1
|
Jiang HW, Gisriel CJ, Cardona T, Flesher DA, Brudvig GW, Ho MY. Structure and evolution of Photosystem I in the early-branching cyanobacterium Anthocerotibacter panamensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621444. [PMID: 39553964 PMCID: PMC11565984 DOI: 10.1101/2024.10.31.621444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Thylakoid-free cyanobacteria are thought to preserve ancestral traits of early-evolving organisms capable of oxygenic photosynthesis. However, and until recently, photosynthesis studies in thylakoid-free cyanobacteria were only possible in the model strain Gloeobacter violaceus. Here, we report the isolation, biochemical characterization, cryo-EM structure, and phylogenetic analysis of photosystem I from a newly-discovered thylakoid-free cyanobacterium, Anthocerotibacter panamensis, a distant relative of the genus Gloeobacter. We find that A. panamensis photosystem I exhibits a distinct carotenoid composition and has one conserved low-energy chlorophyll site, which was lost in G. violaceus. These features explain the capacity of A. panamensis to grow under high light intensity, unlike other Gloeobacteria. Furthermore, we find that, while at the sequence level photosystem I in thylakoid-free cyanobacteria has changed to a degree comparable to that of other strains, its subunit composition and oligomeric form might be identical to that of the most recent common ancestor of cyanobacteria.
Collapse
|
2
|
Saito K, Tamura H, Ishikita H. Superexchange Electron Transfer and Protein Matrix in the Charge-Separation Process of Photosynthetic Reaction Centers. J Phys Chem Lett 2024; 15:9183-9192. [PMID: 39213497 PMCID: PMC11404480 DOI: 10.1021/acs.jpclett.4c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In type-II reaction centers, such as photosystem II (PSII) and reaction centers from purple bacteria (PbRC), light-induced charge separation involves electron transfer from pheophytin (PheoD1) to quinone (QA), occurring near a conserved tryptophan residue (D2-Trp253 in PSII and Trp-M252 in PbRC). This study investigates the route of the PheoD1-to-QA electron transfer, focusing on the superexchange coupling (|HPheoD1···QA|) in the PSII protein environment. |HPheoD1···QA| is significantly larger for the PheoD1-to-QA electron transfer via the unoccupied molecular orbitals of D2-Trp253 ([Trp]•--like intermediate state, 0.73 meV) compared to direct electron transfer (0.13 meV), suggesting that superexchange is the dominant mechanism in the PSII protein environment. While the overall impact of the protein environment is limited, local interactions, particularly H-bonds, enhance superexchange electron transfer by directly affecting the delocalization of molecular orbitals. The D2-W253F mutation significantly decreases the electron transfer rate. The conservation of D2-Trp253/D1-Phe255 (Trp-M252/Phe-L216 in PbRC) in the two branches appears to differentiate superexchange coupling, contributing to the branches being either active or inactive in electron transfer.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Tamura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Tan S, Liu L, Jiao JY, Li MM, Hu CJ, Lv AP, Qi YL, Li YX, Rao YZ, Qu YN, Jiang HC, Soo RM, Evans PN, Hua ZS, Li WJ. Exploring the Origins and Evolution of Oxygenic and Anoxygenic Photosynthesis in Deeply Branched Cyanobacteriota. Mol Biol Evol 2024; 41:msae151. [PMID: 39041196 PMCID: PMC11304991 DOI: 10.1093/molbev/msae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.
Collapse
Affiliation(s)
- Sha Tan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yan-Ni Qu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Rochelle M Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Paul N Evans
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
4
|
Grettenberger CL, Abou‐Shanab R, Hamilton TL. Limiting factors in the operation of photosystems I and II in cyanobacteria. Microb Biotechnol 2024; 17:e14519. [PMID: 39101352 PMCID: PMC11298993 DOI: 10.1111/1751-7915.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 08/06/2024] Open
Abstract
Cyanobacteria are important targets for biotechnological applications due to their ability to grow in a wide variety of environments, rapid growth rates, and tractable genetic systems. They and their bioproducts can be used as bioplastics, biofertilizers, and in carbon capture and produce important secondary metabolites that can be used as pharmaceuticals. However, the photosynthetic process in cyanobacteria can be limited by a wide variety of environmental factors such as light intensity and wavelength, exposure to UV light, nutrient limitation, temperature, and salinity. Carefully considering these limitations, modifying the environment, and/or selecting cyanobacterial species will allow cyanobacteria to be used in biotechnological applications.
Collapse
Affiliation(s)
- Christen L. Grettenberger
- Department of Earth and Planetary SciencesUniversity of California DavisDavisCaliforniaUSA
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| | - Reda Abou‐Shanab
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Trinity L. Hamilton
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- The Biotechnology Institute, University of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
5
|
Zhang T, Liu D, Zhang Y, Chen L, Zhang W, Sun T. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects. Mater Today Bio 2024; 27:101154. [PMID: 39113912 PMCID: PMC11304071 DOI: 10.1016/j.mtbio.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria in situ with medical diagnosis and treatment, and the optimization of in vivo application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Dailin Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
6
|
Sheridan KJ, Eaton-Rye JJ, Summerfield TC. Mutagenesis of Ile184 in the cd-loop of the photosystem II D1 protein modifies acceptor-side function via spontaneous mutation of D1-His252 in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 2024; 702:149595. [PMID: 38340653 DOI: 10.1016/j.bbrc.2024.149595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
The Photosystem II water-plastoquinone oxidoreductase is a multi-subunit complex which catalyses the light-driven oxidation of water to molecular oxygen in oxygenic photosynthesis. The D1 reaction centre protein exists in multiple forms in cyanobacteria, including D1FR which is expressed under far-red light. We investigated the role of Phe184 that is found in the lumenal cd-loop of D1FR but is typically an isoleucine in other D1 isoforms. The I184F mutant in Synechocystis sp. PCC 6803 was similar to the control strain but accumulated a spontaneous mutation that introduced a Gln residue in place of His252 located on the opposite side of the thylakoid membrane. His252 participates in the protonation of the secondary plastoquinone electron acceptor QB. The I184F:H252Q double mutant exhibited reduced high-light-induced photodamage and an altered QB-binding site that impaired herbicide binding. Additionally, the H252Q mutant had a large increase in the variable fluorescence yield although the number of photochemically active PS II centres was unchanged. In the I184F:H252Q mutant the extent of the increased fluorescence yield decreased. Our data indicates substitution of Ile184 to Phe modulates PS II-specific variable fluorescence in cells with the His252 to Gln substitution by modifying the QB-binding site.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Botany, University of Otago, Dunedin, 9016, New Zealand; Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | | |
Collapse
|
7
|
Shen L, Gao Y, Tang K, Qi R, Fu L, Chen JH, Wang W, Ma X, Li P, Chen M, Kuang T, Zhang X, Shen JR, Wang P, Han G. Structure of a unique PSII-Pcb tetrameric megacomplex in a chlorophyll d-containing cyanobacterium. SCIENCE ADVANCES 2024; 10:eadk7140. [PMID: 38394197 PMCID: PMC10889353 DOI: 10.1126/sciadv.adk7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.
Collapse
Affiliation(s)
- Liangliang Shen
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuanzhu Gao
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kailu Tang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruxi Qi
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lutang Fu
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Hua Chen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Li
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney NSW 2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
8
|
Gisriel CJ, Bryant DA, Brudvig GW, Cardona T. Molecular diversity and evolution of far-red light-acclimated photosystem I. FRONTIERS IN PLANT SCIENCE 2023; 14:1289199. [PMID: 38053766 PMCID: PMC10694217 DOI: 10.3389/fpls.2023.1289199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
The need to acclimate to different environmental conditions is central to the evolution of cyanobacteria. Far-red light (FRL) photoacclimation, or FaRLiP, is an acclimation mechanism that enables certain cyanobacteria to use FRL to drive photosynthesis. During this process, a well-defined gene cluster is upregulated, resulting in changes to the photosystems that allow them to absorb FRL to perform photochemistry. Because FaRLiP is widespread, and because it exemplifies cyanobacterial adaptation mechanisms in nature, it is of interest to understand its molecular evolution. Here, we performed a phylogenetic analysis of the photosystem I subunits encoded in the FaRLiP gene cluster and analyzed the available structural data to predict ancestral characteristics of FRL-absorbing photosystem I. The analysis suggests that FRL-specific photosystem I subunits arose relatively late during the evolution of cyanobacteria when compared with some of the FRL-specific subunits of photosystem II, and that the order Nodosilineales, which include strains like Halomicronema hongdechloris and Synechococcus sp. PCC 7335, could have obtained FaRLiP via horizontal gene transfer. We show that the ancestral form of FRL-absorbing photosystem I contained three chlorophyll f-binding sites in the PsaB2 subunit, and a rotated chlorophyll a molecule in the A0B site of the electron transfer chain. Along with our previous study of photosystem II expressed during FaRLiP, these studies describe the molecular evolution of the photosystem complexes encoded by the FaRLiP gene cluster.
