1
|
Yu Y, Chen H. Human pangenome: far-reaching implications in precision medicine. Front Med 2024; 18:403-409. [PMID: 38157192 DOI: 10.1007/s11684-023-1039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Shanghai Frontier Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Aqil A, Speidel L, Pavlidis P, Gokcumen O. Balancing selection on genomic deletion polymorphisms in humans. eLife 2023; 12:79111. [PMID: 36625544 PMCID: PMC9943071 DOI: 10.7554/elife.79111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
A key question in biology is why genomic variation persists in a population for extended periods. Recent studies have identified examples of genomic deletions that have remained polymorphic in the human lineage for hundreds of millennia, ostensibly owing to balancing selection. Nevertheless, genome-wide investigation of ancient and possibly adaptive deletions remains an imperative exercise. Here, we demonstrate an excess of polymorphisms in present-day humans that predate the modern human-Neanderthal split (ancient polymorphisms), which cannot be explained solely by selectively neutral scenarios. We analyze the adaptive mechanisms that underlie this excess in deletion polymorphisms. Using a previously published measure of balancing selection, we show that this excess of ancient deletions is largely owing to balancing selection. Based on the absence of signatures of overdominance, we conclude that it is a rare mode of balancing selection among ancient deletions. Instead, more complex scenarios involving spatially and temporally variable selective pressures are likely more common mechanisms. Our results suggest that balancing selection resulted in ancient deletions harboring disproportionately more exonic variants with GWAS (genome-wide association studies) associations. We further found that ancient deletions are significantly enriched for traits related to metabolism and immunity. As a by-product of our analysis, we show that deletions are, on average, more deleterious than single nucleotide variants. We can now argue that not only is a vast majority of common variants shared among human populations, but a considerable portion of biologically relevant variants has been segregating among our ancestors for hundreds of thousands, if not millions, of years.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| | - Leo Speidel
- University College London, Genetics InstituteLondonUnited Kingdom
- The Francis Crick InstituteLondonUnited Kingdom
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation of Research and Technology-HellasHeraklionGreece
| | - Omer Gokcumen
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
4
|
Harvati K, Ackermann RR. Merging morphological and genetic evidence to assess hybridization in Western Eurasian late Pleistocene hominins. Nat Ecol Evol 2022; 6:1573-1585. [PMID: 36064759 DOI: 10.1038/s41559-022-01875-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/08/2022] [Indexed: 11/09/2022]
Abstract
Previous scientific consensus saw human evolution as defined by adaptive differences (behavioural and/or biological) and the emergence of Homo sapiens as the ultimate replacement of non-modern groups by a modern, adaptively more competitive group. However, recent research has shown that the process underlying our origins was considerably more complex. While archaeological and fossil evidence suggests that behavioural complexity may not be confined to the modern human lineage, recent palaeogenomic work shows that gene flow between distinct lineages (for example, Neanderthals, Denisovans, early H. sapiens) occurred repeatedly in the late Pleistocene, probably contributing elements to our genetic make-up that might have been crucial to our success as a diverse, adaptable species. Following these advances, the prevailing human origins model has shifted from one of near-complete replacement to a more nuanced view of partial replacement with considerable reticulation. Here we provide a brief introduction to the current genetic evidence for hybridization among hominins, its prevalence in, and effects on, comparative mammal groups, and especially how it manifests in the skull. We then explore the degree to which cranial variation seen in the fossil record of late Pleistocene hominins from Western Eurasia corresponds with our current genetic and comparative data. We are especially interested in understanding the degree to which skeletal data can reflect admixture. Our findings indicate some correspondence between these different lines of evidence, flag individual fossils as possibly admixed, and suggest that different cranial regions may preserve hybridization signals differentially. We urge further studies of the phenotype to expand our ability to detect the ways in which migration, interaction and genetic exchange have shaped the human past, beyond what is currently visible with the lens of ancient DNA.
Collapse
Affiliation(s)
- K Harvati
- Paleoanthropology section, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany.
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - R R Ackermann
- Human Evolution Research Institute, University of Cape Town, Cape Town, South Africa.
- Department of Archaeology, University of Cape Town, Cape Town, South Africa.
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Yu Y, Zhang Z, Dong X, Yang R, Duan Z, Xiang Z, Li J, Li G, Yan F, Xue H, Jiao D, Lu J, Lu H, Zhang W, Wei Y, Fan S, Li J, Jia J, Zhang J, Ji J, Liu P, Lu H, Zhao H, Chen S, Wei C, Chen H, Zhu Z. Pangenomic analysis of Chinese gastric cancer. Nat Commun 2022; 13:5412. [PMID: 36109518 PMCID: PMC9477819 DOI: 10.1038/s41467-022-33073-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Pangenomic study might improve the completeness of human reference genome (GRCh38) and promote precision medicine. Here, we use an automated pipeline of human pangenomic analysis to build gastric cancer pan-genome for 185 paired deep sequencing data (370 samples), and characterize the gene presence-absence variations (PAVs) at whole genome level. Genes ACOT1, GSTM1, SIGLEC14 and UGT2B17 are identified as highly absent genes in gastric cancer population. A set of genes from unaligned sequences with GRCh38 are predicted. We successfully locate one of predicted genes GC0643 on chromosome 9q34.2. Overexpression of GC0643 significantly inhibits cell growth, cell migration and invasion, cell cycle progression, and induces cell apoptosis in cancer cells. The tumor suppressor functions can be reversed by shGC0643 knockdown. The GC0643 is approved by NCBI database (GenBank: MW194843.1). Collectively, the robust pan-genome strategy provides a deeper understanding of the gene PAVs in the human cancer genome. Human pan-genomics are increasing our knowledge of genomic diversity and genetic factors in disease. Here, the authors built a gastric cancer pan-genome that included the sequences of Chinese Han patients, and predicted putative and previously unaligned genes associated with gastric cancer.
