
| | | | - Alistair Darby
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Viv M. Dillon
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Scott J. Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | | | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Catherine M. Flanley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Derek Gatherer
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
| | - Fernando A. Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Sandra Gesing
- Discovery Partners Institute, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Gloria I. Giraldo-Calderón
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
- Dept. Ciencias Biológicas & Dept. Ciencias Básicas Médicas, Universidad Icesi, Cali, Colombia
| | - Bruno Gomes
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - James G. C. Hamilton
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
| | - Omar Hamarsheh
- Department of Life Sciences, Faculty of Science and Technology, Al-Quds University, Jerusalem, Palestine
| | - Mallory Hawksworth
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Jacob M. Hendershot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Paul V. Hickner
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, Texas, United States of America
| | - Jean-Luc Imler
- CNRS-UPR9022 Institut de Biologie Moléculaire et Cellulaire and Faculté des Sciences de la Vie-Université de Strasbourg, Strasbourg, France
| | - Panagiotis Ioannidis
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Emily C. Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Charikleia Karageorgiou
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- Genomics Group – Bioinformatics and Evolutionary Biology Lab, Department of Genetics and Microbiology, Autonomous University of Barcelona, Barcelona, Spain
| | - Ryan C. Kennedy
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Andreas Krueger
- Medical Entomology Branch, Dept. Microbiology, Bundeswehr Hospital, Hamburg, Germany
- Medical Zoology Branch, Dept. Microbiology, Central Bundeswehr Hospital, Koblenz, Germany
| | - José M. Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Petros Ligoxygakis
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Patrick Minx
- Donald Danforth Plant Science Center, Olivette, Missouri, United States of America
| | - Jose Carlos Miranda
- Laboratório de Imunoparasitologia, CPqGM, Fundação Oswaldo Cruz, Bahia, Brazil
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald J. Nowling
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Marcio G. Pavan
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Transmissores de Hematozoários, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcos Horacio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Andre Nobrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Ramalho-Ortigao
- F. Edward Hebert School of Medicine, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - José M. C. Ribeiro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Andrew J. Rosendale
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Mauricio R. V. Sant’Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Steven E. Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Douglas A. Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | | | | | - Nataly Araujo Souza
- Laboratory Interdisciplinar em Vigilancia Entomologia em Diptera e Hemiptera, Fiocruz, Rio de Janeiro, Brazil
| | - Zainulabueddin Syed
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Samuel Tadros
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | | | - Erich L. Telleria
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - João Trindade Marques
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Zhijian Tu
- Fralin Life Science Institute and Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Maria F. Unger
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jesus Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Flávia V. Ferreira
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karla P. V. de Oliveira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe M. Vigoder
- Universidade Federal do Rio de Janeiro, Instituto de Biologia. Rio de Janeiro, Brazil
| | - John Vontas
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- Pesticide Science Lab, Department of Crop Science, Agricultural University of Athens, Athens Greece
| | - Lihui Wang
- Donald Danforth Plant Science Center, Olivette, Missouri, United States of America
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Elyes Zhioua
- Vector Ecology Unit, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wesley C. Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, United States of America
| | - Robert M. Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Rod J. Dillon
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
24
|
Phylogenomics of Aralia sect. Aralia (Araliaceae): Signals of hybridization and insights into its species delimitations and intercontinental biogeography. Mol Phylogenet Evol 2023; 181:107727. [PMID: 36754338 DOI: 10.1016/j.ympev.2023.107727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Genome-scale data have significantly increased the number of informative characters for phylogenetic analyses and recent studies have also revealed widespread phylogenomic discordance in many plant lineages. Aralia sect. Aralia is a small plant lineage (14 spp.) of the ginseng family Araliaceae with a disjunct distribution between eastern Asia (11 spp.) and North America (3 spp.). We herein employ sequences of hundreds of nuclear loci and the complete plastomes using targeted sequence capture and genome skimming to reconstruct the phylogenetic and biogeographic history of this section. We detected substantial conflicts among nuclear genes, yet different analytical strategies generated largely congruent topologies from the nuclear data. Significant cytonuclear discordance was detected, especially concerning the positions of the three North American species. The phylogenomic results support two intercontinental disjunctions: (1) Aralia californica of western North America is sister to the eastern Asian clade consisting of A. cordata and A. continentalis in the nuclear tree, and (2) the eastern North American A. racemosa forms a clade with A. bicrenata from southwestern North America, and the North American A. racemosa - A. bicrenata clade is then sister to the eastern Asian clade consisting of A. glabra (Japan), A. fargesii (C China), and A. apioides and A. atropurpurea (the Hengduan Mountains). Aralia cordata is supported to be disjunctly distributed in Japan, Taiwan, the Ulleung island of Korea, and in Central, Southwest and South China, and Aralia continentalis is redefined with a narrower distribution in Northeast China, eastern Russia and peninsular Korea.
Collapse
|
25
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
26
|
Alaei Kakhki N, Schweizer M, Lutgen D, Bowie RCK, Shirihai H, Suh A, Schielzeth H, Burri R. A Phylogenomic Assessment of Processes Underpinning Convergent Evolution in Open-Habitat Chats. Mol Biol Evol 2023; 40:6964684. [PMID: 36578177 PMCID: PMC10161543 DOI: 10.1093/molbev/msac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Insights into the processes underpinning convergent evolution advance our understanding of the contributions of ancestral, introgressed, and novel genetic variation to phenotypic evolution. Phylogenomic analyses characterizing genome-wide gene tree heterogeneity can provide first clues about the extent of ILS and of introgression and thereby into the potential of these processes or (in their absence) the need to invoke novel mutations to underpin convergent evolution. Here, we were interested in understanding the processes involved in convergent evolution in open-habitat chats (wheatears of the genus Oenanthe and their relatives). To this end, based on whole-genome resequencing data from 50 taxa of 44 species, we established the species tree, characterized gene tree heterogeneity, and investigated the footprints of ILS and introgression within the latter. The species tree corroborates the pattern of abundant convergent evolution, especially in wheatears. The high levels of gene tree heterogeneity in wheatears are explained by ILS alone only for 30% of internal branches. For multiple branches with high gene tree heterogeneity, D-statistics and phylogenetic networks identified footprints of introgression. Finally, long branches without extensive ILS between clades sporting similar phenotypes provide suggestive evidence for the role of novel mutations in the evolution of these phenotypes. Together, our results suggest that convergent evolution in open-habitat chats involved diverse processes and highlight that phenotypic diversification is often complex and best depicted as a network of interacting lineages.