Collapse
Affiliation(s)
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Chen M, Sawicki A, Wang F. Modeling the Characteristic Residues of Chlorophyll f Synthase (ChlF) from Halomicronema hongdechloris to Determine Its Reaction Mechanism. Microorganisms 2023; 11:2305. [PMID: 37764149 PMCID: PMC10535343 DOI: 10.3390/microorganisms11092305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit photooxidoreductase activities that convert quinone and water into quinol and dioxygen. The performed analysis explored the putative uncoupled electron transfer pathways surrounding P680+ induced by far-red light (FRL) based on photosystem II (PSII) complexes containing substituted D1 subunits in Halomicronema hongdechloris. Chlorophyll f-synthase (ChlF) is a D1 protein paralog. Modeling PSII-ChlF complexes determined several key protein motifs of ChlF. The PSII complexes included a dysfunctional Mn4CaO5 cluster where ChlF replaced the D1 protein. We propose the mechanism of chlorophyll f synthesis from chlorophyll a via free radical chemistry in an oxygenated environment created by over-excited pheophytin a and an inactive water splitting reaction owing to an uncoupled Mn4CaO5 cluster in PSII-ChlF complexes. The role of ChlF in the formation of an inactive PSII reaction center is under debate, and putative mechanisms of chlorophyll f biosynthesis are discussed.
Collapse
Affiliation(s)
- Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
10
|
Sheridan KJ, Brown TJ, Eaton-Rye JJ, Summerfield TC. Expression of the far-red D1 protein or introduction of conserved far-red D1 residues into Synechocystis sp. PCC 6803 impairs Photosystem II. PHYSIOLOGIA PLANTARUM 2023; 175:e13997. [PMID: 37882270 DOI: 10.1111/ppl.13997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 10/27/2023]
Abstract
The wavelengths of light harvested in oxygenic photosynthesis are ~400-700 nm. Some cyanobacteria respond to far-red light exposure via a process called far-red light photoacclimation which enables absorption of light at wavelengths >700 nm and its use to support photosynthesis. Far-red-light-induced changes include up-regulation of alternative copies of multiple proteins of Photosystem II (PS II). This includes an alternative copy of the D1 protein, D1FR . Here, we show that D1FR introduced into Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803) can be incorporated into PS II centres that evolve oxygen at low rates but cannot support photoautotrophic growth. Using mutagenesis to modify the psbA2 gene of Synechocystis 6803, we modified residues in helices A, B, and C to be characteristic of D1FR residues. Modification of the Synechocystis 6803 helix A to resemble the D1FR helix A, with modifications in the region of the bound ß-carotene (CarD1 ) and the accessory chlorophyll, ChlZD1 , produced a strain with a similar phenotype to the D1FR strain. In contrast, the D1FR changes in helices B and C had minor impacts on photoautotrophy but impacted the function of PS II, possibly through a change in the equilibrium for electron sharing between the primary and secondary plastoquinone electron acceptors QA and QB in favour of QA - . The addition of combinations of residue changes in helix C indicates compensating effects may occur and highlight the need to experimentally determine the impact of multiple residue changes.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Botany, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Toby J Brown
- Department of Botany, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
11
|
Sugo Y, Ishikita H. Mechanism of Asparagine-Mediated Proton Transfer in Photosynthetic Reaction Centers. Biochemistry 2023; 62:1544-1552. [PMID: 37083399 PMCID: PMC10194076 DOI: 10.1021/acs.biochem.3c00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs), light-induced charge separation leads to the reduction of the terminal electron acceptor quinone, QB. The reduction of QB to QB•- is followed by protonation via Asp-L213 and Ser-L223 in PbRC from Rhodobacter sphaeroides. However, Asp-L213 is replaced with nontitratable Asn-L222 and Asn-L213 in PbRCs from Thermochromatium tepidum and Blastochloris viridis, respectively. Here, we investigated the energetics of proton transfer along the asparagine-involved H-bond network using a quantum mechanical/molecular mechanical approach. The potential energy profile for the H-bond between H3O+ and the carbonyl O site of Asn-L222 shows that the proton is predominantly localized at the Asn-L222 moiety in the T. tepidum PbRC protein environment, easily forming the enol species. The release of the proton from the amide -NH2 site toward Ser-L232 via tautomerization suffers from the energy barrier. Upon reorientation of Asn-L222, the enol -OH site forms a short low-barrier H-bond with Ser-L232, facilitating protonation of QB•- in a Grotthuss-like mechanism. This is a basis of how asparagine or glutamine side chains function as acceptors/donors in proton transfer pathways.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
12
|
Stevenson DS. A New Ecological and Evolutionary Perspective on the Emergence of Oxygenic Photosynthesis. ASTROBIOLOGY 2023; 23:230-237. [PMID: 36413050 DOI: 10.1089/ast.2021.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this hypothesis article, we propose that the timing of the evolution of oxygenic photosynthesis and the diversification of cyanobacteria is firmly tied to the geological evolution of Earth in the Mesoarchean to Neoarchean. Specifically, the diversification of species capable of oxygenic photosynthesis is tied to the growth of subaerial (above sea-level/terrestrial) continental crust, which provided niches for their diversification. Moreover, we suggest that some formerly aerobic bacterial lineages evolved to become anoxygenic photosynthetic as a result of changes in selection following the reintroduction of ferruginous conditions in the oceans at 1.88 GYa. Both conclusions are fully compatible with phylogenetic evidence. The hypothesis carries with it a predictive component-at least for terrestrial organisms-that the development and expansion of photosynthesis species was dependent on the geological evolution of Earth.
Collapse
|
13
|
Tamura H, Saito K, Nishio S, Ishikita H. Electron-Transfer Route in the Early Oxidation States of the Mn 4CaO 5 Cluster in Photosystem II. J Phys Chem B 2023; 127:205-211. [PMID: 36542840 PMCID: PMC9841979 DOI: 10.1021/acs.jpcb.2c08246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
The electron transfer from the oxygen-evolving Mn4CaO5 cluster to the electron acceptor D1-Tyr161 (TyrZ) is a prerequisite for water oxidation and O2 evolution. Here, we analyzed the electronic coupling in the rate-limiting electron-transfer transitions using a combined quantum mechanical/molecular mechanical/polarizable continuum model approach. In the S0 to S1 transition, the electronic coupling between the electron-donor Mn3(III) and TyrZ is small (2 meV). In contrast, the electronic coupling between the dangling Mn4(III) and TyrZ is significantly large (172 meV), which suggests that the electron transfer proceeds from Mn3(III) to TyrZ via Mn4(III). In the S1 to S2 transition, the electronic coupling between Mn4(III) and TyrZ is also larger (124 meV) than that between Mn1(III) and TyrZ (1 meV), which favors the formation of the open-cubane S2 conformation with Mn4(IV) over the formation of the closed-cubane S2 conformation with Mn1(IV). In the S0 to S1 and S1 to S2 transitions, the Mn4 d-orbital and the TyrZ π-orbital are hybridized via D1-Asp170, which suggests that D1-Asp170 commonly provides a dominant electron-transfer route.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Shunya Nishio
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| |
Collapse
|
14
|
Vergara-Barros P, Alcorta J, Casanova-Katny A, Nürnberg DJ, Díez B. Compensatory Transcriptional Response of Fischerella thermalis to Thermal Damage of the Photosynthetic Electron Transfer Chain. Molecules 2022; 27:8515. [PMID: 36500606 PMCID: PMC9740203 DOI: 10.3390/molecules27238515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Key organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium Fischerella thermalis is one of the main primary producers in terrestrial hot springs with thermal gradients up to 60 °C, but the mechanisms by which F. thermalis maintains its photosynthetic activity at these high temperatures are not known. In this study, we used molecular approaches and bioinformatics, in addition to photophysiological analyses, to determine the genetic activity associated with the energy metabolism of F. thermalis both in situ and in high-temperature (40 °C to 65 °C) cultures. Our results show that photosynthesis of F. thermalis decays with temperature, while increased transcriptional activity of genes encoding photosystem II reaction center proteins, such as PsbA (D1), could help overcome thermal damage at up to 60 °C. We observed that F. thermalis tends to lose copies of the standard G4 D1 isoform while maintaining the recently described D1INT isoform, suggesting a preference for photoresistant isoforms in response to the thermal gradient. The transcriptional activity and metabolic characteristics of F. thermalis, as measured by metatranscriptomics, further suggest that carbon metabolism occurs in parallel with photosynthesis, thereby assisting in energy acquisition under high temperatures at which other photosynthetic organisms cannot survive. This study reveals that, to cope with the harsh conditions of hot springs, F. thermalis has several compensatory adaptations, and provides emerging evidence for mixotrophic metabolism as being potentially relevant to the thermotolerance of this species. Ultimately, this work increases our knowledge about thermal adaptation strategies of cyanobacteria.