Collapse
|
6
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|
7
|
Saitou M, Masuda N, Gokcumen O. Similarity-Based Analysis of Allele Frequency Distribution among Multiple Populations Identifies Adaptive Genomic Structural Variants. Mol Biol Evol 2022; 39:msab313. [PMID: 34718708 PMCID: PMC8896759 DOI: 10.1093/molbev/msab313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Structural variants have a considerable impact on human genomic diversity. However, their evolutionary history remains mostly unexplored. Here, we developed a new method to identify potentially adaptive structural variants based on a similarity-based analysis that incorporates genotype frequency data from 26 populations simultaneously. Using this method, we analyzed 57,629 structural variants and identified 576 structural variants that show unusual population differentiation. Of these putatively adaptive structural variants, we further showed that 24 variants are multiallelic and overlap with coding sequences, and 20 variants are significantly associated with GWAS traits. Closer inspection of the haplotypic variation associated with these putatively adaptive and functional structural variants reveals deviations from neutral expectations due to: 1) population differentiation of rapidly evolving multiallelic variants, 2) incomplete sweeps, and 3) recent population-specific negative selection. Overall, our study provides new methodological insights, documents hundreds of putatively adaptive variants, and introduces evolutionary models that may better explain the complex evolution of structural variants.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Naoki Masuda
- Department of Mathematics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Computational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
8
|
Saitou M, Resendez S, Pradhan AJ, Wu F, Lie NC, Hall NJ, Zhu Q, Reinholdt L, Satta Y, Speidel L, Nakagome S, Hanchard NA, Churchill G, Lee C, Atilla-Gokcumen GE, Mu X, Gokcumen O. Sex-specific phenotypic effects and evolutionary history of an ancient polymorphic deletion of the human growth hormone receptor. SCIENCE ADVANCES 2021; 7:eabi4476. [PMID: 34559564 PMCID: PMC8462886 DOI: 10.1126/sciadv.abi4476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The common deletion of the third exon of the growth hormone receptor gene (GHRd3) in humans is associated with birth weight, growth after birth, and time of puberty. However, its evolutionary history and the molecular mechanisms through which it affects phenotypes remain unresolved. We present evidence that this deletion was nearly fixed in the ancestral population of anatomically modern humans and Neanderthals but underwent a recent adaptive reduction in frequency in East Asia. We documented that GHRd3 is associated with protection from severe malnutrition. Using a novel mouse model, we found that, under calorie restriction, Ghrd3 leads to the female-like gene expression in male livers and the disappearance of sexual dimorphism in weight. The sex- and diet-dependent effects of GHRd3 in our mouse model are consistent with a model in which the allele frequency of GHRd3 varies throughout human evolution as a response to fluctuations in resource availability.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Skyler Resendez
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Fuguo Wu
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Natasha C. Lie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Nancy J. Hall
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qihui Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Kanagawa Prefecture, Japan
| | - Leo Speidel
- University College London, Genetics Institute, London, UK
- The Francis Crick Institute, London, UK
| | | | - Neil A. Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | | | - Xiuqian Mu
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
9
|
Taskent O, Lin YL, Patramanis I, Pavlidis P, Gokcumen O. Analysis of Haplotypic Variation and Deletion Polymorphisms Point to Multiple Archaic Introgression Events, Including from Altai Neanderthal Lineage. Genetics 2020; 215:497-509. [PMID: 32234956 PMCID: PMC7268982 DOI: 10.1534/genetics.120.303167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
The time, extent, and genomic effect of the introgressions from archaic humans into ancestors of extant human populations remain some of the most exciting venues of population genetics research in the past decade. Several studies have shown population-specific signatures of introgression events from Neanderthals, Denisovans, and potentially other unknown hominin populations in different human groups. Moreover, it was shown that these introgression events may have contributed to phenotypic variation in extant humans, with biomedical and evolutionary consequences. In this study, we present a comprehensive analysis of the unusually divergent haplotypes in the Eurasian genomes and show that they can be traced back to multiple introgression events. In parallel, we document hundreds of deletion polymorphisms shared with Neanderthals. A locus-specific analysis of one such shared deletion suggests the existence of a direct introgression event from the Altai Neanderthal lineage into the ancestors of extant East Asian populations. Overall, our study is in agreement with the emergent notion that various Neanderthal populations contributed to extant human genetic variation in a population-specific manner.