Collapse
Affiliation(s)
- Niloofar Alaei Kakhki
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany
| | - Manuel Schweizer
- Natural History Museum Bern, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Dave Lutgen
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Ornithological Institute, Sempach, Switzerland
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.,Department of Organismal Biology - Systematic Biology (EBC), Science for Life Laboratory, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Holger Schielzeth
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Reto Burri
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
27
|
Steenwyk JL, Goltz DC, Buida TJ, Li Y, Shen XX, Rokas A. OrthoSNAP: A tree splitting and pruning algorithm for retrieving single-copy orthologs from gene family trees. PLoS Biol 2022; 20:e3001827. [PMID: 36228036 PMCID: PMC9595520 DOI: 10.1371/journal.pbio.3001827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 10/25/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 1 or more species-a phenomenon observed among several important families of genes such as transporters and transcription factors-are often ignored because identifying and retrieving SC-OGs nested within them is challenging. To address this issue and increase the number of markers used in molecular evolution studies, we developed OrthoSNAP, a software that uses a phylogenetic framework to simultaneously split gene families into SC-OGs and prune species-specific inparalogs. We term SC-OGs identified by OrthoSNAP as SNAP-OGs because they are identified using a splitting and pruning procedure analogous to snapping branches on a tree. From 415,129 orthologous groups of genes inferred across 7 eukaryotic phylogenomic datasets, we identified 9,821 SC-OGs; using OrthoSNAP on the remaining 405,308 orthologous groups of genes, we identified an additional 10,704 SNAP-OGs. Comparison of SNAP-OGs and SC-OGs revealed that their phylogenetic information content was similar, even in complex datasets that contain a whole-genome duplication, complex patterns of duplication and loss, transcriptome data where each gene typically has multiple transcripts, and contentious branches in the tree of life. OrthoSNAP is useful for increasing the number of markers used in molecular evolution data matrices, a critical step for robustly inferring and exploring the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JLS); (AR)
| | - Dayna C. Goltz
- Independent Researcher, Nashville, Tennessee, United States of America
| | - Thomas J. Buida
- Independent Researcher, Nashville, Tennessee, United States of America
| | - Yuanning Li
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- * E-mail: (JLS); (AR)
| |
Collapse
|
28
|
Černý D, Natale R. Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes). Mol Phylogenet Evol 2022; 177:107620. [PMID: 36038056 DOI: 10.1016/j.ympev.2022.107620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 01/20/2023]
Abstract
Shorebirds (Charadriiformes) are a globally distributed clade of modern birds and, due to their ecological and morphological disparity, a frequent subject of comparative studies. While molecular phylogenies have been key to establishing the suprafamilial backbone of the charadriiform tree, a number of relationships at both deep and shallow taxonomic levels remain poorly resolved. The timescale of shorebird evolution also remains uncertain as a result of extensive disagreements among the published divergence dating studies, stemming largely from different choices of fossil calibrations. Here, we present the most comprehensive non-supertree phylogeny of shorebirds to date, based on a total-evidence dataset comprising 353 ingroup taxa (90% of all extant or recently extinct species), 27 loci (15 mitochondrial and 12 nuclear), and 69 morphological characters. We further clarify the timeline of charadriiform evolution by time-scaling this phylogeny using a set of 14 up-to-date and thoroughly vetted fossil calibrations. In addition, we assemble a taxonomically restricted 100-locus dataset specifically designed to resolve outstanding problems in higher-level charadriiform phylogeny. In terms of tree topology, our results are largely congruent with previous studies but indicate that some of the conflicts among earlier analyses reflect a genuine signal of pervasive gene tree discordance. Monophyly of the plovers (Charadriidae), the position of the ibisbill (Ibidorhyncha), and the relationships among the five subfamilies of the gulls (Laridae) could not be resolved even with greatly increased locus and taxon sampling. Moreover, several localized regions of uncertainty persist in shallower parts of the tree, including the interrelationships of the true auks (Alcinae) and anarhynchine plovers. Our node-dating and macroevolutionary rate analyses find support for a Paleocene origin of crown-group shorebirds, as well as exceptionally rapid recent radiations of Old World oystercatchers (Haematopodidae) and select genera of gulls. Our study underscores the challenges involved in estimating a comprehensively sampled and carefully calibrated time tree for a diverse avian clade, and highlights areas in need of further research.
Collapse
Affiliation(s)
- David Černý
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA.
| | - Rossy Natale
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA
| |
Collapse
|
29
|
Murillo-A J, Valencia-D J, Orozco CI, Parra-O C, Neubig KM. Incomplete lineage sorting and reticulate evolution mask species relationships in Brunelliaceae, an Andean family with rapid, recent diversification. AMERICAN JOURNAL OF BOTANY 2022; 109:1139-1156. [PMID: 35709353 DOI: 10.1002/ajb2.16025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
PREMISE To date, phylogenetic relationships within the monogeneric Brunelliaceae have been based on morphological evidence, which does not provide sufficient phylogenetic resolution. Here we use target-enriched nuclear data to improve our understanding of phylogenetic relationships in the family. METHODS We used the Angiosperms353 toolkit for targeted recovery of exonic regions and supercontigs (exons + introns) from low copy nuclear genes from 53 of 70 species in Brunellia, and several outgroup taxa. We removed loci that indicated biased inference of relationships and applied concatenated and coalescent methods to infer Brunellia phylogeny. We identified conflicts among gene trees that may reflect hybridization or incomplete lineage sorting events and assessed their impact on phylogenetic inference. Finally, we performed ancestral-state reconstructions of morphological traits and assessed the homology of character states used to define sections and subsections in Brunellia. RESULTS Brunellia comprises two major clades and several subclades. Most of these clades/subclades do not correspond to previous infrageneric taxa. There is high topological incongruence among the subclades across analyses. CONCLUSIONS Phylogenetic reconstructions point to rapid species diversification in Brunelliaceae, reflected in very short branches between successive species splits. The removal of putatively biased loci slightly improves phylogenetic support for individual clades. Reticulate evolution due to hybridization and/or incomplete lineage sorting likely both contribute to gene-tree discordance. Morphological characters used to define taxa in current classification schemes are homoplastic in the ancestral character-state reconstructions. While target enrichment data allows us to broaden our understanding of diversification in Brunellia, the relationships among subclades remain incompletely understood.