Collapse
Affiliation(s)
- Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Temuco 4780000, Chile
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| |
Collapse
|
15
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Sugo Y, Tamura H, Ishikita H. Electron Transfer Route between Quinones in Type-II Reaction Centers. J Phys Chem B 2022; 126:9549-9558. [PMID: 36374126 PMCID: PMC9707520 DOI: 10.1021/acs.jpcb.2c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II (PSII), the photoinduced charge separation is terminated by an electron transfer between the primary (QA) and secondary (QB) quinones. Here, we investigate the electron transfer route, calculating the superexchange coupling (HQA-QB) for electron transfer from QA to QB in the protein environment. HQA-QB is significantly larger in PbRC than in PSII. In superexchange electron tunneling, the electron transfer via unoccupied molecular orbitals of the nonheme Fe complex (QA → Fe → QB) is pronounced in PbRC, whereas the electron transfer via occupied molecular orbitals (Fe → QB followed by QA → Fe) is pronounced in PSII. The significantly large HQA-QB is caused by a water molecule that donates the H-bond to the ligand Glu-M234 in PbRC. The corresponding water molecule is absent in PSII due to the existence of D1-Tyr246. HQA-QB increases in response to the Ser-L223···QB H-bond formation caused by an extension of the H-bond network, which facilitates charge delocalization over the QB site. This explains the observed discrepancy in the QA-to-QB electron transfer between PbRC and PSII, despite their structural similarity.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| | - Hiroyuki Tamura
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| |
Collapse
|
17
|
Photosynthetic modulation during the diurnal cycle in a unicellular diazotrophic cyanobacterium grown under nitrogen-replete and nitrogen-fixing conditions. Sci Rep 2022; 12:18939. [PMID: 36344535 PMCID: PMC9640542 DOI: 10.1038/s41598-022-21829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Cyanobacteria are the only oxygenic photosynthetic organisms that can fix nitrogen. In diazotrophic cyanobacteria, the regulation of photosynthesis during the diurnal cycle is hypothesized to be linked with nitrogen fixation and involve the D1 protein isoform PsbA4. The amount of bioavailable nitrogen has a major impact on productivity in aqueous environments. In contrast to low- or nitrogen-fixing (-N) conditions, little data on photosynthetic regulation under nitrogen-replete (+ N) conditions are available. We compared the regulation of photosynthesis under -N and + N conditions during the diurnal cycle in wild type and a psbA4 deletion strain of the unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. We observed common changes to light harvesting and photosynthetic electron transport during the dark in + N and -N conditions and found that these modifications occur in both diazotrophic and non-diazotrophic cyanobacteria. Nitrogen availability increased PSII titer when cells transitioned from dark to light and promoted growth. Under -N conditions, deletion of PsbA4 modified charge recombination in dark and regulation of PSII titer during dark to light transition. We conclude that darkness impacts the acceptor-side modifications to PSII and photosynthetic electron transport in cyanobacteria independently of the nitrogen-fixing status and the presence of PsbA4.
Collapse
|
18
|
Schulz L, Guo Z, Zarzycki J, Steinchen W, Schuller JM, Heimerl T, Prinz S, Mueller-Cajar O, Erb TJ, Hochberg GKA. Evolution of increased complexity and specificity at the dawn of form I Rubiscos. Science 2022; 378:155-160. [PMID: 36227987 DOI: 10.1126/science.abq1416] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The evolution of ribulose-1,5-bisphosphate carboxylase/oxygenases (Rubiscos) that discriminate strongly between their substrate carbon dioxide and the undesired side substrate dioxygen was an important event for photosynthetic organisms adapting to an oxygenated environment. We use ancestral sequence reconstruction to recapitulate this event. We show that Rubisco increased its specificity and carboxylation efficiency through the gain of an accessory subunit before atmospheric oxygen was present. Using structural and biochemical approaches, we retrace how this subunit was gained and became essential. Our work illuminates the emergence of an adaptation to rising ambient oxygen levels, provides a template for investigating the function of interactions that have remained elusive because of their essentiality, and sheds light on the determinants of specificity in Rubisco.
Collapse
Affiliation(s)
- Luca Schulz
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Zhijun Guo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany.,Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Jan M Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany.,Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany.,Department of Biology, Philipps University Marburg, 35043 Marburg, Germany
| | - Simone Prinz
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany
| | - Georg K A Hochberg
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, 35043 Marburg, Germany.,Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany.,Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
19
|
Sugo Y, Saito K, Ishikita H. Conformational Changes and H-Bond Rearrangements during Quinone Release in Photosystem II. Biochemistry 2022; 61:1836-1843. [PMID: 35914244 PMCID: PMC9454826 DOI: 10.1021/acs.biochem.2c00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII) and photosynthetic reaction centers from purple bacteria (PbRC), the electron released from the electronically excited chlorophyll is transferred to the terminal electron acceptor quinone, QB. QB accepts two electrons and two protons before leaving the protein. We investigated the molecular mechanism of quinone exchange in PSII, conducting molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations. MD simulations suggest that the release of QB leads to the transformation of the short helix (D1-Phe260 to D1-Ser264), which is adjacent to the stromal helix de (D1-Asn247 to D1-Ile259), into a loop and to the formation of a water-intake channel. Water molecules enter the QB binding pocket via the channel and form an H-bond network. QM/MM calculations indicate that the H-bond network serves as a proton-transfer pathway for the reprotonation of D1-His215, the proton donor during QBH-/QBH2 conversion. Together with the absence of the corresponding short helix but the presence of Glu-L212 in PbRC, it seems likely that the two type-II reaction centers undergo quinone exchange via different mechanisms.
Collapse
Affiliation(s)
- Yu Sugo
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
20
|
Gisriel CJ, Cardona T, Bryant DA, Brudvig GW. Molecular Evolution of Far-Red Light-Acclimated Photosystem II. Microorganisms 2022; 10:1270. [PMID: 35888987 PMCID: PMC9325196 DOI: 10.3390/microorganisms10071270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Cyanobacteria are major contributors to global carbon fixation and primarily use visible light (400-700 nm) to drive oxygenic photosynthesis. When shifted into environments where visible light is attenuated, a small, but highly diverse and widespread number of cyanobacteria can express modified pigments and paralogous versions of photosystem subunits and phycobiliproteins that confer far-red light (FRL) absorbance (700-800 nm), a process termed far-red light photoacclimation, or FaRLiP. During FaRLiP, alternate photosystem II (PSII) subunits enable the complex to bind chlorophylls d and f, which absorb at lower energy than chlorophyll a but still support water oxidation. How the FaRLiP response arose remains poorly studied. Here, we report ancestral sequence reconstruction and structure-based molecular evolutionary studies of the FRL-specific subunits of FRL-PSII. We show that the duplications leading to the origin of two PsbA (D1) paralogs required to make chlorophyll f and to bind chlorophyll d in water-splitting FRL-PSII are likely the first to have occurred prior to the diversification of extant cyanobacteria. These duplications were followed by those leading to alternative PsbC (CP43) and PsbD (D2) subunits, occurring early during the diversification of cyanobacteria, and culminating with those leading to PsbB (CP47) and PsbH paralogs coincident with the radiation of the major groups. We show that the origin of FRL-PSII required the accumulation of a relatively small number of amino acid changes and that the ancestral FRL-PSII likely contained a chlorophyll d molecule in the electron transfer chain, two chlorophyll f molecules in the antenna subunits at equivalent positions, and three chlorophyll a molecules whose site energies were altered. The results suggest a minimal model for engineering far-red light absorbance into plant PSII for biotechnological applications.
Collapse
Affiliation(s)
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Adaptation of Cyanobacteria to the Endolithic Light Spectrum in Hyper-Arid Deserts. Microorganisms 2022; 10:microorganisms10061198. [PMID: 35744716 PMCID: PMC9228357 DOI: 10.3390/microorganisms10061198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
In hyper-arid deserts, endolithic microbial communities survive in the pore spaces and cracks of rocks, an environment that enhances water retention and filters UV radiation. The rock colonization zone is enriched in far-red light (FRL) and depleted in visible light. This poses a challenge to cyanobacteria, which are the primary producers of endolithic communities. Many species of cyanobacteria are capable of Far-Red-Light Photoacclimation (FaRLiP), a process in which FRL induces the synthesis of specialized chlorophylls and remodeling of the photosynthetic apparatus, providing the ability to grow in FRL. While FaRLiP has been reported in cyanobacteria from various low-light environments, our understanding of light adaptations for endolithic cyanobacteria remains limited. Here, we demonstrated that endolithic Chroococcidiopsis isolates from deserts around the world synthesize chlorophyll f, an FRL-specialized chlorophyll when FRL is the sole light source. The metagenome-assembled genomes of these isolates encoded chlorophyll f synthase and all the genes required to implement the FaRLiP response. We also present evidence of FRL-induced changes to the major light-harvesting complexes of a Chroococcidiopsis isolate. These findings indicate that endolithic cyanobacteria from hyper-arid deserts use FRL photoacclimation as an adaptation to the unique light transmission spectrum of their rocky habitat.
Collapse
|
22
|
Martín-Clemente E, Melero-Jiménez IJ, Bañares-España E, Flores-Moya A, García-Sánchez MJ. Photosynthetic performance in cyanobacteria with increased sulphide tolerance: an analysis comparing wild-type and experimentally derived strains. PHOTOSYNTHESIS RESEARCH 2022; 151:251-263. [PMID: 34807429 PMCID: PMC8940870 DOI: 10.1007/s11120-021-00882-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 06/02/2023]
Abstract
Sulphide is proposed to have influenced the evolution of primary stages of oxygenic photosynthesis in cyanobacteria. However, sulphide is toxic to most of the species of this phylum, except for some sulphide-tolerant species showing various sulphide-resistance mechanisms. In a previous study, we found that this tolerance can be induced by environmental sulphidic conditions, in which two experimentally derived strains with an enhanced tolerance to sulphide were obtained from Microcystis aeruginosa, a sensitive species, and Oscillatoria, a sulphide-tolerant genus. We have now analysed the photosynthetic performance of the wild-type and derived strains in the presence of sulphide to shed light on the characteristics underlying the increased tolerance. We checked whether the sulphide tolerance was a result of higher PSII sulphide resistance and/or the induction of sulphide-dependent anoxygenic photosynthesis. We observed that growth, maximum quantum yield, maximum electron transport rate and photosynthetic efficiency in the presence of sulphide were less affected in the derived strains compared to their wild-type counterparts. Nevertheless, in 14C photoincoporation assays, neither Oscillatoria nor M. aeruginosa exhibited anoxygenic photosynthesis using sulphide as an electron donor. On the other hand, the content of photosynthetic pigments in the derived strains was different to that observed in the wild-type strains. Thus, an enhanced PSII sulphide resistance appears to be behind the increased sulphide tolerance displayed by the experimentally derived strains, as observed in most natural sulphide-tolerant cyanobacterial strains. However, other changes in the photosynthetic machinery cannot be excluded.