Collapse
Affiliation(s)
- Ozgur Taskent
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260
| | - Yen Lung Lin
- Genetics Section, University of Chicago, Illinois 60637
| | | | - Pavlos Pavlidis
- Foundation for Research and Technology, Hellas, Greece 700 13
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260
| |
Collapse
|
10
|
Gokcumen O. Archaic hominin introgression into modern human genomes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171 Suppl 70:60-73. [PMID: 31702050 DOI: 10.1002/ajpa.23951] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
Ancient genomes from multiple Neanderthal and the Denisovan individuals, along with DNA sequence data from diverse contemporary human populations strongly support the prevalence of gene flow among different hominins. Recent studies now provide evidence for multiple gene flow events that leave genetic signatures in extant and ancient human populations. These events include older gene flow from an unknown hominin in Africa predating out-of-Africa migrations, and in the last 50,000-100,000 years, multiple gene flow events from Neanderthals into ancestral Eurasian human populations, and at least three distinct introgression events from a lineage close to Denisovans into ancestors of extant Southeast Asian and Oceanic populations. Some of these introgression events may have happened as late as 20,000 years before present and reshaped the way in which we think about human evolution. In this review, I aim to answer anthropologically relevant questions with regard to recent research on ancient hominin introgression in the human lineage. How have genomic data from archaic hominins changed our view of human evolution? Is there any doubt about whether introgression from ancient hominins to the ancestors of present-day humans occurred? What is the current view of human evolutionary history from the genomics perspective? What is the impact of introgression on human phenotypes?
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences, North Campus, University at Buffalo, Buffalo, New York
| |
Collapse
|
11
|
An Evolutionary Perspective on the Impact of Genomic Copy Number Variation on Human Health. J Mol Evol 2019; 88:104-119. [PMID: 31522275 DOI: 10.1007/s00239-019-09911-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Copy number variants (CNVs), deletions and duplications of segments of DNA, account for at least five times more variable base pairs in humans than single-nucleotide variants. Several common CNVs were shown to change coding and regulatory sequences and thus dramatically affect adaptive phenotypes involving immunity, perception, metabolism, skin structure, among others. Some of these CNVs were also associated with susceptibility to cancer, infection, and metabolic disorders. These observations raise the possibility that CNVs are a primary contributor to human phenotypic variation and consequently evolve under selective pressures. Indeed, locus-specific haplotype-level analyses revealed signatures of natural selection on several CNVs. However, more traditional tests of selection which are often applied to single-nucleotide variation often have diminished statistical power when applied to CNVs because they often do not show strong linkage disequilibrium with nearby variants. Recombination-based formation mechanisms of CNVs lead to frequent recurrence and gene conversion events, breaking the linkage disequilibrium involving CNVs. Similar methodological challenges also prevent routine genome-wide association studies to adequately investigate the impact of CNVs on heritable human disease. Thus, we argue that the full relevance of CNVs to human health and evolution is yet to be elucidated. We further argue that a holistic investigation of formation mechanisms within an evolutionary framework would provide a powerful framework to understand the functional and biomedical impact of CNVs. In this paper, we review several cases where studies reveal diverse evolutionary histories and unexpected functional consequences of CNVs. We hope that this review will encourage further work on CNVs by both evolutionary and medical geneticists.
Collapse
|
12
|
Lin YL, Gokcumen O. Fine-Scale Characterization of Genomic Structural Variation in the Human Genome Reveals Adaptive and Biomedically Relevant Hotspots. Genome Biol Evol 2019; 11:1136-1151. [PMID: 30887040 PMCID: PMC6475128 DOI: 10.1093/gbe/evz058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2019] [Indexed: 12/25/2022] Open
Abstract
Genomic structural variants (SVs) are distributed nonrandomly across the human genome. The "hotspots" of SVs have been implicated in evolutionary innovations, as well as medical conditions. However, the evolutionary and biomedical features of these hotspots remain incompletely understood. Here, we analyzed data from 2,504 genomes to construct a refined map of 1,148 SV hotspots in human genomes. We confirmed that segmental duplication-related nonallelic homologous recombination is an important mechanistic driver of SV hotspot formation. However, to our surprise, we also found that a majority of SVs in hotspots do not form through such recombination-based mechanisms, suggesting diverse mechanistic and selective forces shaping hotspots. Indeed, our evolutionary analyses showed that the majority of SV hotspots are within gene-poor regions and evolve under relaxed negative selection or neutrality. However, we still found a small subset of SV hotspots harboring genes that are enriched for anthropologically crucial functions and evolve under geography-specific and balancing adaptive forces. These include two independent hotspots on different chromosomes affecting alpha and beta hemoglobin gene clusters. Biomedically, we found that the SV hotspots coincide with breakpoints of clinically relevant, large de novo SVs, significantly more often than genome-wide expectations. For example, we showed that the breakpoints of multiple large SVs, which lead to idiopathic short stature, coincide with SV hotspots. Therefore, the mutational instability in SV hotpots likely enables chromosomal breaks that lead to pathogenic structural variation formations. Overall, our study contributes to a better understanding of the mutational and adaptive landscape of the genome.