Collapse
Affiliation(s)
- José Murillo-A
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Janice Valencia-D
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois, 62901-6509, USA
| | - Clara I Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Carlos Parra-O
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 # 45-03, edificio 425, Bogotá, D.C., Colombia
| | - Kurt M Neubig
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Dr., Carbondale, Illinois, 62901-6509, USA
| |
Collapse
|
30
|
Wang N, Braun EL, Liang B, Cracraft J, Smith SA. Categorical edge-based analyses of phylogenomic data reveal conflicting signals for difficult relationships in the avian tree. Mol Phylogenet Evol 2022; 174:107550. [PMID: 35691570 DOI: 10.1016/j.ympev.2022.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Phylogenetic analyses fail to yield a satisfactory resolution of some relationships in the tree of life even with genome-scale datasets, so the failure is unlikely to reflect limitations in the amount of data. Gene tree conflicts are particularly notable in studies focused on these contentious nodes, and taxon sampling, different analytical methods, and/or data type effects can further confound analyses. Although many efforts have been made to incorporate biological conflicts, few studies have curated individual genes for their efficiency in phylogenomic studies. Here, we conduct an edge-based analysis of Neoavian evolution, examining the phylogenetic efficacy of two recent phylogenomic bird datasets and three datatypes (ultraconserved elements [UCEs], introns, and coding regions). We assess the potential causes for biases in signal-resolution for three difficult nodes: the earliest divergence of Neoaves, the position of the enigmatic Hoatzin (Opisthocomus hoazin), and the position of owls (Strigiformes). We observed extensive conflict among genes for all data types and datasets even after meticulous curation. Edge-based analyses (EBA) increased congruence and provided information about the impact of data type, GC content variation (GCCV), and outlier genes on each of nodes we examined. First, outlier gene signals appeared to drive different patterns of support for the relationships among the earliest diverging Neoaves. Second, the placement of Hoatzin was highly variable, although our EBA did reveal a previously unappreciated data type effect with an impact on its position. It also revealed that the resolution with the most support here was Hoatzin + shorebirds. Finally, GCCV, rather than data type (i.e., coding vs non-coding) per se, was correlated with a signal that supports monophyly of owls + Accipitriformes (hawks, eagles, and vultures). Eliminating high GCCV loci increased the signal for owls + mousebirds. Categorical EBA was able to reveal the nature of each edge and provide a way to highlight especially problematic branches that warrant a further examination. The current study increases our understanding about the contentious parts of the avian tree, which show even greater conflicts than appreciated previously.
Collapse
Affiliation(s)
- Ning Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA.
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32607, USA
| | - Bin Liang
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
31
|
Tefarikis DT, Morales-Briones DF, Yang Y, Edwards G, Kadereit G. On the hybrid origin of the C 2 Salsola divaricata agg. (Amaranthaceae) from C 3 and C 4 parental lineages. THE NEW PHYTOLOGIST 2022; 234:1876-1890. [PMID: 35288945 DOI: 10.1111/nph.18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
C2 photosynthesis is characterised using recapturing photorespiratory CO2 by RuBisCo in Kranz-like cells and is therefore physiologically intermediate between C3 and C4 photosynthesis. C2 can be interpreted as an evolutionary precursor of C4 and/or as the result of hybridisation between a C3 and C4 lineage. We compared the expression of photosynthetic traits among populations of the Salsola divaricata agg. (C2 ) from humid subtropical to arid habitats on the coasts of the Canary Islands and Morocco and subjected them to salt and drought treatments. We screened for enhanced C4 -like expression of traits related to habitat or treatment. We estimated species trees with a transcriptome dataset of Salsoleae and explored patterns of gene tree discordance. With phylogenetic networks and hybridisation analyses we tested for the hybrid origin of the Salsola divaricata agg. We observed distinct independent variation of photosynthetic traits within and among populations and no clear evidence for selection towards C4 -like trait expression in more stressful habitats or treatments. We found reticulation and gene tree incongruence in Salsoleae supporting a putative hybrid origin of the Salsola divaricata agg. C2 photosynthesis in the Salsola divaricata agg. combines traits inherited from its C3 and C4 parental lineages and seems evolutionarily stable, possibly well adapted to a wide climatic amplitude.