Collapse
Affiliation(s)
- Elena Martín-Clemente
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
| | - Ignacio J Melero-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Elena Bañares-España
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Antonio Flores-Moya
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - María J García-Sánchez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
23
|
Hitchcock A, Hunter CN, Sobotka R, Komenda J, Dann M, Leister D. Redesigning the photosynthetic light reactions to enhance photosynthesis - the PhotoRedesign consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:23-34. [PMID: 34709696 DOI: 10.1111/tpj.15552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
In this Perspective article, we describe the visions of the PhotoRedesign consortium funded by the European Research Council of how to enhance photosynthesis. The light reactions of photosynthesis in individual phototrophic species use only a fraction of the solar spectrum, and high light intensities can impair and even damage the process. In consequence, expanding the solar spectrum and enhancing the overall energy capacity of the process, while developing resilience to stresses imposed by high light intensities, could have a strong positive impact on food and energy production. So far, the complexity of the photosynthetic machinery has largely prevented improvements by conventional approaches. Therefore, there is an urgent need to develop concepts to redesign the light-harvesting and photochemical capacity of photosynthesis, as well as to establish new model systems and toolkits for the next generation of photosynthesis researchers. The overall objective of PhotoRedesign is to reconfigure the photosynthetic light reactions so they can harvest and safely convert energy from an expanded solar spectrum. To this end, a variety of synthetic biology approaches, including de novo design, will combine the attributes of photosystems from different photoautotrophic model organisms, namely the purple bacterium Rhodobacter sphaeroides, the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana. In parallel, adaptive laboratory evolution will be applied to improve the capacity of reimagined organisms to cope with enhanced input of solar energy, particularly in high and fluctuating light.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Christopher Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Roman Sobotka
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
24
|
Grim SL, Voorhies AA, Biddanda BA, Jain S, Nold SC, Green R, Dick GJ. Omics-Inferred Partitioning and Expression of Diverse Biogeochemical Functions in a Low-O 2 Cyanobacterial Mat Community. mSystems 2021; 6:e0104221. [PMID: 34874776 PMCID: PMC8651085 DOI: 10.1128/msystems.01042-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial mats profoundly influenced Earth's biological and geochemical evolution and still play important ecological roles in the modern world. However, the biogeochemical functioning of cyanobacterial mats under persistent low-O2 conditions, which dominated their evolutionary history, is not well understood. To investigate how different metabolic and biogeochemical functions are partitioned among community members, we conducted metagenomics and metatranscriptomics on cyanobacterial mats in the low-O2, sulfidic Middle Island sinkhole (MIS) in Lake Huron. Metagenomic assembly and binning yielded 144 draft metagenome assembled genomes, including 61 of medium quality or better, and the dominant cyanobacteria and numerous Proteobacteria involved in sulfur cycling. Strains of a Phormidium autumnale-like cyanobacterium dominated the metagenome and metatranscriptome. Transcripts for the photosynthetic reaction core genes psaA and psbA were abundant in both day and night. Multiple types of psbA genes were expressed from each cyanobacterium, and the dominant psbA transcripts were from an atypical microaerobic type of D1 protein from Phormidium. Further, cyanobacterial transcripts for photosystem I genes were more abundant than those for photosystem II, and two types of Phormidium sulfide quinone reductase were recovered, consistent with anoxygenic photosynthesis via photosystem I in the presence of sulfide. Transcripts indicate active sulfur oxidation and reduction within the cyanobacterial mat, predominately by Gammaproteobacteria and Deltaproteobacteria, respectively. Overall, these genomic and transcriptomic results link specific microbial groups to metabolic processes that underpin primary production and biogeochemical cycling in a low-O2 cyanobacterial mat and suggest mechanisms for tightly coupled cycling of oxygen and sulfur compounds in the mat ecosystem. IMPORTANCE Cyanobacterial mats are dense communities of microorganisms that contain photosynthetic cyanobacteria along with a host of other bacterial species that play important yet still poorly understood roles in this ecosystem. Although such cyanobacterial mats were critical agents of Earth's biological and chemical evolution through geological time, little is known about how they function under the low-oxygen conditions that characterized most of their natural history. Here, we performed sequencing of the DNA and RNA of modern cyanobacterial mat communities under low-oxygen and sulfur-rich conditions from the Middle Island sinkhole in Lake Huron. The results reveal the organisms and metabolic pathways that are responsible for both oxygen-producing and non-oxygen-producing photosynthesis as well as interconversions of sulfur that likely shape how much O2 is produced in such ecosystems. These findings indicate tight metabolic reactions between community members that help to explain the limited the amount of O2 produced in cyanobacterial mat ecosystems.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander A. Voorhies
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Bopaiah A. Biddanda
- Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen C. Nold
- Biology Department, University of Wisconsin—Stout, Menomonie, Wisconsin, USA
| | - Russ Green
- Thunder Bay National Marine Sanctuary, National Oceanic and Atmospheric Administration, Alpena, Michigan, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Saw JH, Cardona T, Montejano G. Complete Genome Sequencing of a Novel Gloeobacter Species from a Waterfall Cave in Mexico. Genome Biol Evol 2021; 13:6446517. [PMID: 34850891 PMCID: PMC8691054 DOI: 10.1093/gbe/evab264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Only two complete genomes of the cyanobacterial genus Gloeobacter from two very different regions of the world currently exist. Here, we present the complete genome sequence of a third member of the genus isolated from a waterfall cave in Mexico. Analysis of the average nucleotide identities (ANIs) between published Gloeobacter genomes revealed that the complete genome of this new member is only 92.7% similar to Gloeobacter violaceus and therefore we determined it to be a new species. We propose to name this new species Gloeobacter morelensis after the location in Mexico where it was isolated. The complete genome consists of one circular chromosome (4,921,229 bp), one linear plasmid (172,328 bp), and one circular plasmid (8,839 bp). Its genome is the largest of all completely sequenced genomes of Gloeobacter species. Pangenomic comparisons revealed that G. morelensis encodes 759 genes not shared with other Gloeobacter species. Despite being more closely related to G. violaceus, it features an extremely divergent psbA gene encoding an atypical D1 core subunit of Photosystem II previously only found within the genome of Gloeobacter kilaueensis. In addition, we detected evidence of concerted evolution of psbA genes encoding identical D1 in all three Gloeobacter genomes, a characteristic that seems widespread in cyanobacteria and may therefore be traced back to their last common ancestor.
Collapse
Affiliation(s)
- Jimmy H Saw
- Department of Biological Sciences, The George Washington University, District of Columbia, USA
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Gustavo Montejano
- Facultad de Ciencias, Laboratorio de Ficología, National Autonomous University of Mexico, Ciudad de México, Mexico
| |
Collapse
|
26
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
27
|
Zavafer A. A theoretical framework of the hybrid mechanism of photosystem II photodamage. PHOTOSYNTHESIS RESEARCH 2021; 149:107-120. [PMID: 34338941 DOI: 10.1007/s11120-021-00843-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Photodamage of photosystem II is a significant physiological process that is prevalent in the fields of photobiology, photosynthesis research and plant/algal stress. Since its discovery, numerous efforts have been devoted to determine the causes and mechanisms of action of photosystem II photodamage. There are two contrasting hypotheses to explain photodamage: (1) the excitation pressure induced by light absorption by the photosynthetic pigments and (2) direct photodamage of the Mn cluster located at the water-splitting site, which is independent of excitation pressure. While these two hypotheses seemed mutually exclusive, during the last decade, several independent works have proposed an alternative approach indicating that both hypotheses are valid. This was termed the dual hypothesis of photosystem II photodamage, and it postulates that both excess excitation and direct Mn photodamage operate at the same time, independently or in a synergic manner, depending on the type of sample, temperature, light spectrum, or other environmental stressors. In this mini-review, a brief summary of the contrasting hypotheses is presented, followed by recapitulation of key discoveries in the field of photosystem II photodamage of the last decade, and a synthesis of how these works support a full hybrid framework (operation of several mechanisms and their permutations) to explain PSII photodamage. All these are in recognition of Prof. Wah Soon Chow (the Australian National University), one of the key proposers of the dual hypothesis.
Collapse
Affiliation(s)
- Alonso Zavafer
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia.