Collapse
Affiliation(s)
- Yen-Lung Lin
- Department of Biological Sciences, University at Buffalo
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo
- Corresponding author: E-mail: or
| |
Collapse
|
13
|
Arakawa N, Utsumi D, Takahashi K, Matsumoto-Oda A, Nyachieo A, Chai D, Jillani N, Imai H, Satta Y, Terai Y. Expression Changes of Structural Protein Genes May Be Related to Adaptive Skin Characteristics Specific to Humans. Genome Biol Evol 2019; 11:613-628. [PMID: 30657921 PMCID: PMC6402313 DOI: 10.1093/gbe/evz007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Human skin is morphologically and physiologically different from the skin of other primates. However, the genetic causes underlying human-specific skin characteristics remain unclear. Here, we quantitatively demonstrate that the epidermis and dermis of human skin are significantly thicker than those of three Old World monkey species. In addition, we indicate that the topography of the epidermal basement membrane zone shows a rete ridge in humans but is flat in the Old World monkey species examined. Subsequently, we comprehensively compared gene expression levels between human and nonhuman great ape skin using next-generation cDNA sequencing (RNA-Seq). We identified four structural protein genes associated with the epidermal basement membrane zone or elastic fibers in the dermis (COL18A1, LAMB2, CD151, and BGN) that were expressed significantly greater in humans than in nonhuman great apes, suggesting that these differences may be related to the rete ridge and rich elastic fibers present in human skin. The rete ridge may enhance the strength of adhesion between the epidermis and dermis in skin. This ridge, along with a thick epidermis and rich elastic fibers might contribute to the physical strength of human skin with a low amount of hair. To estimate transcriptional regulatory regions for COL18A1, LAMB2, CD151, and BGN, we examined conserved noncoding regions with histone modifications that can activate transcription in skin cells. Human-specific substitutions in these regions, especially those located in binding sites of transcription factors which function in skin, may alter the gene expression patterns and give rise to the human-specific adaptive skin characteristics.
Collapse
Affiliation(s)
- Nami Arakawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Daisuke Utsumi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Kenzo Takahashi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Akiko Matsumoto-Oda
- Graduate School of Tourism Sciences, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Atunga Nyachieo
- Institute of Primate Research, National Museum of Kenya, Karen, Nairobi, Kenya
| | - Daniel Chai
- Institute of Primate Research, National Museum of Kenya, Karen, Nairobi, Kenya
| | - Ngalla Jillani
- Institute of Primate Research, National Museum of Kenya, Karen, Nairobi, Kenya
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
14
|
Quillen EE, Norton HL, Parra EJ, Lona-Durazo F, Ang KC, Illiescu FM, Pearson LN, Shriver MD, Lasisi T, Gokcumen O, Starr I, Lin YL, Martin AR, Jablonski NG. Shades of complexity: New perspectives on the evolution and genetic architecture of human skin. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:4-26. [PMID: 30408154 DOI: 10.1002/ajpa.23737] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Like many highly variable human traits, more than a dozen genes are known to contribute to the full range of skin color. However, the historical bias in favor of genetic studies in European and European-derived populations has blinded us to the magnitude of pigmentation's complexity. As deliberate efforts are being made to better characterize diverse global populations and new sequencing technologies, better measurement tools, functional assessments, predictive modeling, and ancient DNA analyses become more widely accessible, we are beginning to appreciate how limited our understanding of the genetic bases of human skin color have been. Novel variants in genes not previously linked to pigmentation have been identified and evidence is mounting that there are hundreds more variants yet to be found. Even for genes that have been exhaustively characterized in European populations like MC1R, OCA2, and SLC24A5, research in previously understudied groups is leading to a new appreciation of the degree to which genetic diversity, epistatic interactions, pleiotropy, admixture, global and local adaptation, and cultural practices operate in population-specific ways to shape the genetic architecture of skin color. Furthermore, we are coming to terms with how factors like tanning response and barrier function may also have influenced selection on skin throughout human history. By examining how our knowledge of pigmentation genetics has shifted in the last decade, we can better appreciate how far we have come in understanding human diversity and the still long road ahead for understanding many complex human traits.
