1
|
Chi H, Sun L, Li N, Zhan Y, Guo J, Lei L, Irwin DM, Yang G, Xu S, Liu Y. Parallel Spectral Tuning of a Cone Visual Pigment Provides Evidence for Ancient Deep-Sea Adaptations in Cetaceans. Genome Biol Evol 2024; 16:evae223. [PMID: 39396924 PMCID: PMC11503649 DOI: 10.1093/gbe/evae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/31/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Dichromatic color vision is mediated by two cone visual pigments in many eutherian mammals. After reentry into the sea, early cetaceans lost their violet-sensitive visual pigment (short wavelength-sensitive 1) independently in the baleen and toothed whale ancestors and thus obtained only monochromatic cone vision. Subsequently, losses of the middle/long wavelength-sensitive (M/LWS) pigment have also been reported in multiple whale lineages, leading to rhodopsin (RH1)-mediated rod monochromatic vision. To further elucidate the phenotypic evolution of whale visual pigments, we assessed the spectral tuning of both M/LWS and RH1 from representative cetacean taxa. Interestingly, although the coding sequences for M/LWS are intact in both the pygmy right whale and the Baird's beaked whale, no spectral sensitivity was detected in vitro. Pseudogenization of other cone vision-related genes is observed in the pygmy right whale, suggesting a loss of cone-mediated vision. After ancestral sequence reconstructions, ancient M/LWS pigments from cetacean ancestors were resurrected and functionally measured. Spectral tuning of M/LWS from the baleen whale ancestor shows that it is green sensitive, with a 40-nm shift in sensitivity to a shorter wavelength. For the ancestor of sperm whales, although no spectral sensitivity could be recorded for its M/LWS pigment, a substantial sensitivity shift (20 to 30 nm) to a shorter wavelength may have also occurred before its functional inactivation. The parallel phenotypic evolution of M/LWS to shorter wavelength sensitivity might be visual adaptations in whales allowing more frequent deep-sea activities, although additional ecological differentiations may have led to their subsequent losses.
Collapse
Affiliation(s)
- Hai Chi
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Linxia Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Na Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Yue Zhan
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jinqu Guo
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Lei Lei
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Macpherson ESB, Hauser FE, Van Nynatten A, Chang BSW, Lovejoy NR. Evolution of rhodopsin in flatfishes (Pleuronectiformes) is associated with depth and migratory behavior. JOURNAL OF FISH BIOLOGY 2024; 105:779-790. [PMID: 38859571 DOI: 10.1111/jfb.15828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/06/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Visual signals are involved in many fitness-related tasks and are therefore essential for survival in many species. Aquatic organisms are ideal systems to study visual evolution, as the high diversity of spectral properties in aquatic environments generates great potential for adaptation to different light conditions. Flatfishes are an economically important group, with over 800 described species distributed globally, including halibut, flounder, sole, and turbot. The diversity of flatfish species and wide array of environments they occupy provides an excellent opportunity to understand how this variation translates to molecular adaptation of vision genes. Using models of molecular evolution, we investigated how the light environments inhabited by different flatfish lineages have shaped evolution in the rhodopsin gene, which is responsible for mediating dim-light visual transduction. We found strong evidence for positive selection in rhodopsin, and this was correlated with both migratory behavior and several fundamental aspects of habitat, including depth and freshwater/marine evolutionary transitions. We also identified several mutations that likely affect the wavelength of peak absorbance of rhodopsin, and outline how these shifts in absorbance correlate with the response to the light spectrum present in different habitats. This is the first study of rhodopsin evolution in flatfishes that considers their extensive diversity, and our results highlight how ecologically-driven molecular adaptation has occurred across this group in response to transitions to novel light environments.
Collapse
Affiliation(s)
- Esme S B Macpherson
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alexander Van Nynatten
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Schott RK, Fujita MK, Streicher JW, Gower DJ, Thomas KN, Loew ER, Bamba Kaya AG, Bittencourt-Silva GB, Guillherme Becker C, Cisneros-Heredia D, Clulow S, Davila M, Firneno TJ, Haddad CFB, Janssenswillen S, Labisko J, Maddock ST, Mahony M, Martins RA, Michaels CJ, Mitchell NJ, Portik DM, Prates I, Roelants K, Roelke C, Tobi E, Woolfolk M, Bell RC. Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments. Mol Biol Evol 2024; 41:msae049. [PMID: 38573520 PMCID: PMC10994157 DOI: 10.1093/molbev/msae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology and Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - C Guillherme Becker
- Department of Biology and One Health Microbiome Center, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diego Cisneros-Heredia
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mateo Davila
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thomas J Firneno
- Department of Biological Sciences, University of Denver, Denver, USA
| | - Célio F B Haddad
- Department of Biodiversity and Center of Aquaculture—CAUNESP, I.B., São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jim Labisko
- Natural History Museum, London, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| | - Simon T Maddock
- Natural History Museum, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Mahony
- Department of Biological Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Renato A Martins
- Programa de Pós-graduação em Conservação da Fauna, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Portik
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ivan Prates
- Department of Biology, Lund University, Lund, Sweden
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corey Roelke
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Elie Tobi
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Maya Woolfolk
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
4
|
Stieb SM, Cortesi F, Mitchell L, Jardim de Queiroz L, Marshall NJ, Seehausen O. Short-wavelength-sensitive 1 ( SWS1) opsin gene duplications and parallel visual pigment tuning support ultraviolet communication in damselfishes (Pomacentridae). Ecol Evol 2024; 14:e11186. [PMID: 38628922 PMCID: PMC11019301 DOI: 10.1002/ece3.11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Damselfishes (Pomacentridae) are one of the most behaviourally diverse, colourful and species-rich reef fish families. One remarkable characteristic of damselfishes is their communication in ultraviolet (UV) light. Not only are they sensitive to UV, they are also prone to have UV-reflective colours and patterns enabling social signalling. Using more than 50 species, we aimed to uncover the evolutionary history of UV colour and UV vision in damselfishes. All damselfishes had UV-transmitting lenses, expressed the UV-sensitive SWS1 opsin gene, and most displayed UV-reflective patterns and colours. We find evidence for several tuning events across the radiation, and while SWS1 gene duplications are generally very rare among teleosts, our phylogenetic reconstructions uncovered two independent duplication events: one close to the base of the most species-rich clade in the subfamily Pomacentrinae, and one in a single Chromis species. Using amino acid comparisons, we found that known spectral tuning sites were altered several times in parallel across the damselfish radiation (through sequence change and duplication followed by sequence change), causing repeated shifts in peak spectral absorbance of around 10 nm. Pomacentrinae damselfishes expressed either one or both copies of SWS1, likely to further finetune UV-signal detection and differentiation. This highly advanced and modified UV vision among damselfishes, in particular the duplication of SWS1 among Pomacentrinae, might be seen as a key evolutionary innovation that facilitated the evolution of the exuberant variety of UV-reflectance traits and the diversification of this coral reef fish lineage.