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
28
|
Oliver T, Sánchez-Baracaldo P, Larkum AW, Rutherford AW, Cardona T. Time-resolved comparative molecular evolution of oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148400. [PMID: 33617856 PMCID: PMC8047818 DOI: 10.1016/j.bbabio.2021.148400] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Oxygenic photosynthesis starts with the oxidation of water to O2, a light-driven reaction catalysed by photosystem II. Cyanobacteria are the only prokaryotes capable of water oxidation and therefore, it is assumed that the origin of oxygenic photosynthesis is a late innovation relative to the origin of life and bioenergetics. However, when exactly water oxidation originated remains an unanswered question. Here we use phylogenetic analysis to study a gene duplication event that is unique to photosystem II: the duplication that led to the evolution of the core antenna subunits CP43 and CP47. We compare the changes in the rates of evolution of this duplication with those of some of the oldest well-described events in the history of life: namely, the duplication leading to the Alpha and Beta subunits of the catalytic head of ATP synthase, and the divergence of archaeal and bacterial RNA polymerases and ribosomes. We also compare it with more recent events such as the duplication of Cyanobacteria-specific FtsH metalloprotease subunits and the radiation leading to Margulisbacteria, Sericytochromatia, Vampirovibrionia, and other clades containing anoxygenic phototrophs. We demonstrate that the ancestral core duplication of photosystem II exhibits patterns in the rates of protein evolution through geological time that are nearly identical to those of the ATP synthase, RNA polymerase, or the ribosome. Furthermore, we use ancestral sequence reconstruction in combination with comparative structural biology of photosystem subunits, to provide additional evidence supporting the premise that water oxidation had originated before the ancestral core duplications. Our work suggests that photosynthetic water oxidation originated closer to the origin of life and bioenergetics than can be documented based on phylogenetic or phylogenomic species trees alone.
Collapse
Affiliation(s)
- Thomas Oliver
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | | | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
29
|
Tamura H, Saito K, Ishikita H. The origin of unidirectional charge separation in photosynthetic reaction centers: nonadiabatic quantum dynamics of exciton and charge in pigment-protein complexes. Chem Sci 2021; 12:8131-8140. [PMID: 34194703 PMCID: PMC8208306 DOI: 10.1039/d1sc01497h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Exciton charge separation in photosynthetic reaction centers from purple bacteria (PbRC) and photosystem II (PSII) occurs exclusively along one of the two pseudo-symmetric branches (active branch) of pigment-protein complexes. The microscopic origin of unidirectional charge separation in photosynthesis remains controversial. Here we elucidate the essential factors leading to unidirectional charge separation in PbRC and PSII, using nonadiabatic quantum dynamics calculations in conjunction with time-dependent density functional theory (TDDFT) with the quantum mechanics/molecular mechanics/polarizable continuum model (QM/MM/PCM) method. This approach accounts for energetics, electronic coupling, and vibronic coupling of the pigment excited states under electrostatic interactions and polarization of whole protein environments. The calculated time constants of charge separation along the active branches of PbRC and PSII are similar to those observed in time-resolved spectroscopic experiments. In PbRC, Tyr-M210 near the accessary bacteriochlorophyll reduces the energy of the intermediate state and drastically accelerates charge separation overcoming the electron-hole interaction. Remarkably, even though both the active and inactive branches in PSII can accept excitons from light-harvesting complexes, charge separation in the inactive branch is prevented by a weak electronic coupling due to symmetry-breaking of the chlorophyll configurations. The exciton in the inactive branch in PSII can be transferred to the active branch via direct and indirect pathways. Subsequently, the ultrafast electron transfer to pheophytin in the active branch prevents exciton back transfer to the inactive branch, thereby achieving unidirectional charge separation.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| |
Collapse
|
30
|
Lumian JE, Jungblut AD, Dillion ML, Hawes I, Doran PT, Mackey TJ, Dick GJ, Grettenberger CL, Sumner DY. Metabolic Capacity of the Antarctic Cyanobacterium Phormidium pseudopriestleyi That Sustains Oxygenic Photosynthesis in the Presence of Hydrogen Sulfide. Genes (Basel) 2021; 12:genes12030426. [PMID: 33809699 PMCID: PMC8002359 DOI: 10.3390/genes12030426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/11/2023] Open
Abstract
Sulfide inhibits oxygenic photosynthesis by blocking electron transfer between H2O and the oxygen-evolving complex in the D1 protein of Photosystem II. The ability of cyanobacteria to counter this effect has implications for understanding the productivity of benthic microbial mats in sulfidic environments throughout Earth history. In Lake Fryxell, Antarctica, the benthic, filamentous cyanobacterium Phormidium pseudopriestleyi creates a 1–2 mm thick layer of 50 µmol L−1 O2 in otherwise sulfidic water, demonstrating that it sustains oxygenic photosynthesis in the presence of sulfide. A metagenome-assembled genome of P. pseudopriestleyi indicates a genetic capacity for oxygenic photosynthesis, including multiple copies of psbA (encoding the D1 protein of Photosystem II), and anoxygenic photosynthesis with a copy of sqr (encoding the sulfide quinone reductase protein that oxidizes sulfide). The genomic content of P. pseudopriestleyi is consistent with sulfide tolerance mechanisms including increasing psbA expression or directly oxidizing sulfide with sulfide quinone reductase. However, the ability of the organism to reduce Photosystem I via sulfide quinone reductase while Photosystem II is sulfide-inhibited, thereby performing anoxygenic photosynthesis in the presence of sulfide, has yet to be demonstrated.
Collapse
Affiliation(s)
- Jessica E. Lumian
- Microbiology Graduate Group, University of California, Davis, CA 95616, USA;
| | - Anne D. Jungblut
- Life Sciences Department, The Natural History Museum, London SW7 5BD, UK;
| | - Megan L. Dillion
- Genomics and Bioinformatics, Novozymes, Inc., Davis, CA 95616, USA;
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga 3110, New Zealand;
| | - Peter T. Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Tyler J. Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-530-752-5353
| |
Collapse
|
31
|
Chernomor O, Peters L, Schneidewind J, Loeschcke A, Knieps-Grünhagen E, Schmitz F, von Lieres E, Kutta RJ, Svensson V, Jaeger KE, Drepper T, von Haeseler A, Krauss U. Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: Origin, Phylogeny, and Function. Mol Biol Evol 2021; 38:819-837. [PMID: 32931580 PMCID: PMC7947762 DOI: 10.1093/molbev/msaa234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Light-dependent protochlorophyllide oxidoreductase (LPOR) and dark-operative protochlorophyllide oxidoreductase are evolutionary and structurally distinct enzymes that are essential for the synthesis of (bacterio)chlorophyll, the primary pigment needed for both anoxygenic and oxygenic photosynthesis. In contrast to the long-held hypothesis that LPORs are only present in oxygenic phototrophs, we recently identified a functional LPOR in the aerobic anoxygenic phototrophic bacterium (AAPB) Dinoroseobacter shibae and attributed its presence to a single horizontal gene transfer event from cyanobacteria. Here, we provide evidence for the more widespread presence of genuine LPOR enzymes in AAPBs. An exhaustive bioinformatics search identified 36 putative LPORs outside of oxygenic phototrophic bacteria (cyanobacteria) with the majority being AAPBs. Using in vitro and in vivo assays, we show that the large majority of the tested AAPB enzymes are genuine LPORs. Solution structural analyses, performed for two of the AAPB LPORs, revealed a globally conserved structure when compared with a well-characterized cyanobacterial LPOR. Phylogenetic analyses suggest that LPORs were transferred not only from cyanobacteria but also subsequently between proteobacteria and from proteobacteria to Gemmatimonadetes. Our study thus provides another interesting example for the complex evolutionary processes that govern the evolution of bacteria, involving multiple horizontal gene transfer events that likely occurred at different time points and involved different donors.
Collapse
Affiliation(s)
- Olga Chernomor
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Lena Peters
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Judith Schneidewind
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschcke
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Esther Knieps-Grünhagen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Fabian Schmitz
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg, Germany
| | - Vera Svensson
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas Drepper
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
- Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
32
|
Light-driven formation of manganese oxide by today's photosystem II supports evolutionarily ancient manganese-oxidizing photosynthesis. Nat Commun 2020; 11:6110. [PMID: 33257675 PMCID: PMC7705724 DOI: 10.1038/s41467-020-19852-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
Water oxidation and concomitant dioxygen formation by the manganese-calcium cluster of oxygenic photosynthesis has shaped the biosphere, atmosphere, and geosphere. It has been hypothesized that at an early stage of evolution, before photosynthetic water oxidation became prominent, light-driven formation of manganese oxides from dissolved Mn(2+) ions may have played a key role in bioenergetics and possibly facilitated early geological manganese deposits. Here we report the biochemical evidence for the ability of photosystems to form extended manganese oxide particles. The photochemical redox processes in spinach photosystem-II particles devoid of the manganese-calcium cluster are tracked by visible-light and X-ray spectroscopy. Oxidation of dissolved manganese ions results in high-valent Mn(III,IV)-oxide nanoparticles of the birnessite type bound to photosystem II, with 50-100 manganese ions per photosystem. Having shown that even today’s photosystem II can form birnessite-type oxide particles efficiently, we propose an evolutionary scenario, which involves manganese-oxide production by ancestral photosystems, later followed by down-sizing of protein-bound manganese-oxide nanoparticles to finally yield today’s catalyst of photosynthetic water oxidation. Photosynthetic formation of manganese (Mn) oxides from dissolved Mn ions was proposed to occur in ancestral photosystems before oxygenic photosynthesis evolved. Here, the authors provide evidence for this hypothesis by showing that photosystem II devoid of the Mn cluster oxidises Mn ions leading to formation of Mn-oxide nanoparticles.