Collapse
Affiliation(s)
- Delphine T Tefarikis
- AG Biodiversity and Evolution of Plants, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St Paul, MN, 55108, USA
- Princess Therese von Bayern Chair of Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilians University of Munich, 80638, Munich, Germany
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St Paul, MN, 55108, USA
| | - Gerald Edwards
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Gudrun Kadereit
- AG Biodiversity and Evolution of Plants, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
- Princess Therese von Bayern Chair of Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilians University of Munich, 80638, Munich, Germany
| |
Collapse
|
32
|
Chen LY, Lu B, Morales-Briones DF, Moody ML, Liu F, Hu GW, Huang CH, Chen JM, Wang QF. Phylogenomic Analyses of Alismatales Shed Light into Adaptations to Aquatic Environments. Mol Biol Evol 2022; 39:msac079. [PMID: 35438770 PMCID: PMC9070837 DOI: 10.1093/molbev/msac079] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Land plants first evolved from freshwater algae, and flowering plants returned to water as early as the Cretaceous and multiple times subsequently. Alismatales is the largest clade of aquatic angiosperms including all marine angiosperms, as well as terrestrial plants. We used Alismatales to explore plant adaptations to aquatic environments by analyzing a data set that included 95 samples (89 Alismatales species) covering four genomes and 91 transcriptomes (59 generated in this study). To provide a basis for investigating adaptations, we assessed phylogenetic conflict and whole-genome duplication (WGD) events in Alismatales. We recovered a relationship for the three main clades in Alismatales as (Tofieldiaceae, Araceae) + core Alismatids. We also found phylogenetic conflict among the three main clades that was best explained by incomplete lineage sorting and introgression. Overall, we identified 18 putative WGD events across Alismatales. One of them occurred at the most recent common ancestor of core Alismatids, and three occurred at seagrass lineages. We also found that lineage and life-form were both important for different evolutionary patterns for the genes related to freshwater and marine adaptation. For example, several light- or ethylene-related genes were lost in the seagrass Zosteraceae, but are present in other seagrasses and freshwater species. Stomata-related genes were lost in both submersed freshwater species and seagrasses. Nicotianamine synthase genes, which are important in iron intake, expanded in both submersed freshwater species and seagrasses. Our results advance the understanding of the adaptation to aquatic environments and WGDs using phylogenomics.
Collapse
Affiliation(s)
- Ling-Yun Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diego F. Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
- Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 Munich, Germany
| | - Michael L. Moody
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Fan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jin-Ming Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
33
|
Liu BB, Ren C, Kwak M, Hodel RGJ, Xu C, He J, Zhou WB, Huang CH, Ma H, Qian GZ, Hong DY, Wen J. Phylogenomic conflict analyses in the apple genus Malus s.l. reveal widespread hybridization and allopolyploidy driving diversification, with insights into the complex biogeographic history in the Northern Hemisphere. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1020-1043. [PMID: 35274452 DOI: 10.1111/jipb.13246] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Phylogenomic evidence from an increasing number of studies has demonstrated that different data sets and analytical approaches often reconstruct strongly supported but conflicting relationships. In this study, 785 single-copy nuclear genes and 75 complete plastomes were used to infer the phylogenetic relationships and estimate the historical biogeography of the apple genus Malus sensu lato, an economically important lineage disjunctly distributed in the Northern Hemisphere and involved in known and suspected hybridization and allopolyploidy events. The nuclear phylogeny recovered the monophyly of Malus s.l. (including Docynia); however, the genus was supported to be biphyletic in the plastid phylogeny. An ancient chloroplast capture event in the Eocene in western North America best explains the cytonuclear discordance. Our conflict analysis demonstrated that ILS, hybridization, and allopolyploidy could explain the widespread nuclear gene tree discordance. One deep hybridization event (Malus doumeri) and one recent event (Malus coronaria) were detected in Malus s.l. Furthermore, our historical biogeographic analysis integrating living and fossil data supported a widespread East Asian-western North American origin of Malus s.l. in the Eocene, followed by several extinction and dispersal events in the Northern Hemisphere. We also propose a general workflow for assessing phylogenomic discordance and biogeographic analysis using deep genome skimming data sets.
Collapse
Affiliation(s)
- Bin-Bin Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, 20013-7012, DC, USA
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Myounghai Kwak
- National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Richard G J Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, 20013-7012, DC, USA
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian He
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Wen-Bin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, 27965, NC, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, 510D Mueller Laboratory, University Park, Pennsylvania, 16802, USA
| | - Guan-Ze Qian
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - De-Yuan Hong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, 20013-7012, DC, USA
| |
Collapse
|
34
|
Wang Y, Ruhsam M, Milne R, Graham SW, Li J, Tao T, Zhang Y, Mao K. Incomplete lineage sorting and local extinction shaped the complex evolutionary history of the Paleogene relict conifer genus, Chamaecyparis (Cupressaceae). Mol Phylogenet Evol 2022; 172:107485. [PMID: 35452840 DOI: 10.1016/j.ympev.2022.107485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Abstract
Inferring accurate biogeographic history of plant taxa with an East Asia (EA)-North America (NA) is usually hindered by conflicting phylogenies and a poor fossil record. The current distribution of Chamaecyparis (false cypress; Cupressaceae) with four species in EA, and one each in western and eastern NA, and its relatively rich fossil record, make it an excellent model for studying the EA-NA disjunction. Here we reconstruct phylogenomic relationships within Chamaecyparis using > 1400 homologous nuclear and 61 plastid genes. Our phylogenomic analyses using concatenated and coalescent approaches revealed strong cytonuclear discordance and conflicting topologies between nuclear gene trees. Incomplete lineage sorting (ILS) and hybridization are possible explanations of conflict; however, our coalescent analyses and simulations suggest that ILS is the major contributor to the observed phylogenetic discrepancies. Based on a well-resolved species tree and four fossil calibrations, the crown lineage of Chamaecyparis is estimated to have originated in the upper Cretaceous, followed by diversification events in the early and middle Paleogene. Ancestral area reconstructions suggest that Chamaecyparis had an ancestral range spanning both EA and NA. Fossil records further indicate that this genus is a relict of the "boreotropical" flora, and that local extinctions of European species were caused by global cooling. Overall, our results unravel a complex evolutionary history of a Paleogene relict conifer genus, which may have involved ILS, hybridization and the extinction of local species.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Science, School of Biological Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China; College of Science, Tibet University, Lhasa 850000, Xizang Autonomous Region, PR China.
| |
Collapse
|
35
|
Zhou BF, Yuan S, Crowl AA, Liang YY, Shi Y, Chen XY, An QQ, Kang M, Manos PS, Wang B. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nat Commun 2022; 13:1320. [PMID: 35288565 PMCID: PMC8921187 DOI: 10.1038/s41467-022-28917-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.