Collapse
Affiliation(s)
- Sara M. Stieb
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneAustralia
| | - Laurie Mitchell
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- Marine Eco‐Evo‐Devo UnitOkinawa Institute of Science and TechnologyOnna sonOkinawaJapan
| | - Luiz Jardim de Queiroz
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ole Seehausen
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
5
|
De Vreese S, Orekhova K, Morell M, Gerussi T, Graïc JM. Neuroanatomy of the Cetacean Sensory Systems. Animals (Basel) 2023; 14:66. [PMID: 38200796 PMCID: PMC10778493 DOI: 10.3390/ani14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Cetaceans have undergone profound sensory adaptations in response to their aquatic environment during evolution. These adaptations are characterised by anatomo-functional changes in the classically defined sensory systems, shaping their neuroanatomy accordingly. This review offers a concise and up-to-date overview of our current understanding of the neuroanatomy associated with cetacean sensory systems. It encompasses a wide spectrum, ranging from the peripheral sensory cells responsible for detecting environmental cues, to the intricate structures within the central nervous system that process and interpret sensory information. Despite considerable progress in this field, numerous knowledge gaps persist, impeding a comprehensive and integrated understanding of their sensory adaptations, and through them, of their sensory perspective. By synthesising recent advances in neuroanatomical research, this review aims to shed light on the intricate sensory alterations that differentiate cetaceans from other mammals and allow them to thrive in the marine environment. Furthermore, it highlights pertinent knowledge gaps and invites future investigations to deepen our understanding of the complex processes in cetacean sensory ecology and anatomy, physiology and pathology in the scope of conservation biology.
Collapse
Affiliation(s)
- Steffen De Vreese
- Laboratory of Applied Bioacoustics (LAB), Universitat Politècnica de Catalunya-BarcelonaTech (UPC), 08800 Vilanova i la Geltrú, Spain
| | - Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy; (K.O.); (T.G.); (J.-M.G.)
| | - Maria Morell
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, 25761 Büsum, Germany;
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy; (K.O.); (T.G.); (J.-M.G.)
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy; (K.O.); (T.G.); (J.-M.G.)
| |
Collapse
|
6
|
McCulloch KJ, Babonis LS, Liu A, Daly CM, Martindale MQ, Koenig KM. Nematostella vectensis exemplifies the exceptional expansion and diversity of opsins in the eyeless Hexacorallia. EvoDevo 2023; 14:14. [PMID: 37735470 PMCID: PMC10512536 DOI: 10.1186/s13227-023-00218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Opsins are the primary proteins responsible for light detection in animals. Cnidarians (jellyfish, sea anemones, corals) have diverse visual systems that have evolved in parallel with bilaterians (squid, flies, fish) for hundreds of millions of years. Medusozoans (e.g., jellyfish, hydroids) have evolved eyes multiple times, each time independently incorporating distinct opsin orthologs. Anthozoans (e.g., corals, sea anemones,) have diverse light-mediated behaviors and, despite being eyeless, exhibit more extensive opsin duplications than medusozoans. To better understand the evolution of photosensitivity in animals without eyes, we increased anthozoan representation in the phylogeny of animal opsins and investigated the large but poorly characterized opsin family in the sea anemone Nematostella vectensis. RESULTS We analyzed genomic and transcriptomic data from 16 species of cnidarians to generate a large opsin phylogeny (708 sequences) with the largest sampling of anthozoan sequences to date. We identified 29 opsins from N. vectensis (NvOpsins) with high confidence, using transcriptomic and genomic datasets. We found that lineage-specific opsin duplications are common across Cnidaria, with anthozoan lineages exhibiting among the highest numbers of opsins in animals. To establish putative photosensory function of NvOpsins, we identified canonically conserved protein domains and amino acid sequences essential for opsin function in other animal species. We show high sequence diversity among NvOpsins at sites important for photoreception and transduction, suggesting potentially diverse functions. We further examined the spatiotemporal expression of NvOpsins and found both dynamic expression of opsins during embryonic development and sexually dimorphic opsin expression in adults. CONCLUSIONS These data show that lineage-specific duplication and divergence has led to expansive diversity of opsins in eyeless cnidarians, suggesting opsins from these animals may exhibit novel biochemical functions. The variable expression patterns of opsins in N. vectensis suggest opsin gene duplications allowed for a radiation of unique sensory cell types with tissue- and stage-specific functions. This diffuse network of distinct sensory cell types could be an adaptive solution for varied sensory tasks experienced in distinct life history stages in Anthozoans.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Leslie S Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Alicia Liu