Collapse
Affiliation(s)
- Ellen E Quillen
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, Ohio
| | - Esteban J Parra
- Department of Anthropology, University of Toronto - Mississauga, Mississauga, Ontario, Canada
| | - Frida Lona-Durazo
- Department of Anthropology, University of Toronto - Mississauga, Mississauga, Ontario, Canada
| | - Khai C Ang
- Department of Pathology and Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania
| | - Florin Mircea Illiescu
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Centro de Estudios Interculturales e Indígenas - CIIR, P. Universidad Católica de Chile, Santiago, Chile
| | - Laurel N Pearson
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Tina Lasisi
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Izzy Starr
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Yen-Lung Lin
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nina G Jablonski
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
15
|
Complex Haplotypes of GSTM1 Gene Deletions Harbor Signatures of a Selective Sweep in East Asian Populations. G3-GENES GENOMES GENETICS 2018; 8:2953-2966. [PMID: 30061374 PMCID: PMC6118300 DOI: 10.1534/g3.118.200462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The deletion of the metabolizing Glutathione S-transferase Mu 1 (GSTM1) gene has been associated with multiple cancers, metabolic and autoimmune disorders, as well as drug response. It is unusually common, with allele frequency reaching up to 75% in some human populations. Such high allele frequency of a derived allele with apparent impact on an otherwise conserved gene is a rare phenomenon. To investigate the evolutionary history of this locus, we analyzed 310 genomes using population genetics tools. Our analysis revealed a surprising lack of linkage disequilibrium between the deletion and the flanking single nucleotide variants in this locus. Tests that measure extended homozygosity and rapid change in allele frequency revealed signatures of an incomplete sweep in the locus. Using empirical approaches, we identified the Tanuki haplogroup, which carries the GSTM1 deletion and is found in approximately 70% of East Asian chromosomes. This haplogroup has rapidly increased in frequency in East Asian populations, contributing to a high population differentiation among continental human groups. We showed that extended homozygosity and population differentiation for this haplogroup is incompatible with simulated neutral expectations in East Asian populations. In parallel, we found that the Tanuki haplogroup is significantly associated with the expression levels of other GSTM genes. Collectively, our results suggest that standing variation in this locus has likely undergone an incomplete sweep in East Asia with regulatory impact on multiple GSTM genes. Our study provides the necessary framework for further studies to elucidate the evolutionary reasons that maintain disease-susceptibility variants in the GSTM1 locus.
Collapse
|
16
|
Abstract
The skin is the first line of defense against the environment, with the epidermis as the outermost tissue providing much of the barrier function. Given its direct exposure to and encounters with the environment, the epidermis must evolve to provide an optimal barrier for the survival of an organism. Recent advances in genomics have identified a number of genes for the human skin barrier that have undergone evolutionary changes since humans diverged from chimpanzees. Here, we highlight a selection of key and innovative genetic findings for skin barrier evolution in our divergence from our primate ancestors and among modern human populations.
Collapse
Affiliation(s)
- Erin A. Brettmann
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Cristina de Guzman Strong
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Gokcumen O. The Year In Genetic Anthropology: New Lands, New Technologies, New Questions. AMERICAN ANTHROPOLOGIST 2018. [DOI: 10.1111/aman.13032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences University of Buffalo NY 14260 USA
| |
Collapse
|
18
|
Saitou M, Satta Y, Gokcumen O, Ishida T. Complex evolution of the GSTM gene family involves sharing of GSTM1 deletion polymorphism in humans and chimpanzees. BMC Genomics 2018; 19:293. [PMID: 29695243 PMCID: PMC5918908 DOI: 10.1186/s12864-018-4676-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background The common deletion of the glutathione S-transferase Mu 1 (GSTM1) gene in humans has been shown to be involved in xenobiotic metabolism and associated with bladder cancer. However, the evolution of this deletion has not been investigated. Results In this study, we conducted comparative analyses of primate genomes. We demonstrated that the GSTM gene family has evolved through multiple structural variations, involving gene duplications, losses, large inversions and gene conversions. We further showed experimentally that the GSTM1 was polymorphically deleted in both humans and also in chimpanzees, through independent deletion events. To generalize our results, we searched for genic deletions that are polymorphic in both humans and chimpanzees. Consequently, we found only two such deletions among the thousands that we have searched, one of them being the GSTM1 deletion and the other surprisingly being another metabolizing gene, the UGT2B17. Conclusions Overall, our results support the emerging notion that metabolizing gene families, such as the GSTM, NAT, UGT and CYP, have been evolving rapidly through gene duplication and deletion events in primates, leading to complex structural variation within and among species with unknown evolutionary consequences. Electronic supplementary material The online version of this article (10.1186/s12864-018-4676-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Saitou
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, USA
| | - Y Satta
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - O Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, USA.