Collapse
|
33
|
Femtosecond visible transient absorption spectroscopy of chlorophyll- f-containing photosystem II. Proc Natl Acad Sci U S A 2020; 117:23158-23164. [PMID: 32868421 DOI: 10.1073/pnas.2006016117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently discovered, chlorophyll-f-containing, far-red photosystem II (FR-PSII) supports far-red light photosynthesis. Participation and kinetics of spectrally shifted far-red pigments are directly observable and separated from that of bulk chlorophyll-a We present an ultrafast transient absorption study of FR-PSII, investigating energy transfer and charge separation processes. Results show a rapid subpicosecond energy transfer from chlorophyll-a to the long-wavelength chlorophylls-f/d The data demonstrate the decay of an ∼720-nm negative feature on the picosecond-to-nanosecond timescales, coinciding with charge separation, secondary electron transfer, and stimulated emission decay. An ∼675-nm bleach attributed to the loss of chl-a absorption due to the formation of a cation radical, PD1 +•, is only fully developed in the nanosecond spectra, indicating an unusually delayed formation. A major spectral feature on the nanosecond timescale at 725 nm is attributed to an electrochromic blue shift of a FR-chlorophyll among the reaction center pigments. These time-resolved observations provide direct experimental support for the model of Nürnberg et al. [D. J. Nürnberg et al., Science 360, 1210-1213 (2018)], in which the primary electron donor is a FR-chlorophyll and the secondary donor is chlorophyll-a (PD1 of the central chlorophyll pair). Efficient charge separation also occurs using selective excitation of long-wavelength chlorophylls-f/d, and the localization of the excited state on P720* points to a smaller (entropic) energy loss compared to conventional PSII, where the excited state is shared over all of the chlorin pigments. This has important repercussions on understanding the overall energetics of excitation energy transfer and charge separation reactions in FR-PSII.
Collapse
|
34
|
Sheridan KJ, Duncan EJ, Eaton-Rye JJ, Summerfield TC. The diversity and distribution of D1 proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2020; 145:111-128. [PMID: 32556852 DOI: 10.1007/s11120-020-00762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The psbA gene family in cyanobacteria encodes different forms of the D1 protein that is part of the Photosystem II reaction centre. We have identified a phylogenetically distinct D1 group that is intermediate between previously identified G3-D1 and G4-D1 proteins (Cardona et al. Mol Biol Evol 32:1310-1328, 2015). This new group contained two subgroups: D1INT, which was frequently in the genomes of heterocystous cyanobacteria and D1FR that was part of the far-red light photoacclimation gene cluster of cyanobacteria. In addition, we have identified subgroups within G3, the micro-aerobically expressed D1 protein. There are amino acid changes associated with each of the subgroups that might affect the function of Photosystem II. We show a phylogenetically broad range of cyanobacteria have these D1 types, as well as the genes encoding the G2 protein and chlorophyll f synthase. We suggest identification of additional D1 isoforms and the presence of multiple D1 isoforms in phylogenetically diverse cyanobacteria supports the role of these proteins in conferring a selective advantage under specific conditions.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Botany, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Elizabeth J Duncan
- Department of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
35
|
Polo A, Nomellini C, Grigioni I, Dozzi MV, Selli E. Effective Visible Light Exploitation by Copper Molybdo-tungstate Photoanodes. ACS APPLIED ENERGY MATERIALS 2020; 3:6956-6964. [PMID: 33829150 PMCID: PMC8016397 DOI: 10.1021/acsaem.0c01021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 06/02/2023]
Abstract
The need for stable oxide-based semiconductors with a narrow band gap, able to maximize the exploitation of the visible light portion of the solar spectrum, is a challenging issue for photoelectrocatalytic (PEC) applications. In the present work, CuW1-x Mo x O4 (E g = 2.0 eV for x = 0.5), which exhibits a significantly reduced optical band gap E g compared with isostructural CuWO4 (E g = 2.3 eV), was investigated as a photoactive material for the preparation of photoanodes. CuW0.5Mo0.5O4 electrodes with different thicknesses (80-530 nm), prepared by a simple solution-based process in the form of multilayer films, effectively exhibit visible light photoactivity up to 650 nm (i.e., extended compared with CuWO4 photoanodes prepared by the same way). Furthermore, the systematic investigation on the effects on photoactivity of the CuW0.5Mo0.5O4 layer thickness evidenced that long-wavelength photons can better be exploited by thicker electrodes. PEC measurements in the presence of NaNO2, acting as a suitable hole scavenger ensuring enhanced photocurrent generation compared with that of water oxidation while minimizing dark currents, allowed us to elucidate the role that molybdenum incorporation plays on the charge separation efficiency in the bulk and on the charge injection efficiency at the photoanode surface. The adopted Mo for W substitution increases the visible light photoactivity of copper tungstate toward improved exploitation and storage of visible light into chemical energy via photoelectrocatalysis.
Collapse
Affiliation(s)
- Annalisa Polo
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| | - Chiara Nomellini
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| | - Ivan Grigioni
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| | - Maria Vittoria Dozzi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| | - Elena Selli
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
36
|
Raven JA. Chloride involvement in the synthesis, functioning and repair of the photosynthetic apparatus in vivo. THE NEW PHYTOLOGIST 2020; 227:334-342. [PMID: 32170958 DOI: 10.1111/nph.16541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Cl- has long been known as a micronutrient for oxygenic photosynthetic resulting from its role an essential cofactor for photosystem II (PSII). Evidence on the in vivo Cl- distribution in Spinacia oleracea leaves and chloroplasts shows that sufficient Cl- is present for the involvement in PSII function, as indicated by in vitro studies on, among other organisms, S. oleracea PsII. There is also sufficient Cl- to function, with K+ , in parsing the H+ electrochemical potential difference (proton motive force) across the illuminated thylakoid membrane into electrical potential difference and pH difference components. However, recent in vitro work on PSII from S. oleracea shows that oxygen evolving complex (OEC) synthesis, and resynthesis after photodamage, requires significantly higher Cl- concentrations than would satisfy the function of assembled PSII O2 evolution of the synthesised PSII with the OEC. The low Cl- affinity of OEC (re-)assembly could be a component limiting the rate of OEC (re-)assembly.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Climate Change Cluster, University of Technology, Ultimo, Sydney, NSW, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
37
|
Acquirement of water-splitting ability and alteration of the charge-separation mechanism in photosynthetic reaction centers. Proc Natl Acad Sci U S A 2020; 117:16373-16382. [PMID: 32601233 PMCID: PMC7368266 DOI: 10.1073/pnas.2000895117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In photosynthetic reaction centers from purple bacteria (PbRC) and the water-oxidizing enzyme, photosystem II (PSII), charge separation occurs along one of the two symmetrical electron-transfer branches. Here we report the microscopic origin of the unidirectional charge separation, fully considering electron-hole interaction, electronic coupling of the pigments, and electrostatic interaction with the polarizable entire protein environments. The electronic coupling between the pair of bacteriochlorophylls is large in PbRC, forming a delocalized excited state with the lowest excitation energy (i.e., the special pair). The charge-separated state in the active branch is stabilized by uncharged polar residues in the transmembrane region and charged residues on the cytochrome c 2 binding surface. In contrast, the accessory chlorophyll in the D1 protein (ChlD1) has the lowest excitation energy in PSII. The charge-separated state involves ChlD1 •+ and is stabilized predominantly by charged residues near the Mn4CaO5 cluster and the proceeding proton-transfer pathway. It seems likely that the acquirement of water-splitting ability makes ChlD1 the initial electron donor in PSII.
Collapse
|
38
|
Global distribution of a chlorophyll f cyanobacterial marker. ISME JOURNAL 2020; 14:2275-2287. [PMID: 32457503 PMCID: PMC7608106 DOI: 10.1038/s41396-020-0670-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023]
Abstract
Some cyanobacteria use light outside the visible spectrum for oxygenic photosynthesis. The far-red light (FRL) region is made accessible through a complex acclimation process that involves the formation of new phycobilisomes and photosystems containing chlorophyll f. Diverse cyanobacteria ranging from unicellular to branched-filamentous forms show this response. These organisms have been isolated from shaded environments such as microbial mats, soil, rock, and stromatolites. However, the full spread of chlorophyll f-containing species in nature is still unknown. Currently, discovering new chlorophyll f cyanobacteria involves lengthy incubation times under selective far-red light. We have used a marker gene to detect chlorophyll f organisms in environmental samples and metagenomic data. This marker, apcE2, encodes a phycobilisome linker associated with FRL-photosynthesis. By focusing on a far-red motif within the sequence, degenerate PCR and BLAST searches can effectively discriminate against the normal chlorophyll a-associated apcE. Even short recovered sequences carry enough information for phylogenetic placement. Markers of chlorophyll f photosynthesis were found in metagenomic datasets from diverse environments around the globe, including cyanobacterial symbionts, hypersaline lakes, corals, and the Arctic/Antarctic regions. This additional information enabled higher phylogenetic resolution supporting the hypothesis that vertical descent, as opposed to horizontal gene transfer, is largely responsible for this phenotype’s distribution.
Collapse
|
39
|
Genome-wide identification and characterization of R2R3-MYB family in Hypericum perforatum under diverse abiotic stresses. Int J Biol Macromol 2020; 145:341-354. [DOI: 10.1016/j.ijbiomac.2019.12.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
|
40
|
Sánchez-Baracaldo P, Cardona T. On the origin of oxygenic photosynthesis and Cyanobacteria. THE NEW PHYTOLOGIST 2020; 225:1440-1446. [PMID: 31598981 DOI: 10.1111/nph.16249] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/25/2019] [Indexed: 05/14/2023]
Abstract
Oxygenic phototrophs have played a fundamental role in Earth's history by enabling the rise of atmospheric oxygen (O2 ) and paving the way for animal evolution. Understanding the origins of oxygenic photosynthesis and Cyanobacteria is key when piecing together the events around Earth's oxygenation. It is likely that photosynthesis evolved within bacterial lineages that are not extant, so it can be challenging when studying the early history of photosynthesis. Recent genomic and molecular evolution studies have transformed our understanding about the evolution of photosynthetic reaction centres and the evolution of Cyanobacteria. The evidence reviewed here highlights some of the most recent advances on the origin of photosynthesis both at the genomic and gene family levels.