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
8
|
McCulloch KJ, Macias-Muñoz A, Briscoe AD. Insect opsins and evo-devo: what have we learned in 25 years? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210288. [PMID: 36058243 PMCID: PMC9441233 DOI: 10.1098/rstb.2021.0288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
The visual pigments known as opsins are the primary molecular basis for colour vision in animals. Insects are among the most diverse of animal groups and their visual systems reflect a variety of life histories. The study of insect opsins in the fruit fly Drosophila melanogaster has led to major advances in the fields of neuroscience, development and evolution. In the last 25 years, research in D. melanogaster has improved our understanding of opsin genotype-phenotype relationships while comparative work in other insects has expanded our understanding of the evolution of insect eyes via gene duplication, coexpression and homologue switching. Even so, until recently, technology and sampling have limited our understanding of the fundamental mechanisms that evolution uses to shape the diversity of insect eyes. With the advent of genome editing and in vitro expression assays, the study of insect opsins is poised to reveal new frontiers in evolutionary biology, visual neuroscience, and animal behaviour. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
9
|
The Colours of Octopus: Using Spectral Data to Measure Octopus Camouflage. Vision (Basel) 2022; 6:vision6040059. [PMID: 36278671 PMCID: PMC9590006 DOI: 10.3390/vision6040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
No animal can so effectively camouflage in such a wide range of environments as the octopus. Thanks to their highly malleable skin, they are capable of adapting their body patterns to the brightness and texture of their immediate environment, and they often seemingly match the colour of background objects. However, octopuses are colour-blind as their eyes have only one type of visual pigment. Therefore, chromatophores in their skin are likely to respond to changes in brightness, not chromaticity. To determine whether octopuses actually match background colours, we used a SpectraScan® PR-655 spectroradiometer to measure the reflectance spectra of Octopus tetricus skin in captivity. The spectra were compared with those of green algae, brown algae, and sponges—all of these being colourful objects commonly found in the octopus’s natural environment. Even though we show that octopuses change both lightness and chromaticity, allowing them to potentially camouflage in a wide range of backgrounds in an effective manner, the overall octopus colours did not reach the same level of saturation compared to some background objects. Spectra were then modelled under the visual systems of four potential octopus predators: one dichromatic fish (Heller’s barracuda), two trichromatic fish (blue-spotted stingray and two-spotted red snapper), and one tetrachromatic bird (wedge-tailed shearwater). We show that octopuses are able to match certain background colours for some visual systems. How a colour-blind animal is capable of colour-matching is still unknown.
Collapse
|
10
|
Ancient whale rhodopsin reconstructs dim-light vision over a major evolutionary transition: Implications for ancestral diving behavior. Proc Natl Acad Sci U S A 2022; 119:e2118145119. [PMID: 35759662 PMCID: PMC9271160 DOI: 10.1073/pnas.2118145119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cetaceans are fully aquatic mammals that descended from terrestrial ancestors, an iconic evolutionary transition characterized by adaptations for underwater foraging via breath-hold diving. Although the evolutionary history of this specialized behavior is challenging to reconstruct, coevolving sensory systems may offer valuable clues. The dim-light visual pigment, rhodopsin, which initiates phototransduction in the rod photoreceptors of the eye, has provided insight into the visual ecology of depth in several aquatic vertebrate lineages. Here, we use ancestral sequence reconstruction and protein resurrection experiments to quantify light-activation metrics in rhodopsin pigments from ancestors bracketing the cetacean terrestrial-to-aquatic transition. By comparing multiple reconstruction methods on a broadly sampled cetartiodactyl species tree, we generated highly robust ancestral sequence estimates. Our experimental results provide direct support for a blue-shift in spectral sensitivity along the branch separating cetaceans from terrestrial relatives. This blue-shift was 14 nm, resulting in a deep-sea signature (λmax = 486 nm) similar to many mesopelagic-dwelling fish. We also discovered that the decay rates of light-activated rhodopsin increased in ancestral cetaceans, which may indicate an accelerated dark adaptation response typical of deeper-diving mammals. Because slow decay rates are thought to help sequester cytotoxic photoproducts, this surprising result could reflect an ecological trade-off between rod photoprotection and dark adaptation. Taken together, these ancestral shifts in rhodopsin function suggest that some of the first fully aquatic cetaceans could dive into the mesopelagic zone (>200 m). Moreover, our reconstructions indicate that this behavior arose before the divergence of toothed and baleen whales.