| | - T Ishida
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
19
|
Bioactive Dietary VDR Ligands Regulate Genes Encoding Biomarkers of Skin Repair That Are Associated with Risk for Psoriasis. Nutrients 2018; 10:nu10020174. [PMID: 29401702 PMCID: PMC5852750 DOI: 10.3390/nu10020174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 01/10/2023] Open
Abstract
Treatment with 1,25-dihydroxyvitamin D3 (1,25D) improves psoriasis symptoms, possibly by inducing the expression of late cornified envelope (LCE)3 genes involved in skin repair. In psoriasis patients, the majority of whom harbor genomic deletion of LCE3B and LCE3C (LCE3C_LCE3B-del), we propose that certain dietary analogues of 1,25D activate the expression of residual LCE3A/LCE3D/LCE3E genes to compensate for the loss of LCE3B/LCE3C in the deletant genotype. Herein, human keratinocytes (HEKn) homozygous for LCE3C_LCE3B-del were treated with docosahexaenoic acid (DHA) and curcumin, two low-affinity, nutrient ligands for the vitamin D receptor (VDR). DHA and curcumin induce the expression of LCE3A/LCE3D/LCE3E mRNAs at concentrations corresponding to their affinity for VDR. Moreover, immunohistochemical quantitation revealed that the treatment of keratinocytes with DHA or curcumin stimulates LCE3 protein expression, while simultaneously opposing the tumor necrosis factor-alpha (TNFα)-signaled phosphorylation of mitogen activated protein (MAP) kinases, p38 and Jun amino-terminal kinase (JNK), thereby overcoming inflammation biomarkers elicited by TNFα challenge. Finally, DHA and curcumin modulate two transcription factors relevant to psoriatic inflammation, the activator protein-1 factor Jun B and the nuclear receptor NR4A2/NURR1, that is implicated as a mediator of VDR ligand-triggered gene control. These findings provide insights into the mechanism(s) whereby dietary VDR ligands alter inflammatory and barrier functions relevant to skin repair, and may provide a molecular basis for improved treatments for mild/moderate psoriasis.
Collapse
|
20
|
Xu D, Pavlidis P, Taskent RO, Alachiotis N, Flanagan C, DeGiorgio M, Blekhman R, Ruhl S, Gokcumen O. Archaic Hominin Introgression in Africa Contributes to Functional Salivary MUC7 Genetic Variation. Mol Biol Evol 2017; 34:2704-2715. [PMID: 28957509 PMCID: PMC5850612 DOI: 10.1093/molbev/msx206] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the most abundant proteins in human saliva, mucin-7, is encoded by the MUC7 gene, which harbors copy number variable subexonic repeats (PTS-repeats) that affect the size and glycosylation potential of this protein. We recently documented the adaptive evolution of MUC7 subexonic copy number variation among primates. Yet, the evolution of MUC7 genetic variation in humans remained unexplored. Here, we found that PTS-repeat copy number variation has evolved recurrently in the human lineage, thereby generating multiple haplotypic backgrounds carrying five or six PTS-repeat copy number alleles. Contrary to previous studies, we found no associations between the copy number of PTS-repeats and protection against asthma. Instead, we revealed a significant association of MUC7 haplotypic variation with the composition of the oral microbiome. Furthermore, based on in-depth simulations, we conclude that a divergent MUC7 haplotype likely originated in an unknown African hominin population and introgressed into ancestors of modern Africans.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Pavlos Pavlidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Recep Ozgur Taskent
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Nikolaos Alachiotis
- Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Colin Flanagan
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Michael DeGiorgio
- Department of Biology and the Institute for CyberScience, Pennsylvania State University, University Park, PA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, MN
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
21
|
Xu D, Jaber Y, Pavlidis P, Gokcumen O. VCFtoTree: a user-friendly tool to construct locus-specific alignments and phylogenies from thousands of anthropologically relevant genome sequences. BMC Bioinformatics 2017; 18:426. [PMID: 28950836 PMCID: PMC5615795 DOI: 10.1186/s12859-017-1844-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. RESULTS Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. CONCLUSION VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .
Collapse
Affiliation(s)
- Duo Xu
- Department of Biological Sciences, State University of New York at Buffalo, New York, 14260, USA
| | - Yousef Jaber
- Department of Biological Sciences, State University of New York at Buffalo, New York, 14260, USA
| | - Pavlos Pavlidis
- Institute of Molecular Biology and biotechnology (IMBB), Foundation of Research and Technology--Hellas, Heraklion, Crete, Greece
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, New York, 14260, USA.
| |
Collapse
|
22
|
Chintalapati M, Dannemann M, Prüfer K. Using the Neandertal genome to study the evolution of small insertions and deletions in modern humans. BMC Evol Biol 2017; 17:179. [PMID: 28778150 PMCID: PMC5543596 DOI: 10.1186/s12862-017-1018-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022] Open
Abstract