Collapse
Affiliation(s)
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
41
|
He Z, Ferlez B, Kurashov V, Tank M, Golbeck JH, Bryant DA. Reaction centers of the thermophilic microaerophile, Chloracidobacterium thermophilum (Acidobacteria) I: biochemical and biophysical characterization. PHOTOSYNTHESIS RESEARCH 2019; 142:87-103. [PMID: 31161318 DOI: 10.1007/s11120-019-00650-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Chloracidobacterium thermophilum is a microaerophilic, anoxygenic member of the green chlorophototrophic bacteria. This bacterium is the first characterized oxygen-requiring chlorophototroph with chlorosomes, the FMO protein, and homodimeric type-1 reaction centers (RCs). The RCs of C. thermophilum are also unique because they contain three types of chlorophylls, bacteriochlorophyll aP esterified with phytol, Chl aPD esterified with Δ2,6-phytadienol, and Zn-BChl aP' esterified with phytol, in the approximate molar ratio 32:24:4. The light-induced difference spectrum of these RCs had a bleaching maximum at 839 nm and also revealed an electrochromic bandshift that is probably derived from a BChl a molecule near P840+. The FX [4Fe-4S] cluster had a midpoint potential of ca. - 581 mV, and the spectroscopic properties of the P+ F X - spin-polarized radical pair were very similar to those of reaction centers of heliobacteria and green sulfur bacteria. The data further indicate that electron transfer occurs directly from A0- to FX, as occurs in other homodimeric type-1 RCs. Washing experiments with isolated membranes suggested that the PscB subunit of these reaction centers is more tightly bound than PshB in heliobacteria. Thus, the reaction centers of C. thermophilum have some properties that resemble other homodimeric reaction centers but also have specific properties that are more similar to those of Photosystem I. These differences probably contribute to protection of the electron transfer chain from oxygen, contributing to the oxygen tolerance of this microaerophile.
Collapse
Affiliation(s)
- Zhihui He
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
| | - Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-002 Frear Building, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
42
|
Hamilton TL. The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Free Radic Biol Med 2019; 140:233-249. [PMID: 31078729 DOI: 10.1016/j.freeradbiomed.2019.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/03/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The ability to harvest light to drive chemical reactions and gain energy provided microbes access to high energy electron donors which fueled primary productivity, biogeochemical cycles, and microbial evolution. Oxygenic photosynthesis is often cited as the most important microbial innovation-the emergence of oxygen-evolving photosynthesis, aided by geologic events, is credited with tipping the scale from a reducing early Earth to an oxygenated world that eventually lead to complex life. Anoxygenic photosynthesis predates oxygen-evolving photosynthesis and played a key role in developing and fine-tuning the photosystem architecture of modern oxygenic phototrophs. The release of oxygen as a by-product of metabolic activity would have caused oxidative damage to anaerobic microbiota that evolved under the anoxic, reducing conditions of early Earth. Photosynthetic machinery is particularly susceptible to the adverse effects of oxygen and reactive oxygen species and these effects are compounded by light. As a result, phototrophs employ additional detoxification mechanisms to mitigate oxidative stress and have evolved alternative oxygen-dependent enzymes for chlorophyll biosynthesis. Phylogenetic reconstruction studies and biochemical characterization suggest photosynthetic reactions centers, particularly in Cyanobacteria, evolved to both increase efficiency of electron transfer and avoid photodamage caused by chlorophyll radicals that is acute in the presence of oxygen. Here we review the oxygen and reactive oxygen species detoxification mechanisms observed in extant anoxygenic and oxygenic photosynthetic bacteria as well as the emergence of these mechanisms over evolutionary time. We examine the distribution of phototrophs in modern systems and phylogenetic reconstructions to evaluate the emergence of mechanisms to mediate oxidative damage and highlight changes in photosystems and reaction centers, chlorophyll biosynthesis, and niche space in response to oxygen production. This synthesis supports an emergence of H2S-driven anoxygenic photosynthesis in Cyanobacteria prior to the evolution of oxygenic photosynthesis and underscores a role for the former metabolism in fueling fine-tuning of the oxygen evolving complex and mechanisms to repair oxidative damage. In contrast, we note the lack of elaborate mechanisms to deal with oxygen in non-cyanobacterial anoxygenic phototrophs suggesting these microbes have occupied similar niche space throughout Earth's history.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA; Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
43
|
Ślesak I, Kula M, Ślesak H, Miszalski Z, Strzałka K. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radic Biol Med 2019; 140:61-73. [PMID: 30862543 DOI: 10.1016/j.freeradbiomed.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
One of the former definitions of "obligate anaerobiosis" was based on three main criteria: 1) it occurs in organisms, so-called obligate anaerobes, which live in environments without oxygen (O2), 2) O2-dependent (aerobic) respiration, and 3) antioxidant enzymes are absent in obligate anaerobes. In contrast, aerobes need O2 in order to grow and develop properly. Obligate (or strict) anaerobes belong to prokaryotic microorganisms from two domains, Bacteria and Archaea. A closer look at anaerobiosis covers a wide range of microorganisms that permanently or in a time-dependent manner tolerate different concentrations of O2 in their habitats. On this basis they can be classified as obligate/facultative anaerobes, microaerophiles and nanaerobes. Paradoxically, O2 tolerance in strict anaerobes is usually, as in aerobes, associated with the activity of the antioxidant response system, which involves different antioxidant enzymes responsible for removing excess reactive oxygen species (ROS). In our opinion, the traditional definition of "obligate anaerobiosis" loses its original sense. Strict anaerobiosis should only be restricted to the occurrence of O2-independent pathways involved in energy generation. For that reason, a term better than "obligate anaerobes" would be O2/ROS tolerant anaerobes, where the role of the O2/ROS detoxification system is separated from O2-independent metabolic pathways that supply energy. Ubiquitous key antioxidant enzymes like superoxide dismutase (SOD) and superoxide reductase (SOR) in contemporary obligate anaerobes might suggest that their origin is ancient, maybe even the beginning of the evolution of life on Earth. It cannot be ruled out that c. 3.5 Gyr ago, local microquantities of O2/ROS played a role in the evolution of the last universal common ancestor (LUCA) of all modern organisms. On the basis of data in the literature, the hypothesis that LUCA could be an O2/ROS tolerant anaerobe is discussed together with the question of the abiotic sources of O2/ROS and/or the early evolution of cyanobacteria that perform oxygenic photosynthesis.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Monika Kula
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
44
|
Braakman R. Evolution of cellular metabolism and the rise of a globally productive biosphere. Free Radic Biol Med 2019; 140:172-187. [PMID: 31082508 DOI: 10.1016/j.freeradbiomed.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
Abstract
Metabolic processes in cells and chemical processes in the environment are fundamentally intertwined and have evolved in concert for most of Earth's existence. Here I argue that intrinsic properties of cellular metabolism imposed central constraints on the historical trajectories of biopsheric productivity and atmospheric oxygenation. Photosynthesis depends on iron, but iron is highly insoluble under the aerobic conditions produced by oxygenic photosynthesis. These counteracting constraints led to two major stages of Earth oxygenation. After a cyanobacteria-driven biospheric expansion near the Archean-Proterozoic boundary, productivity remained largely restricted to continental boundaries and shallow aquatic environments where weathering inputs made iron more accessible. The anoxic deep open ocean was rich in free iron during the Proterozoic, but this iron was largely inaccessible, partly because an otherwise nutrient-poor ocean was limiting to photosynthesis, but also because a photosynthetic expansion would have quenched its own iron supply. Near the Proterozoic-Phanerozoic boundary, bioenergetics innovations allowed eukaryotic photosynthesis to overcome these interconnected negative feedbacks and begin expanding into the deep open oceans and onto the continents, where nutrients are inherently harder to come by. Key insights into what drove the ecological rise of eukaryotic photosynthesis emerge from analyses of marine Synechococcus and Prochlorococcus, abundant marine picocyanobacteria whose ancestors colonized the oceans in the Neoproterozoic. The reconstructed evolution of this group reveals a sequence of innovations that ultimately produced a form of photosynthesis in Prochlorococcus that is more like that of green plant cells than other cyanobacteria. Innovations increased the energy flux of cells, thereby enhancing their ability to acquire sparse nutrients, and as by-product also increased the production of organic carbon waste. Some of these organic waste products had the ability to chelate iron and make it bioavailable, thereby indirectly pushing the oceans through a transition from an anoxic state rich in free iron to an oxygenated state with organic carbon-bound iron. Resulting conditions (and parallel processes on the continents) in turn led to a series of positive feedbacks that increased the availability of other nutrients, thereby promoting the rise of a globally productive biosphere. In addition to the occurrence of major biospheric expansions, the several hundred million-year periods around the Archean-Proterozoic and Proterozoic-Phanerozoic boundaries share a number of other parallels. Both epochs have also been linked to major carbon cycle perturbations and global glaciations, as well as changes in the nature of plate tectonics and increases in continental exposure and weathering. This suggests the dynamics of life and Earth are intimately intertwined across many levels and that general principles governed transitions in these coupled dynamics at both times in Earth history.