Collapse
|
11
|
Hu W, Mu Y, Lin F, Li X, Zhang J. New Insight Into Visual Adaptation in the Mudskipper Cornea: From Morphology to the Cornea-Related COL8A2 Gene. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.871370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Much research has focused on visual system evolution in bony fishes. The capacity of visual systems to perceive and respond to external signals is integral to evolutionary success. However, integrated research on the mechanisms of adaptive evolution based on corneal structure and related genes remains limited. In this study, scanning electron microscopy (SEM) was used to assess the microstructure and adaptation of corneal epithelial cells. Then, the evolution of the cornea-related COL8A2 gene was investigated. We found various projections (microridges, microplicae, microholes, and microvilli) on the corneal epithelial cells of amphibious mudskippers. Compared with those of fully aquatic fishes, these microstructures were considered adaptations to the variable environments experienced by amphibious mudskippers, as they can resist dryness in terrestrial environments and infection in aquatic environments. Moreover, strong purifying selection was detected for COL8A2. In addition, some specific amino acid substitution sites were also identified in the COL8A2 sequence in mudskippers. Interestingly, the evolutionary rate of the COL8A2 gene was significantly and positively correlated with maximum diving depth in our dataset. Specifically, with increasing diving depth, the evolutionary rate of the COL8A2 gene seemed to gradually accelerate. The results indicated that the cornea of bony fishes has evolved through adaptation to cope with the different diving depths encountered during the evolutionary process, with the corneal evolution of the amphibious mudskipper group showing a unique pattern.
Collapse
|
12
|
Cheney KL, Hudson J, de Busserolles F, Luehrmann M, Shaughnessy A, van den Berg C, Green NF, Marshall NJ, Cortesi F. Seeing Picasso: an investigation into the visual system of the triggerfish Rhinecanthus aculeatus. J Exp Biol 2022; 225:jeb243907. [PMID: 35244167 PMCID: PMC9080752 DOI: 10.1242/jeb.243907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022]
Abstract
Vision is used by animals to find food and mates, avoid predators, defend resources and navigate through complex habitats. Behavioural experiments are essential for understanding animals' perception but are often challenging and time-consuming; therefore, using species that can be trained easily for complex tasks is advantageous. Picasso triggerfish, Rhinecanthus aculeatus, have been used in many behavioural studies investigating vision and navigation. However, little is known about the molecular and anatomical basis of their visual system. We addressed this knowledge gap here and behaviourally tested achromatic and chromatic acuity. In terms of visual opsins, R. aculeatus possessed one rod opsin gene (RH1) and at least nine cone opsins: one violet-sensitive SWS2B gene, seven duplicates of the blue-green-sensitive RH2 gene (RH2A, RH2B, RH2C1-5) and one red-sensitive LWS gene. However, only five cone opsins were expressed: SWS2B expression was consistent, while RH2A, RH2C-1 and RH2C-2 expression varied depending on whether fish were sampled from the field or aquaria. Levels of LWS expression were very low. Using fluorescence in situ hybridisation, we found SWS2B was expressed exclusively in single cones, whereas RH2A and RH2Cs were expressed in opposite double cone members. Anatomical resolution estimated from ganglion cell densities was 6.8 cycles per degree (cpd), which was significantly higher than values obtained from behavioural testing for black-and-white achromatic stimuli (3.9 cpd) and chromatic stimuli (1.7-1.8 cpd). These measures were twice as high as previously reported. This detailed information on their visual system will help inform future studies with this emerging focal species.
Collapse
Affiliation(s)
- Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jemma Hudson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abigail Shaughnessy
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cedric van den Berg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F. Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Schott RK, Perez L, Kwiatkowski MA, Imhoff V, Gumm JM. Evolutionary analyses of visual opsin genes in frogs and toads: Diversity, duplication, and positive selection. Ecol Evol 2022; 12:e8595. [PMID: 35154658 PMCID: PMC8820127 DOI: 10.1002/ece3.8595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 01/12/2023] Open
Abstract
Among major vertebrate groups, anurans (frogs and toads) are understudied with regard to their visual systems, and little is known about variation among species that differ in ecology. We sampled North American anurans representing diverse evolutionary and life histories that likely possess visual systems adapted to meet different ecological needs. Using standard molecular techniques, visual opsin genes, which encode the protein component of visual pigments, were obtained from anuran retinas. Additionally, we extracted the visual opsins from publicly available genome and transcriptome assemblies, further increasing the phylogenetic and ecological diversity of our dataset to 33 species in total. We found that anurans consistently express four visual opsin genes (RH1, LWS, SWS1, and SWS2, but not RH2) even though reported photoreceptor complements vary widely among species. The proteins encoded by these genes showed considerable sequence variation among species, including at sites known to shift the spectral sensitivity of visual pigments in other vertebrates and had conserved substitutions that may be related to dim-light adaptation. Using molecular evolutionary analyses of selection (dN/dS) we found significant evidence for positive selection at a subset of sites in the dim-light rod opsin gene RH1 and the long wavelength sensitive cone opsin LWS. The function of sites inferred to be under positive selection are largely unknown, but a few are likely to affect spectral sensitivity and other visual pigment functions based on proximity to previously identified sites in other vertebrates. We also found the first evidence of visual opsin duplication in an amphibian with the duplication of the LWS gene in the African bullfrog, which had distinct LWS copies on the sex chromosomes suggesting the possibility of sex-specific visual adaptation. Taken together, our results indicate that ecological factors, such as habitat and life history, as well as behavior, may be driving changes to anuran visual systems.