Collapse
Affiliation(s)
- Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Andrew A Crowl
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
36
|
Miao H, Bao J, Li X, Ding Z, Tian X. Comparative analyses of chloroplast genomes in 'Red Fuji' apples: low rate of chloroplast genome mutations. PeerJ 2022; 10:e12927. [PMID: 35223207 PMCID: PMC8868015 DOI: 10.7717/peerj.12927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Fuji is a vital apple cultivar, and has been propagated clonally for nearly a century. The chloroplast genome variation of Fuji apples in China has not been investigated. METHODS This study used next-generation high-throughput sequencing and bioinformatics to compare and analyze the chloroplast genome of 24 Red Fuji varieties from nine regions in China. RESULTS The results showed that the 24 chloroplast genomes were highly conserved in genome size, structure, and organization. The length of the genomes ranged from 160,063 to 160,070 bp, and the GC content was 36.6%. Each of the 24 chloroplast genomes encoded 131 genes, including 84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The results of repeat sequence detection were consistent; the most common sequence was forward repeats (53.1%), and the least common sequence was complementary repeats (4.1%). The chloroplast genome sequence of Red Fuji was highly conserved. Two indels were detected, but the PI value was 0, and there were no SNP loci. The chloroplast genome variation rate of Red Fuji was low.
Collapse
Affiliation(s)
- Haoyu Miao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Jinbo Bao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Xueli Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Zhijie Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Xinmin Tian
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| |
Collapse
|
37
|
Gosselin S, Fullmer MS, Feng Y, Gogarten JP. Improving Phylogenies Based on Average Nucleotide Identity, Incorporating Saturation Correction and Nonparametric Bootstrap Support. Syst Biol 2022; 71:396-409. [PMID: 34289044 PMCID: PMC8830074 DOI: 10.1093/sysbio/syab060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 11/13/2022] Open
Abstract
Whole-genome comparisons based on average nucleotide identities (ANI) and the genome-to-genome distance calculator have risen to prominence in rapidly classifying prokaryotic taxa using whole-genome sequences. Some implementations have even been proposed as a new standard in species classification and have become a common technique for papers describing newly sequenced genomes. However, attempts to apply whole-genome divergence data to the delineation of higher taxonomic units and to phylogenetic inference have had difficulty matching those produced by more complex phylogenetic methods. We present a novel method for generating statistically supported phylogenies of archaeal and bacterial groups using a combined ANI and alignment fraction-based metric. For the test cases to which we applied the developed approach, we obtained results comparable with other methodologies up to at least the family level. The developed method uses nonparametric bootstrapping to gauge support for inferred groups. This method offers the opportunity to make use of whole-genome comparison data, that is already being generated, to quickly produce phylogenies including support for inferred groups. Additionally, the developed ANI methodology can assist the classification of higher taxonomic groups.[Average nucleotide identity (ANI); genome evolution; prokaryotic species delineation; taxonomy.].
Collapse
Affiliation(s)
- Sean Gosselin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268-3125, USA
| | - Matthew S Fullmer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268-3125, USA.,Bioinformatics Institute, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Yutian Feng
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268-3125, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268-3125, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268-3125, USA
| |
Collapse
|
38
|
Gutiérrez S, McCormick SP, Cardoza RE, Kim HS, Yugueros LL, Vaughan MM, Carro-Huerga G, Busman M, Sáenz de Miera LE, Jaklitsch WM, Zhuang WY, Wang C, Casquero PA, Proctor RH. Distribution, Function, and Evolution of a Gene Essential for Trichothecene Toxin Biosynthesis in Trichoderma. Front Microbiol 2021; 12:791641. [PMID: 34925301 PMCID: PMC8675399 DOI: 10.3389/fmicb.2021.791641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Trichothecenes are terpenoid toxins produced by species in 10 fungal genera, including species of Trichoderma. The trichothecene biosynthetic gene (tri) cluster typically includes the tri5 gene, which encodes a terpene synthase that catalyzes formation of trichodiene, the parent compound of all trichothecenes. The two Trichoderma species, Trichoderma arundinaceum and T. brevicompactum, that have been examined are unique in that tri5 is located outside the tri cluster in a genomic region that does not include other known tri genes. In the current study, analysis of 35 species representing a wide range of the phylogenetic diversity of Trichoderma revealed that 22 species had tri5, but only 13 species had both tri5 and the tri cluster. tri5 was not located in the cluster in any species. Using complementation analysis of a T. arundinaceum tri5 deletion mutant, we demonstrated that some tri5 homologs from species that lack a tri cluster are functional, but others are not. Phylogenetic analyses suggest that Trichoderma tri5 was under positive selection following its divergence from homologs in other fungi but before Trichoderma species began diverging from one another. We propose two models to explain these diverse observations. One model proposes that the location of tri5 outside the tri cluster resulted from loss of tri5 from the cluster in an ancestral species followed by reacquisition via horizontal transfer. The other model proposes that in species that have a functional tri5 but lack the tri cluster, trichodiene production provides a competitive advantage.