Background Small insertions and deletions occur in humans at a lower rate compared to nucleotide changes, but evolve under more constraint than nucleotide changes. While the evolution of insertions and deletions have been investigated using ape outgroups, the now available genome of a Neandertal can shed light on the evolution of indels in more recent times. Results We used the Neandertal genome together with several primate outgroup genomes to differentiate between human insertion/deletion changes that likely occurred before the split from Neandertals and those that likely arose later. Changes that pre-date the split from Neandertals show a smaller proportion of deletions than those that occurred later. The presence of a Neandertal-shared allele in Europeans or Asians but the absence in Africans was used to detect putatively introgressed indels in Europeans and Asians. A larger proportion of these variants reside in intergenic regions compared to other modern human variants, and some variants are linked to SNPs that have been associated with traits in modern humans. Conclusions Our results are in agreement with earlier results that suggested that deletions evolve under more constraint than insertions. When considering Neandertal introgressed variants, we find some evidence that negative selection affected these variants more than other variants segregating in modern humans. Among introgressed variants we also identify indels that may influence the phenotype of their carriers. In particular an introgressed deletion associated with a decrease in the time to menarche may constitute an example of a former Neandertal-specific trait contributing to modern human phenotypic diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1018-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| |
Collapse
|
23
|
|
24
|
Visualization of Distinct DNA Regions of the Modern Human Relatively to a Neanderthal Genome. PATTERN RECOGNITION AND IMAGE ANALYSIS 2017. [DOI: 10.1007/978-3-319-58838-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Pajic P, Lin YL, Xu D, Gokcumen O. The psoriasis-associated deletion of late cornified envelope genes LCE3B and LCE3C has been maintained under balancing selection since Human Denisovan divergence. BMC Evol Biol 2016; 16:265. [PMID: 27919236 PMCID: PMC5139038 DOI: 10.1186/s12862-016-0842-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A common, 32kb deletion of LCE3B and LCE3C genes is strongly associated with psoriasis. We recently found that this deletion is ancient, predating Human-Denisovan divergence. However, it was not clear why negative selection has not removed this deletion from the population. RESULTS Here, we show that the haplotype block that harbors the deletion (i) retains high allele frequency among extant and ancient human populations; (ii) harbors unusually high nucleotide variation (π, P < 4.1 × 10-3); (iii) contains an excess of intermediate frequency variants (Tajima's D, P < 3.9 × 10-3); and (iv) has an unusually long time to coalescence to the most recent common ancestor (TSel, 0.1 quantile). CONCLUSIONS Our results are most parsimonious with the scenario where the LCE3BC deletion has evolved under balancing selection in humans. More broadly, this is consistent with the hypothesis that a balance between autoimmunity and natural vaccination through increased exposure to pathogens maintains this deletion in humans.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, Cooke 639, Buffalo, NY, 14260, USA
| | - Yen-Lung Lin
- Department of Biological Sciences, University at Buffalo, Cooke 639, Buffalo, NY, 14260, USA
| | - Duo Xu
- Department of Biological Sciences, University at Buffalo, Cooke 639, Buffalo, NY, 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, Cooke 639, Buffalo, NY, 14260, USA.
| |
Collapse
|
26
|
Eaaswarkhanth M, Xu D, Flanagan C, Rzhetskaya M, Hayes MG, Blekhman R, Jablonski NG, Gokcumen O. Atopic Dermatitis Susceptibility Variants in Filaggrin Hitchhike Hornerin Selective Sweep. Genome Biol Evol 2016; 8:3240-3255. [PMID: 27678121 PMCID: PMC5174745 DOI: 10.1093/gbe/evw242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human skin has evolved rapidly, leaving evolutionary signatures in the genome. The filaggrin (FLG) gene is widely studied for its skin-barrier function in humans. The extensive genetic variation in this gene, especially common loss-of-function (LoF) mutations, has been established as primary risk factors for atopic dermatitis. To investigate the evolution of this gene, we analyzed 2,504 human genomes and genotyped the copy number variation of filaggrin repeats within FLG in 126 individuals from diverse ancestral backgrounds. We were unable to replicate a recent study claiming that LoF of FLG is adaptive in northern latitudes with lower ultraviolet light exposure. Instead, we present multiple lines of evidence suggesting that FLG genetic variation, including LoF variants, have little or no effect on fitness in modern humans. Haplotype-level scrutinization of the locus revealed signatures of a recent selective sweep in Asia, which increased the allele frequency of a haplotype group (Huxian haplogroup) in Asian populations. Functionally, we found that the Huxian haplogroup carries dozens of functional variants in FLG and hornerin (HRNR) genes, including those that are associated with atopic dermatitis susceptibility, HRNR expression levels and microbiome diversity on the skin. Our results suggest that the target of the adaptive sweep is HRNR gene function, and the functional FLG variants that involve susceptibility to atopic dermatitis, seem to hitchhike the selective sweep on HRNR. Our study presents a novel case of a locus that harbors clinically relevant common genetic variation with complex evolutionary trajectories.