Collapse
Affiliation(s)
- Ryan K. Schott
- Department of BiologyYork UniversityTorontoOntarioCanada
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Leah Perez
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
| | | | - Vance Imhoff
- Southern Nevada Fish and Wildlife OfficeUS Fish and Wildlife ServiceLas VegasNevadaUSA
| | - Jennifer M. Gumm
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
- Ash Meadows Fish Conservation FacilityUS Fish and Wildlife ServiceAmargosa ValleyNevadaUSA
| |
Collapse
|
14
|
Oteiza P, Baldwin MW. Evolution of sensory systems. Curr Opin Neurobiol 2021; 71:52-59. [PMID: 34600187 DOI: 10.1016/j.conb.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023]
Abstract
Sensory systems evolve and enable organisms to perceive their sensory Umwelt, the unique set of cues relevant for their survival. The multiple components that comprise sensory systems - the receptors, cells, organs, and dedicated high-order circuits - can vary greatly across species. Sensory receptor gene families can expand and contract across lineages, resulting in enormous sensory diversity. Comparative studies of sensory receptor function have uncovered the molecular basis of receptor properties and identified novel sensory receptor classes and noncanonical sensory strategies. Phylogenetically informed comparisons of sensory systems across multiple species can pinpoint when sensory changes evolve and highlight the role of contingency in sensory system evolution.
Collapse
Affiliation(s)
- Pablo Oteiza
- Flow Sensing Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| |
Collapse
|
15
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|
16
|
Accelerated evolution and positive selection of rhodopsin in Tibetan loaches living in high altitude. Int J Biol Macromol 2020; 165:2598-2606. [PMID: 33470199 DOI: 10.1016/j.ijbiomac.2020.10.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Rhodopsin (RH1), the temperature-sensitive visual pigment, attained cold adaptation by functional trade-offs between protein stability and activity. Recent studies suggested convergent selection pressures drove cold adaptation of rhodopsin in high altitude catfishes through nonparallel molecular mechanisms. Here, we tested whether the similar shift occurred in RH1 of Tibetan loaches on the Qinghai-Tibet Plateau (QTP) by investigating the molecular evolution and potential effect on function of RH1. We sequenced RH1 from 27 Triplophysa species, and four lowland loaches and combined these data with published sequences. Tests using a series of models of molecular evolution resulted in strong evidence for accelerated evolution and positive selection in Triplophysa RH1. Three positively selected sites were near key functional domains modulating nonspectral properties of rhodopsin, substitutions of which were likely to compensate for cold-induced decrease in rhodopsin kinetics in cold environments. Moreover, although accelerated evolutionary rates in Tibetan loaches was convergent with those in high altitude catfishes, the sites under positive selection were nonoverlapping. Our findings provide evidence for convergent shift in selection pressures of RH1 in high altitude fish during the ecological transition to cold environment of the QTP.
Collapse
|
17
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
18
|
McGowen MR, Tsagkogeorga G, Williamson J, Morin PA, Rossiter ASJ. Positive Selection and Inactivation in the Vision and Hearing Genes of Cetaceans. Mol Biol Evol 2020; 37:2069-2083. [DOI: 10.1093/molbev/msaa070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
The transition to an aquatic lifestyle in cetaceans (whales and dolphins) resulted in a radical transformation in their sensory systems. Toothed whales acquired specialized high-frequency hearing tied to the evolution of echolocation, whereas baleen whales evolved low-frequency hearing. More generally, all cetaceans show adaptations for hearing and seeing underwater. To determine the extent to which these phenotypic changes have been driven by molecular adaptation, we performed large-scale targeted sequence capture of 179 sensory genes across the Cetacea, incorporating up to 54 cetacean species from all major clades as well as their closest relatives, the hippopotamuses. We screened for positive selection in 167 loci related to vision and hearing and found that the diversification of cetaceans has been accompanied by pervasive molecular adaptations in both sets of genes, including several loci implicated in nonsyndromic hearing loss. Despite these findings, however, we found no direct evidence of positive selection at the base of odontocetes coinciding with the origin of echolocation, as found in studies examining fewer taxa. By using contingency tables incorporating taxon- and gene-based controls, we show that, although numbers of positively selected hearing and nonsyndromic hearing loss genes are disproportionately high in cetaceans, counts of vision genes do not differ significantly from expected values. Alongside these adaptive changes, we find increased evidence of pseudogenization of genes involved in cone-mediated vision in mysticetes and deep-diving odontocetes.
Collapse
Affiliation(s)
- Michael R McGowen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Joseph Williamson
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA
| | - and Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| |
Collapse
|
19
|
Phylogeny and highland adaptation of Chinese species in Allium section Daghestanica (Amaryllidaceae) revealed by transcriptome sequencing. Mol Phylogenet Evol 2020; 146:106737. [PMID: 31982455 DOI: 10.1016/j.ympev.2020.106737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/27/2023]
Abstract
Allium L. is one of the largest monocotyledonous genera with extensive distribution in the Northern Hemisphere. The fundamental phylogenies of Allium have been investigated using many morphological and molecular characters. However, the morphological characters may not agree with the molecular results in some Allium groups or sections (such as the Chinese Allium section Daghestanica), which may result in ambiguous species relationships and hinder further evolutionary and adaptive researches. Here, transcriptome sequences of the six Chinese endemics from Allium section Daghestanica were collected, with their single-copy genes (SCGs) were extracted. The interspecies relationships were analyzed using concatenation and coalescent methods. The branch-site model (BSM) was conducted to detect the positively selected genes (PSGs) in five highland species of this section. Based on 1644, 1281 and 1580 SCGs in flowers, leaves, and flowers-leaves combination respectively, a robust consistent and well-resolved phylogeny was generated from the concatenation method. Strong conflicts among individual gene trees were detected in the coalescent method, and morphological characters were incongruent with molecular relationships to some degree. Many PSGs were involved in responses of various stresses and stimuli (e.g. hypoxia, low temperature, aridity), DNA repair, metabolism, nutrient or energy intake, photosynthesis, and signal transduction. Our study revealed a clear interspecies relationship of Chinese endemics in Allium section Daghestanica and suggested that the discordance between morphological characters and molecular relationships might result from that the former are more susceptible to convergence compared with the latter. PSGs detected in our study may provide some insights into highland adaptation in Allium species.