Collapse
Affiliation(s)
- Santiago Gutiérrez
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, Ponferrada, Spain
| | - Susan P McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, United States
| | - Rosa E Cardoza
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, Ponferrada, Spain
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, United States
| | - Laura Lindo Yugueros
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, Ponferrada, Spain
| | - Martha Marie Vaughan
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, United States
| | - Guzmán Carro-Huerga
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Plant Production, University of León, León, Spain
| | - Mark Busman
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, United States
| | | | - Walter M Jaklitsch
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pedro A Casquero
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Plant Production, University of León, León, Spain
| | - Robert Henry Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, United States
| |
Collapse
|
39
|
Jacob Machado D, Portella de Luna Marques F, Jiménez-Ferbans L, Grant T. An empirical test of the relationship between the bootstrap and likelihood ratio support in maximum likelihood phylogenetic analysis. Cladistics 2021; 38:392-401. [PMID: 34932221 DOI: 10.1111/cla.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 11/27/2022] Open
Abstract
In maximum likelihood (ML), the support for a clade can be calculated directly as the likelihood ratio (LR) or log-likelihood difference (S, LLD) of the best trees with and without the clade of interest. However, bootstrap (BS) clade frequencies are more pervasive in ML phylogenetics and are almost universally interpreted as measuring support. In addition to theoretical arguments against that interpretation, BS has several undesirable attributes for a support measure. For example, it does not vary in proportion to optimality or identify clades that are rejected by the evidence and can be overestimated due to missing data. Nevertheless, if BS is a reliable predictor of S, then it might be an efficient indirect method of measuring support-an attractive possibility, given the speed of many BS implementations. To assess the relationship between S and BS, we analyzed 106 empirical datasets retrieved from TreeBASE. Also, to evaluate the degree to which S and BS are affected by the number of replicates during suboptimal tree searches for S and pseudoreplicates during BS estimation, we randomly selected 5 of the 106 datasets and analyzed them using variable numbers of replicates and pseudoreplicates, respectively. The correlation between S and BS was extremely weak in the datasets we analyzed. Increasing the number of replicates during tree search decreased the estimated values of S for most clades, but the magnitude of change was small. In contrast, although increasing pseudoreplicates affected BS values for only approximately 40% of clades, values both increased and decreased, and they did so at much greater magnitudes. Increasing replicates/pseudoreplicates affected the rank order of clades in each tree for both S and BS. Our findings show decisively that BS is not an efficient indirect method of measuring support and suggest that even quite superficial searches to calculate S provide better estimates of support.
Collapse
Affiliation(s)
- Denis Jacob Machado
- Programa Inter-unidades de Pós-graduação em Bioinformática, Universidade de São Paulo, Rua do Matão 1010 São Paulo, SP 05508-090, Brazil.,Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC 28223, USA
| | - Fernando Portella de Luna Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Tv. 14, 101 - Butantã, São Paulo, SP, 05508-090, Brazil
| | - Larry Jiménez-Ferbans
- Facultad de Ciencias Básicas, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta D.T.C.H., Magdalena 470004, Colombia
| | - Taran Grant
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Tv. 14, 101 - Butantã, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
40
|
Morales-Briones DF, Gehrke B, Huang CH, Liston A, Ma H, Marx HE, Tank DC, Yang Y. Analysis of Paralogs in Target Enrichment Data Pinpoints Multiple Ancient Polyploidy Events in Alchemilla s.l. (Rosaceae). Syst Biol 2021; 71:190-207. [PMID: 33978764 PMCID: PMC8677558 DOI: 10.1093/sysbio/syab032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Target enrichment is becoming increasingly popular for phylogenomic studies. Although baits for enrichment are typically designed to target single-copy genes, paralogs are often recovered with increased sequencing depth, sometimes from a significant proportion of loci, especially in groups experiencing whole-genome duplication (WGD) events. Common approaches for processing paralogs in target enrichment data sets include random selection, manual pruning, and mainly, the removal of entire genes that show any evidence of paralogy. These approaches are prone to errors in orthology inference or removing large numbers of genes. By removing entire genes, valuable information that could be used to detect and place WGD events is discarded. Here, we used an automated approach for orthology inference in a target enrichment data set of 68 species of Alchemilla s.l. (Rosaceae), a widely distributed clade of plants primarily from temperate climate regions. Previous molecular phylogenetic studies and chromosome numbers both suggested ancient WGDs in the group. However, both the phylogenetic location and putative parental lineages of these WGD events remain unknown. By taking paralogs into consideration and inferring orthologs from target enrichment data, we identified four nodes in the backbone of Alchemilla s.l. with an elevated proportion of gene duplication. Furthermore, using a gene-tree reconciliation approach, we established the autopolyploid origin of the entire Alchemilla s.l. and the nested allopolyploid origin of four major clades within the group. Here, we showed the utility of automated tree-based orthology inference methods, previously designed for genomic or transcriptomic data sets, to study complex scenarios of polyploidy and reticulate evolution from target enrichment data sets.[Alchemilla; allopolyploidy; autopolyploidy; gene tree discordance; orthology inference; paralogs; Rosaceae; target enrichment; whole genome duplication.].
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID 83844, USA
| | - Berit Gehrke
- University Gardens, University Museum, University of Bergen, Mildeveien 240, 5259 Hjellestad, Norway
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331, USA
| | - Hong Ma
- Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, 510D Mueller Laboratory, University Park, PA 16802 USA
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - David C Tank
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID 83844, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
41
|
Martinez-Gutierrez CA, Aylward FO. Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Mol Biol Evol 2021; 38:5514-5527. [PMID: 34436605 PMCID: PMC8662615 DOI: 10.1093/molbev/msab254] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reconstruction of the Tree of Life is a central goal in biology. Although numerous novel phyla of bacteria and archaea have recently been discovered, inconsistent phylogenetic relationships are routinely reported, and many inter-phylum and inter-domain evolutionary relationships remain unclear. Here, we benchmark different marker genes often used in constructing multidomain phylogenetic trees of bacteria and archaea and present a set of marker genes that perform best for multidomain trees constructed from concatenated alignments. We use recently-developed Tree Certainty metrics to assess the confidence of our results and to obviate the complications of traditional bootstrap-based metrics. Given the vastly disparate number of genomes available for different phyla of bacteria and archaea, we also assessed the impact of taxon sampling on multidomain tree construction. Our results demonstrate that biases between the representation of different taxonomic groups can dramatically impact the topology of resulting trees. Inspection of our highest-quality tree supports the division of most bacteria into Terrabacteria and Gracilicutes, with Thermatogota and Synergistota branching earlier from these superphyla. This tree also supports the inclusion of the Patescibacteria within the Terrabacteria as a sister group to the Chloroflexota instead of as a basal-branching lineage. For the Archaea, our tree supports three monophyletic lineages (DPANN, Euryarchaeota, and TACK/Asgard), although we note the basal placement of the DPANN may still represent an artifact caused by biased sequence composition. Our findings provide a robust and standardized framework for multidomain phylogenetic reconstruction that can be used to evaluate inter-phylum relationships and assess uncertainty in conflicting topologies of the Tree of Life.