Collapse
Affiliation(s)
- Rogier Braakman
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, USA; Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, USA.
| |
Collapse
|
45
|
Herrmann AJ, Gehringer MM. An investigation into the effects of increasing salinity on photosynthesis in freshwater unicellular cyanobacteria during the late Archaean. GEOBIOLOGY 2019; 17:343-359. [PMID: 30874335 DOI: 10.1111/gbi.12339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
The oldest species of bacteria capable of oxygenic photosynthesis today are the freshwater Cyanobacteria Gloeobacter spp., belonging to the class Oxyphotobacteria. Several modern molecular evolutionary studies support the freshwater origin of cyanobacteria during the Archaean and their subsequent acquisition of salt tolerance mechanisms necessary for their expansion into the marine environment. This study investigated the effect of a sudden washout event from a freshwater location into either a brackish or marine environment on the photosynthetic efficiency of two unicellular freshwater cyanobacteria: the salt-tolerant Chroococcidiopsis thermalis PCC7203 and the cyanobacterial phylogenetic root species, Gloeobacter violaceus PCC7421. Strains were cultured under present atmospheric levels (PAL) of CO2 or an atmosphere containing elevated levels of CO2 and reduced O2 (eCO2 rO2 ) in simulated shallow water or terrestrial environmental conditions. Both strains exhibited a reduction in growth rates and gross photosynthesis, accompanied by significant reductions in chlorophyll a content, in brackish water, with only C. thermalis able to grow at marine salinity levels. While the experimental atmosphere caused a significant increase in gross photosynthesis rates in both strains, it did not increase their growth rates, nor the amount of O2 released. The differences in growth responses to increasing salinities could be attributed to genetic differences, with C. thermalis carrying additional genes for trehalose synthesis. This study demonstrates that, if cyanobacteria did evolve in a freshwater environment, they would have been capable of withstanding a sudden washout into increasingly saline environments. Both C. thermalis and G. violaceus continued to grow and photosynthesise, albeit at diminished rates, in brackish water, thereby providing a route for the evolution of open ocean-dwelling strains, necessary for the oxygenation of the Earth's atmosphere.
Collapse
Affiliation(s)
- Achim J Herrmann
- Department of Microbiology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Michelle M Gehringer
- Department of Microbiology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
46
|
Batchu NK, Khater S, Patil S, Nagle V, Das G, Bhadra B, Sapre A, Dasgupta S. Whole genome sequence analysis of Geitlerinema sp. FC II unveils competitive edge of the strain in marine cultivation system for biofuel production. Genomics 2019. [DOI: 10.1016/j.ygeno.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Dynamics Properties of Photosynthetic Microorganisms Probed by Incoherent Neutron Scattering. Biophys J 2019; 116:1759-1768. [PMID: 31003761 DOI: 10.1016/j.bpj.2019.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/06/2023] Open
Abstract
Studies on the dynamical properties of photosynthetic membranes of land plants and purple bacteria have been previously performed by neutron spectroscopy, revealing a tight coupling between specific photochemical reactions and macromolecular dynamics. Here, we probed the intrinsic dynamics of biotechnologically useful mutants of the green alga Chlamydomonas reinhardtii by incoherent neutron scattering coupled with prompt chlorophyll fluorescence experiments. We brought to light that single amino acid replacements in the plastoquinone (PQ)-binding niche of the photosystem II D1 protein impair electron transport (ET) efficiency between quinones and confer increased flexibility to the host membranes, expanding to the entire cells. Hence, a more flexible environment in the PQ-binding niche has been associated to a less efficient ET. A similar function/dynamics relationship was also demonstrated in Rhodobacter sphaeroides reaction centers having inhibited ET, indicating that flexibility at the quinones region plays a crucial role in evolutionarily distant organisms. Instead, a different functional/dynamical correlation was observed in algal mutants hosting a single amino acid replacement residing in a D1 domain far from the PQ-binding niche. Noteworthy, this mutant displayed the highest degree of flexibility, and besides having a nativelike ET efficiency in physiological conditions, it acquired novel, to our knowledge, phenotypic traits enabling it to preserve a high maximal quantum yield of photosystem II photochemistry in extreme habitats. Overall, in the nanosecond timescale, the degree of the observed flexibility is related to the mutation site; in the picosecond timescale, we highlighted the presence of a more pronounced dynamic heterogeneity in all mutants compared to the native cells, which could be related to a marked chemically heterogeneous environment.
Collapse
|
48
|
Shen G, Canniffe DP, Ho MY, Kurashov V, van der Est A, Golbeck JH, Bryant DA. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2019; 140:77-92. [PMID: 30607859 DOI: 10.1007/s11120-018-00610-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 05/19/2023]
Abstract
In diverse terrestrial cyanobacteria, Far-Red Light Photoacclimation (FaRLiP) promotes extensive remodeling of the photosynthetic apparatus, including photosystems (PS)I and PSII and the cores of phycobilisomes, and is accompanied by the concomitant biosynthesis of chlorophyll (Chl) d and Chl f. Chl f synthase, encoded by chlF, is a highly divergent paralog of psbA; heterologous expression of chlF from Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production of Chl f in Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged ChlF7521 was purified and identified by immunoblotting and tryptic-peptide mass fingerprinting. As predicted from its sequence similarity to PsbA, ChlF bound Chl a and pheophytin a at a ratio of ~ 3-4:1, bound β-carotene and zeaxanthin, and was inhibited in vivo by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Cross-linking studies and the absence of copurifying proteins indicated that ChlF forms homodimers. Flash photolysis of ChlF produced a Chl a triplet that decayed with a lifetime (1/e) of ~ 817 µs and that could be attributed to intersystem crossing by EPR spectroscopy at 90 K. When the chlF7521 gene was expressed in a strain in which the psbD1 and psbD2 genes had been deleted, significantly more Chl f was produced, and Chl f levels could be further enhanced by specific growth-light conditions. Chl f synthesized in Synechococcus sp. PCC 7002 was inserted into trimeric PSI complexes.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Art van der Est
- Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
49
|
Abstract
Sam Granick opened his seminal 1957 paper titled 'Speculations on the origins and evolution of photosynthesis' with the assertion that there is a constant urge in human beings to seek beginnings (I concur). This urge has led to an incessant stream of speculative ideas and debates on the evolution of photosynthesis that started in the first half of the twentieth century and shows no signs of abating. Some of these speculative ideas have become commonplace, are taken as fact, but find little support. Here, I review and scrutinize three widely accepted ideas that underpin the current study of the evolution of photosynthesis: first, that the photochemical reaction centres used in anoxygenic photosynthesis are more primitive than those in oxygenic photosynthesis; second, that the probability of acquiring photosynthesis via horizontal gene transfer is greater than the probability of losing photosynthesis; and third, and most important, that the origin of anoxygenic photosynthesis pre-dates the origin of oxygenic photosynthesis. I shall attempt to demonstrate that these three ideas are often grounded in incorrect assumptions built on more assumptions with no experimental or observational support. I hope that this brief review will not only serve as a cautionary tale but also that it will open new avenues of research aimed at disentangling the complex evolution of photosynthesis and its impact on the early history of life and the planet.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
50
|
Pham LV, Janna Olmos JD, Chernev P, Kargul J, Messinger J. Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles. PHOTOSYNTHESIS RESEARCH 2019; 139:93-106. [PMID: 30191436 PMCID: PMC6373315 DOI: 10.1007/s11120-018-0574-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 05/17/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII). This process is energetically driven by light-induced charge separation in the reaction center of PSII, which leads to a stepwise accumulation of oxidizing equivalents in the OEC (Si states, i = 0-4) resulting in O2 evolution after each fourth flash, and to the reduction of plastoquinone to plastoquinol on the acceptor side of PSII. However, the Si-state advancement is not perfect, which according to the Kok model is described by miss-hits (misses). These may be caused by redox equilibria or kinetic limitations on the donor (OEC) or the acceptor side. In this study, we investigate the effects of individual S state transitions and of the quinone acceptor side on the miss parameter by analyzing the flash-induced oxygen evolution patterns and the S2, S3 and S0 state lifetimes in thylakoid samples of the extremophilic red alga Cyanidioschyzon merolae. The data are analyzed employing a global fit analysis and the results are compared to the data obtained previously for spinach thylakoids. These two organisms were selected, because the redox potential of QA/QA- in PSII is significantly less negative in C. merolae (Em = - 104 mV) than in spinach (Em = - 163 mV). This significant difference in redox potential was expected to allow the disentanglement of acceptor and donor side effects on the miss parameter. Our data indicate that, at slightly acidic and neutral pH values, the Em of QA-/QA plays only a minor role for the miss parameter. By contrast, the increased energy gap for the backward electron transfer from QA- to Pheo slows down the charge recombination reaction with the S3 and S2 states considerably. In addition, our data support the concept that the S2 → S3 transition is the least efficient step during the oxidation of water to molecular oxygen in the Kok cycle of PSII.
Collapse
Affiliation(s)
- Long Vo Pham
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Julian David Janna Olmos
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Petko Chernev
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Joanna Kargul
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland.
| | - Johannes Messinger
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden.
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, 901 87, Umeå, Sweden.
| |
Collapse
|