Collapse
|
20
|
Elbassiouny AA, Lovejoy NR, Chang BSW. Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190179. [PMID: 31787042 PMCID: PMC6939368 DOI: 10.1098/rstb.2019.0179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/26/2022] Open
Abstract
The ability to generate and detect electric fields has evolved in several groups of fishes as a means of communication, navigation and, occasionally, predation. The energetic burden required can account for up to 20% of electric fishes' daily energy expenditure. Despite this, molecular adaptations that enable electric fishes to meet the metabolic demands of bioelectrogenesis remain unknown. Here, we investigate the molecular evolution of the mitochondrial oxidative phosphorylation (OXPHOS) complexes in the two most diverse clades of weakly electric fishes-South American Gymnotiformes and African Mormyroidea, using codon-based likelihood approaches. Our analyses reveal that although mitochondrial OXPHOS genes are generally subject to strong purifying selection, this constraint is significantly reduced in electric compared to non-electric fishes, particularly for complexes IV and V. Moreover, analyses of concatenated mitochondrial genes show strong evidence for positive selection in complex I genes on the two branches associated with the independent evolutionary origins of electrogenesis. These results suggest that adaptive evolution of proton translocation in the OXPHOS cellular machinery may be associated with the evolution of bioelectrogenesis. Overall, we find striking evidence for remarkably similar effects of electrogenesis on the molecular evolution of mitochondrial OXPHOS genes in two independently derived clades of electrogenic fishes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Ahmed A. Elbassiouny
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Nathan R. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Schott RK, Bhattacharyya N, Chang BS. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution 2019; 73:1958-1971. [DOI: 10.1111/evo.13810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ryan K. Schott
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: Department of Vertebrate Zoology, National Museum of Natural HistorySmithsonian Institution 10th and Constitution Ave NW Washington DC 20560‐0162
| | - Nihar Bhattacharyya
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: UCL Institute of Ophthalmology 11–43 Bath Street London EC1V 9EL United Kingdom
| | - Belinda S.W. Chang
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of Toronto Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
22
|
Gutierrez EDA, Castiglione GM, Morrow JM, Schott RK, Loureiro LO, Lim BK, Chang BSW. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Mol Biol Evol 2019; 35:2422-2434. [PMID: 30010964 DOI: 10.1093/molbev/msy140] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bats are excellent models for studying the molecular basis of sensory adaptation. In Chiroptera, a sensory trade-off has been proposed between the visual and auditory systems, though the extent of this association has yet to be fully examined. To investigate whether variation in visual performance is associated with echolocation, we experimentally assayed the dim-light visual pigment rhodopsin from bat species with differing echolocation abilities. While spectral tuning properties were similar among bats, we found that the rate of decay of their light-activated state was significantly slower in a nonecholocating bat relative to species that use distinct echolocation strategies, consistent with a sensory trade-off hypothesis. We also found that these rates of decay were remarkably slower compared with those of other mammals, likely indicating an adaptation to dim light. To examine whether functional changes in rhodopsin are associated with shifts in selection intensity upon bat Rh1 sequences, we implemented selection analyses using codon-based likelihood clade models. While no shifts in selection were identified in response to diverse echolocation abilities of bats, we detected a significant increase in the intensity of evolutionary constraint accompanying the diversification of Chiroptera. Taken together, this suggests that substitutions that modulate the stability of the light-activated rhodopsin state were likely maintained through intensified constraint after bats diversified, being finely tuned in response to novel sensory specializations. Our study demonstrates the power of combining experimental and computational approaches for investigating functional mechanisms underlying the evolution of complex sensory adaptations.
Collapse
Affiliation(s)
- Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre of Forensic Sciences, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Livia O Loureiro
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Luehrmann M, Carleton KL, Cortesi F, Cheney KL, Marshall NJ. Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish. Mol Ecol 2019; 28:3025-3041. [DOI: 10.1111/mec.15102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Martin Luehrmann
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | | | - Fabio Cortesi
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Karen L. Cheney
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - N. Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
24
|
Gutierrez EDA, Schott RK, Preston MW, Loureiro LO, Lim BK, Chang BSW. The role of ecological factors in shaping bat cone opsin evolution. Proc Biol Sci 2019; 285:rspb.2017.2835. [PMID: 29618549 DOI: 10.1098/rspb.2017.2835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength (Lws) and short-wavelength (Sws1) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution.