Collapse
Affiliation(s)
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
42
|
Li HT, Luo Y, Gan L, Ma PF, Gao LM, Yang JB, Cai J, Gitzendanner MA, Fritsch PW, Zhang T, Jin JJ, Zeng CX, Wang H, Yu WB, Zhang R, van der Bank M, Olmstead RG, Hollingsworth PM, Chase MW, Soltis DE, Soltis PS, Yi TS, Li DZ. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol 2021; 19:232. [PMID: 34711223 PMCID: PMC8555322 DOI: 10.1186/s12915-021-01166-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Flowering plants (angiosperms) are dominant components of global terrestrial ecosystems, but phylogenetic relationships at the familial level and above remain only partially resolved, greatly impeding our full understanding of their evolution and early diversification. The plastome, typically mapped as a circular genome, has been the most important molecular data source for plant phylogeny reconstruction for decades. RESULTS Here, we assembled by far the largest plastid dataset of angiosperms, composed of 80 genes from 4792 plastomes of 4660 species in 2024 genera representing all currently recognized families. Our phylogenetic tree (PPA II) is essentially congruent with those of previous plastid phylogenomic analyses but generally provides greater clade support. In the PPA II tree, 75% of nodes at or above the ordinal level and 78% at or above the familial level were resolved with high bootstrap support (BP ≥ 90). We obtained strong support for many interordinal and interfamilial relationships that were poorly resolved previously within the core eudicots, such as Dilleniales, Saxifragales, and Vitales being resolved as successive sisters to the remaining rosids, and Santalales, Berberidopsidales, and Caryophyllales as successive sisters to the asterids. However, the placement of magnoliids, although resolved as sister to all other Mesangiospermae, is not well supported and disagrees with topologies inferred from nuclear data. Relationships among the five major clades of Mesangiospermae remain intractable despite increased sampling, probably due to an ancient rapid radiation. CONCLUSIONS We provide the most comprehensive dataset of plastomes to date and a well-resolved phylogenetic tree, which together provide a strong foundation for future evolutionary studies of flowering plants.
Collapse
Affiliation(s)
- Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lu Gan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Ecosystem National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Matthew A Gitzendanner
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Peter W Fritsch
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX, 76017, USA
| | - Ting Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10025, USA
| | - Chun-Xia Zeng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Hong Wang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Michelle van der Bank
- Department of Botany & Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, Gauteng, 2006, South Africa
| | - Richard G Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195-5325, USA
| | | | - Mark W Chase
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, England, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
43
|
Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol 2021; 19:e3001430. [PMID: 34705818 PMCID: PMC8575486 DOI: 10.1371/journal.pbio.3001430] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/08/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Large DNA viruses of the phylum Nucleocytoviricota have recently emerged as important members of ecosystems around the globe that challenge traditional views of viral complexity. Numerous members of this phylum that cannot be classified within established families have recently been reported, and there is presently a strong need for a robust phylogenomic and taxonomic framework for these viruses. Here, we report a comprehensive phylogenomic analysis of the Nucleocytoviricota, present a set of giant virus orthologous groups (GVOGs) together with a benchmarked reference phylogeny, and delineate a hierarchical taxonomy within this phylum. We show that the majority of Nucleocytoviricota diversity can be partitioned into 6 orders, 32 families, and 344 genera, substantially expanding the number of currently recognized taxonomic ranks for these viruses. We integrate our results within a taxonomy that has been adopted for all viruses to establish a unifying framework for the study of Nucleocytoviricota diversity, evolution, and environmental distribution. Giant viruses have transformed our understanding of viral complexity, but we lack a framework for examining their diversity in the biosphere. This study presents a phylogenomic resource for charting the diversity, ecology, and evolution of giant viruses.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| | - Mohammad Moniruzzaman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
44
|
Li J, Zhang Y, Ruhsam M, Milne RI, Wang Y, Wu D, Jia S, Tao T, Mao K. Seeing through the hedge: Phylogenomics of Thuja (Cupressaceae) reveals prominent incomplete lineage sorting and ancient introgression for Tertiary relict flora. Cladistics 2021; 38:187-203. [PMID: 34551153 DOI: 10.1111/cla.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
The Eastern Asia (EA) - North America (NA) disjunction is a well-known biogeographic pattern of the Tertiary relict flora; however, few studies have investigated the evolutionary history of this disjunction using a phylogenomic approach. Here, we used 2369 single copy nuclear genes and nearly full plastomes to reconstruct the evolutionary history of the small Tertiary relict genus Thuja, which consists of five disjunctly distributed species. The nuclear species tree strongly supported an EA clade Thuja standishii-Thuja sutchuenensis and a "disjunct clade", where western NA species T. plicata is sister to an EA-eastern NA disjunct Thuja occidentalis-Thuja koraiensis group. Our results suggested that the observed topological discordance among the gene trees as well as the cytonuclear discordance is mainly due to incomplete lineage sorting, probably facilitated by the fast diversification of Thuja around the Early Miocene and the large effective population sizes of ancestral lineages. Furthermore, approximately 20% of the T. sutchuenensis nuclear genome is derived from an unknown ancestral lineage of Thuja, which might explain the close resemblance of its cone morphology to that of an ancient fossil species. Overall, our study demonstrates that single genes may not resolve interspecific relationships for disjunct taxa, and that more reliable results will come from hundreds or thousands of loci, revealing a more complex evolutionary history. This will steadily improve our understanding of their origin and evolution.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Richard Ian Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Dayu Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shiyu Jia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,College of Science, Tibet University, Lhasa, Xizang Autonomous Region, 850012, China