Collapse
Affiliation(s)
- Muthukrishnan Eaaswarkhanth
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| | - Duo Xu
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| | - Colin Flanagan
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| | - Margarita Rzhetskaya
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| | - Nina G Jablonski
- Department of Anthropology, Pennsylvania State University, University Park, PA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
27
|
Juric I, Aeschbacher S, Coop G. The Strength of Selection against Neanderthal Introgression. PLoS Genet 2016; 12:e1006340. [PMID: 27824859 PMCID: PMC5100956 DOI: 10.1371/journal.pgen.1006340] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/06/2016] [Indexed: 11/19/2022] Open
Abstract
Hybridization between humans and Neanderthals has resulted in a low level of Neanderthal ancestry scattered across the genomes of many modern-day humans. After hybridization, on average, selection appears to have removed Neanderthal alleles from the human population. Quantifying the strength and causes of this selection against Neanderthal ancestry is key to understanding our relationship to Neanderthals and, more broadly, how populations remain distinct after secondary contact. Here, we develop a novel method for estimating the genome-wide average strength of selection and the density of selected sites using estimates of Neanderthal allele frequency along the genomes of modern-day humans. We confirm that East Asians had somewhat higher initial levels of Neanderthal ancestry than Europeans even after accounting for selection. We find that the bulk of purifying selection against Neanderthal ancestry is best understood as acting on many weakly deleterious alleles. We propose that the majority of these alleles were effectively neutral—and segregating at high frequency—in Neanderthals, but became selected against after entering human populations of much larger effective size. While individually of small effect, these alleles potentially imposed a heavy genetic load on the early-generation human–Neanderthal hybrids. This work suggests that differences in effective population size may play a far more important role in shaping levels of introgression than previously thought. A small percentage of Neanderthal DNA is present in the genomes of many contemporary human populations due to hybridization tens of thousands of years ago. Much of this Neanderthal DNA appears to be deleterious in humans, and natural selection is acting to remove it. One hypothesis is that the underlying alleles were not deleterious in Neanderthals, but rather represent genetic incompatibilities that became deleterious only once they were introduced to the human population. If so, reproductive barriers must have evolved rapidly between Neanderthals and humans after their split. Here, we show that observed patterns of Neanderthal ancestry in modern humans can be explained simply as a consequence of the difference in effective population size between Neanderthals and humans. Specifically, we find that on average, selection against individual Neanderthal alleles is very weak. This is consistent with the idea that Neanderthals over time accumulated many weakly deleterious alleles that in their small population were effectively neutral. However, after introgressing into larger human populations, those alleles became exposed to purifying selection. Thus, rather than being the result of hybrid incompatibilities, differences between human and Neanderthal effective population sizes appear to have played a key role in shaping our present-day shared ancestry.
Collapse
Affiliation(s)
- Ivan Juric
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
- * E-mail:
| | - Simon Aeschbacher
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Graham Coop
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
28
|
Xu D, Pavlidis P, Thamadilok S, Redwood E, Fox S, Blekhman R, Ruhl S, Gokcumen O. Recent evolution of the salivary mucin MUC7. Sci Rep 2016; 6:31791. [PMID: 27558399 PMCID: PMC4997351 DOI: 10.1038/srep31791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Genomic structural variants constitute the majority of variable base pairs in primate genomes and affect gene function in multiple ways. While whole gene duplications and deletions are relatively well-studied, the biology of subexonic (i.e., within coding exon sequences), copy number variation remains elusive. The salivary MUC7 gene provides an opportunity for studying such variation, as it harbors copy number variable subexonic repeat sequences that encode for densely O-glycosylated domains (PTS-repeats) with microbe-binding properties. To understand the evolution of this gene, we analyzed mammalian and primate genomes within a comparative framework. Our analyses revealed that (i) MUC7 has emerged in the placental mammal ancestor and rapidly gained multiple sites for O-glycosylation; (ii) MUC7 has retained its extracellular activity in saliva in placental mammals; (iii) the anti-fungal domain of the protein was remodified under positive selection in the primate lineage; and (iv) MUC7 PTS-repeats have evolved recurrently and under adaptive constraints. Our results establish MUC7 as a major player in salivary adaptation, likely as a response to diverse pathogenic exposure in primates. On a broader scale, our study highlights variable subexonic repeats as a primary source for modular evolutionary innovation that lead to rapid functional adaptation.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Supaporn Thamadilok
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, New York 14214, USA
| | - Emilie Redwood
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | - Sara Fox
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minnesota 55455, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, New York 14214, USA
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| |
Collapse
|
29
|
Abstract
Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the "less-ismore" hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits.
Collapse
Affiliation(s)
| | | | | | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
30
|
Evolution of the rapidly mutating human salivary agglutinin gene (DMBT1) and population subsistence strategy. Proc Natl Acad Sci U S A 2015; 112:5105-10. [PMID: 25848046 DOI: 10.1073/pnas.1416531112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dietary change resulting from the domestication of plant and animal species and development of agriculture at different locations across the world was one of the most significant changes in human evolution. An increase in dietary carbohydrates caused an increase in dental caries following the development of agriculture, mediated by the cariogenic oral bacterium Streptococcus mutans. Salivary agglutinin [SAG, encoded by the deleted in malignant brain tumors 1 (DMBT1) gene] is an innate immune receptor glycoprotein that binds a variety of bacteria and viruses, and mediates attachment of S. mutans to hydroxyapatite on the surface of the tooth. In this study we show that multiallelic copy number variation (CNV) within DMBT1 is extensive across all populations and is predicted to result in between 7-20 scavenger-receptor cysteine-rich (SRCR) domains within each SAG molecule. Direct observation of de novo mutation in multigeneration families suggests these CNVs have a very high mutation rate for a protein-coding locus, with a mutation rate of up to 5% per gamete. Given that the SRCR domains bind S. mutans and hydroxyapatite in the tooth, we investigated the association of sequence diversity at the SAG-binding gene of S. mutans, and DMBT1 CNV. Furthermore, we show that DMBT1 CNV is also associated with a history of agriculture across global populations, suggesting that dietary change as a result of agriculture has shaped the pattern of CNV at DMBT1, and that the DMBT1-S. mutans interaction is a promising model of host-pathogen-culture coevolution in humans.
Collapse
|