Collapse
Affiliation(s)
- Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Matthew W Preston
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Lívia O Loureiro
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2 .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
25
|
Musilova Z, Cortesi F, Matschiner M, Davies WIL, Patel JS, Stieb SM, de Busserolles F, Malmstrøm M, Tørresen OK, Brown CJ, Mountford JK, Hanel R, Stenkamp DL, Jakobsen KS, Carleton KL, Jentoft S, Marshall J, Salzburger W. Vision using multiple distinct rod opsins in deep-sea fishes. Science 2019; 364:588-592. [PMID: 31073066 PMCID: PMC6628886 DOI: 10.1126/science.aav4632] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
Abstract
Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fabio Cortesi
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland
| | - Wayne I L Davies
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
- Oceans Graduate School, The University of Western Australia, Perth, WA, Australia
| | - Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Sara M Stieb
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Center for Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martin Malmstrøm
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jessica K Mountford
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Bremerhaven, Germany
| | | | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Schott RK, Van Nynatten A, Card DC, Castoe TA, S W Chang B. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Mol Biol Evol 2019; 35:1376-1389. [PMID: 29800394 DOI: 10.1093/molbev/msy025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | | | - Daren C Card
- Department of Biology, University of Texas, Arlington, TX
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, TX
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Fleming JF, Kristensen RM, Sørensen MV, Park TYS, Arakawa K, Blaxter M, Rebecchi L, Guidetti R, Williams TA, Roberts NW, Vinther J, Pisani D. Molecular palaeontology illuminates the evolution of ecdysozoan vision. Proc Biol Sci 2018; 285:20182180. [PMID: 30518575 PMCID: PMC6283943 DOI: 10.1098/rspb.2018.2180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 12/25/2022] Open
Abstract
Colour vision is known to have arisen only twice-once in Vertebrata and once within the Ecdysozoa, in Arthropoda. However, the evolutionary history of ecdysozoan vision is unclear. At the molecular level, visual pigments, composed of a chromophore and a protein belonging to the opsin family, have different spectral sensitivities and these mediate colour vision. At the morphological level, ecdysozoan vision is conveyed by eyes of variable levels of complexity; from the simple ocelli observed in the velvet worms (phylum Onychophora) to the marvellously complex eyes of insects, spiders, and crustaceans. Here, we explore the evolution of ecdysozoan vision at both the molecular and morphological level; combining analysis of a large-scale opsin dataset that includes previously unknown ecdysozoan opsins with morphological analyses of key Cambrian fossils with preserved eye structures. We found that while several non-arthropod ecdysozoan lineages have multiple opsins, arthropod multi-opsin vision evolved through a series of gene duplications that were fixed in a period of 35-71 million years (Ma) along the stem arthropod lineage. Our integrative study of the fossil and molecular record of vision indicates that fossils with more complex eyes were likely to have possessed a larger complement of opsin genes.
Collapse
Affiliation(s)
- James F Fleming
- School of Earth Sciences, University of Bristol, Queen's Road, Bristol, UK
| | | | | | - Tae-Yoon S Park
- Division of Polar Earth-System Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Mark Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, Modena, Italy
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, Modena, Italy
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, UK
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, UK
| | - Jakob Vinther
- School of Earth Sciences, University of Bristol, Queen's Road, Bristol, UK
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Queen's Road, Bristol, UK
| |
Collapse
|
28
|
Castiglione GM, Chang BS. Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision. eLife 2018; 7:35957. [PMID: 30362942 PMCID: PMC6203435 DOI: 10.7554/elife.35957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022] Open
Abstract
Trade-offs between protein stability and activity can restrict access to evolutionary trajectories, but widespread epistasis may facilitate indirect routes to adaptation. This may be enhanced by natural environmental variation, but in multicellular organisms this process is poorly understood. We investigated a paradoxical trajectory taken during the evolution of tetrapod dim-light vision, where in the rod visual pigment rhodopsin, E122 was fixed 350 million years ago, a residue associated with increased active-state (MII) stability but greatly diminished rod photosensitivity. Here, we demonstrate that high MII stability could have likely evolved without E122, but instead, selection appears to have entrenched E122 in tetrapods via epistatic interactions with nearby coevolving sites. In fishes by contrast, selection may have exploited these epistatic effects to explore alternative trajectories, but via indirect routes with low MII stability. Our results suggest that within tetrapods, E122 and high MII stability cannot be sacrificed-not even for improvements to rod photosensitivity.
Collapse
Affiliation(s)
- Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Belinda Sw Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Li X, Shi L, Dai X, Chen Y, Xie H, Feng M, Chen Y, Wang H. Expression plasticity and evolutionary changes extensively shape the sugar-mimic alkaloid adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Mol Ecol 2018; 27:2858-2870. [PMID: 29752760 DOI: 10.1111/mec.14720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023]
Abstract
During the co-evolutionary arms race between plants and herbivores, insects evolved systematic adaptive plasticity to minimize the chemical defence effects of their host plants. Previous studies mainly focused on the expressional plasticity of enzymes in detoxification and digestion. However, the expressional response and adaptive evolution of other fundamental regulators against host phytochemicals are largely unknown. Glucosidase II (GII), which is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit, is an evolutionarily conserved enzyme that regulates glycoprotein folding. In this study, we found that GIIα expression of the mulberry-specialist insect was significantly induced by mulberry leaf extract, 1-deoxynojirimycin (1-DNJ), whereas GIIβ transcripts were not significantly changed. Moreover, positive selection was detected in GIIα when the mulberry-specialist insects diverged from the lepidopteran order, whereas GIIβ was mainly subjected to purifying selection, thus indicating an asymmetrically selective pressure of GII subunits. In addition, positively selected sites were enriched in the GIIα of mulberry-specialist insects and located around the 1-DNJ-binding sites and in the C-terminal region, which could result in conformational changes that affect catalytic activity and substrate-binding efficiency. These results show that expression plasticity and evolutionary changes extensively shape sugar-mimic alkaloids adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Our study provides novel insights into a deep understanding of the sequestration and adaptation of phytophagous specialists to host defensive compounds.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiangping Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yajie Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongqing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Feng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Dungan SZ, Chang BSW. Epistatic interactions influence terrestrial-marine functional shifts in cetacean rhodopsin. Proc Biol Sci 2018; 284:rspb.2016.2743. [PMID: 28250185 DOI: 10.1098/rspb.2016.2743] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
Like many aquatic vertebrates, whales have blue-shifting spectral tuning substitutions in the dim-light visual pigment, rhodopsin, that are thought to increase photosensitivity in underwater environments. We have discovered that known spectral tuning substitutions also have surprising epistatic effects on another function of rhodopsin, the kinetic rates associated with light-activated intermediates. By using absorbance spectroscopy and fluorescence-based retinal release assays on heterologously expressed rhodopsin, we assessed both spectral and kinetic differences between cetaceans (killer whale) and terrestrial outgroups (hippo, bovine). Mutation experiments revealed that killer whale rhodopsin is unusually resilient to pleiotropic effects on retinal release from key blue-shifting substitutions (D83N and A292S), largely due to a surprisingly specific epistatic interaction between D83N and the background residue, S299. Ancestral sequence reconstruction indicated that S299 is an ancestral residue that predates the evolution of blue-shifting substitutions at the origins of Cetacea. Based on these results, we hypothesize that intramolecular epistasis helped to conserve rhodopsin's kinetic properties while enabling blue-shifting spectral tuning substitutions as cetaceans adapted to aquatic environments. Trade-offs between different aspects of molecular function are rarely considered in protein evolution, but in cetacean and other vertebrate rhodopsins, may underlie multiple evolutionary scenarios for the selection of specific amino acid substitutions.