| |
Collapse
|
45
|
Low-Coverage Whole Genomes Reveal the Higher Phylogeny of Green Lacewings. INSECTS 2021; 12:insects12100857. [PMID: 34680626 PMCID: PMC8539002 DOI: 10.3390/insects12100857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Green lacewings (Chrysopidae) are one of the most commonly observed natural predators belonging to Neuroptera. They are widely distributed all over the world. The relationships among the three subfamilies of Chrysopidae have been controversial for a long time. We newly sequenced and analyzed the low-coverage genomes of five species (Apochrysa matsumurae, Chrysopa pallens, Chrysoperla furcifera, Italochrysa pardalina, Nothochrysa sinica), representing all three subfamilies, in order to reconstruct the higher phylogeny within this family. Our results suggested that Chrysopinae are a monophyletic sister group to the branch Apochrysinae + Nothochrysinae, and that Chrysopinae diverged from Apochrysinae + Nothochrysinae during the Early Cretaceous period (144–151 Ma), while Aporchrysinae diverged from Nothochrysinae around 117–133 Ma. Abstract Green lacewings are one of the largest families within Neuroptera and are widely distributed all over the world. Many species within this group are important natural predators that are widely used for the biological control of pests in agricultural ecosystems. Several proposed phylogenetic relationships among the three subfamilies of Chrysopidae have been extensively debated. To further understand the higher phylogeny as well as the evolutionary history of Chrysopidae, we newly sequenced and analyzed the low-coverage genomes of 5 species (Apochrysa matsumurae, Chrysopa pallens, Chrysoperla furcifera, Italochrysa pardalina, Nothochrysa sinica), representing 3 subfamilies of Chrysopidae. There are 2213 orthologs selected to reconstruct the phylogenetic tree. Phylogenetic reconstruction was performed using both concatenation and coalescent-based approaches, based on different data matrices. All the results suggested that Chrysopinae were a monophyletic sister group to the branch Apochrysinae + Nothochrysinae. These results were completely supported, except by the concatenation analyses of the nt data matrix, which suggested that Apochrysinae were a sister group to Chrysopinae + Nothchrysinae. The different topology from the nt data matrix may have been caused by the limited sampling of Chrysopidae. The divergence time showed that Chrysopinae diverged from Apochrysinae + Nothochrysinae during the Early Cretaceous period (144–151 Ma), while Aporchrysinae diverged from Nothochrysinae around 117–133 Ma. These results will improve our understanding of the higher phylogeny of Chrysopidae and lay a foundation for the utilization of natural predators.
Collapse
|
46
|
Haase MAB, Kominek J, Opulente DA, Shen XX, LaBella AL, Zhou X, DeVirgilio J, Hulfachor AB, Kurtzman CP, Rokas A, Hittinger CT. Repeated horizontal gene transfer of GALactose metabolism genes violates Dollo's law of irreversible loss. Genetics 2021; 217:6007471. [PMID: 33724406 DOI: 10.1093/genetics/iyaa012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Dollo's law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.
Collapse
Affiliation(s)
- Max A B Haase
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Dana A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
47
|
Mongiardino Koch N. Phylogenomic Subsampling and the Search for Phylogenetically Reliable Loci. Mol Biol Evol 2021; 38:4025-4038. [PMID: 33983409 DOI: 10.1101/2021.02.13.431075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
48
|
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
49
|
Čadež N, Bellora N, Ulloa R, Tome M, Petković H, Groenewald M, Hittinger CT, Libkind D. Hanseniaspora smithiae sp. nov., a Novel Apiculate Yeast Species From Patagonian Forests That Lacks the Typical Genomic Domestication Signatures for Fermentative Environments. Front Microbiol 2021; 12:679894. [PMID: 34367085 PMCID: PMC8334367 DOI: 10.3389/fmicb.2021.679894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
During a survey of Nothofagus trees and their parasitic fungi in Andean Patagonia (Argentina), genetically distinct strains of Hanseniaspora were obtained from the sugar-containing stromata of parasitic Cyttaria spp. Phylogenetic analyses based on the single-gene sequences (encoding rRNA and actin) or on conserved, single-copy, orthologous genes from genome sequence assemblies revealed that these strains represent a new species closely related to Hanseniaspora valbyensis. Additionally, delimitation of this novel species was supported by genetic distance calculations using overall genome relatedness indices (OGRI) between the novel taxon and its closest relatives. To better understand the mode of speciation in Hanseniaspora, we examined genes that were retained or lost in the novel species in comparison to its closest relatives. These analyses show that, during diversification, this novel species and its closest relatives, H. valbyensis and Hanseniaspora jakobsenii, lost mitochondrial and other genes involved in the generation of precursor metabolites and energy, which could explain their slower growth and higher ethanol yields under aerobic conditions. Similarly, Hanseniaspora mollemarum lost the ability to sporulate, along with genes that are involved in meiosis and mating. Based on these findings, a formal description of the novel yeast species Hanseniaspora smithiae sp. nov. is proposed, with CRUB 1602 H as the holotype.
Collapse
Affiliation(s)
- Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nicolas Bellora
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, Bariloche, Argentina
| | - Ricardo Ulloa
- Laboratorio de Bioprocesos, Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, Neuquén, Argentina
| | - Miha Tome
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hrvoje Petković
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
50
|
Torres A, Goloboff PA, Catalano SA. Parsimony analysis of phylogenomic datasets (I): scripts and guidelines for using TNT (Tree Analysis using New Technology). Cladistics 2021; 38:103-125. [DOI: 10.1111/cla.12477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ambrosio Torres
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas ‐ Fundación Miguel Lillo Miguel Lillo 251 S. M. de Tucumán Tucumán 4000 Argentina
| | - Pablo A. Goloboff
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas ‐ Fundación Miguel Lillo Miguel Lillo 251 S. M. de Tucumán Tucumán 4000 Argentina
- American Museum of Natural History 200 Central Park West New York NY 10024 USA
| | - Santiago A. Catalano
- Unidad Ejecutora Lillo Consejo Nacional de Investigaciones Científicas y Técnicas ‐ Fundación Miguel Lillo Miguel Lillo 251 S. M. de Tucumán Tucumán 4000 Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo Universidad Nacional de Tucumán Miguel Lillo 205 S. M. de Tucumán Tucumán 4000 Argentina
| |
Collapse
|