Collapse
Affiliation(s)
- Sarah Z Dungan
- Department Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Belinda S W Chang
- Department Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2 .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada M5S 3B2.,Department Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| |
Collapse
|
31
|
Castiglione GM, Schott RK, Hauser FE, Chang BSW. Convergent selection pressures drive the evolution of rhodopsin kinetics at high altitudes via nonparallel mechanisms. Evolution 2018; 72:170-186. [DOI: 10.1111/evo.13396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Gianni M. Castiglione
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario M5S 3G5 Canada
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Ryan K. Schott
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Frances E. Hauser
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Belinda S. W. Chang
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario M5S 3G5 Canada
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
- Centre for the Analysis of Genome Evolution and Function; University of Toronto; Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
32
|
Luehrmann M, Stieb SM, Carleton KL, Pietzker A, Cheney KL, Marshall NJ. Short term colour vision plasticity on the reef: Changes in opsin expression under varying light conditions differ between ecologically distinct reef fish species. J Exp Biol 2018; 221:jeb.175281. [DOI: 10.1242/jeb.175281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Vision mediates important behavioural tasks such as mate choice, escape from predators and foraging. In fish, photoreceptors are generally tuned to specific visual tasks and/or to their light environment according to depth or water colour to ensure optimal performance. Evolutionary mechanisms acting on opsin genes, the protein component of the photopigment, can influence the spectral sensitivity of photoreceptors. Opsin genes are known to respond to environmental conditions on a number of time scales including shorter time frames due to seasonal variation, or through longer term evolutionary tuning. There is also evidence for ‘on-the-fly’ adaptations in adult fish in response to rapidly changing environmental conditions, however, results are contradictory. Here we investigated the ability of three reef fish species that belong to two ecologically distinct families, Yellow-striped cardinalfish, Ostorhinchus cyanosoma, Ambon damselfish, Pomacentrus amboinensis, and Lemon damselfish, Pomacentrus moluccensis, to alter opsin-gene expression as an adaptation to short-term (weeks to months) changes of environmental light conditions, and attempted to characterize the underlying expression regulation principles. We report the ability for all species to alter opsin gene expression within months and even a few weeks, suggesting that opsin expression in adult reef fish is not static. Furthermore, we found that opsin expression changes in single cones generally occurred more rapidly than in double cones, and identified different responses of RH2 opsin gene expression between the ecologically distinct reef fish families. Quantum catch correlation analysis suggested different regulation mechanisms for opsin expression dependent on gene class.
Collapse
Affiliation(s)
- Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Sara M. Stieb
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Karen L. Carleton
- Department of Biology, The University of Maryland, College Park, MD, 20742, USA
| | - Alisa Pietzker
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Karen L. Cheney
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
- School of Biological Sciences, The University of Queensland, 4072, Brisbane, QLD, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Hauser FE, Ilves KL, Schott RK, Castiglione GM, López-Fernández H, Chang BSW. Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America. Mol Biol Evol 2017; 34:2650-2664. [PMID: 28957507 DOI: 10.1093/molbev/msx192] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cichlids encompass one of the most diverse groups of fishes in South and Central America, and show extensive variation in life history, morphology, and colouration. While studies of visual system evolution in cichlids have focussed largely on the African rift lake species flocks, Neotropical cichlids offer a unique opportunity to investigate visual system evolution at broader temporal and geographic scales. South American cichlid colonization of Central America has likely promoted accelerated rates of morphological evolution in Central American lineages as they encountered reduced competition, renewed ecological opportunity, and novel aquatic habitats. To investigate whether such transitions have influenced molecular evolution of vision in Central American cichlids, we sequenced the dim-light rhodopsin gene in 101 Neotropical cichlid species, spanning the diversity of the clade. We find strong evidence for increased rates of evolution in Central American cichlid rhodopsin relative to South American lineages, and identify several sites under positive selection in rhodopsin that likely contribute to adaptation to different photic environments. We expressed a Neotropical cichlid rhodopsin protein invitro for the first time, and found that while its spectral tuning properties were characteristic of typical vertebrate rhodopsin pigments, the rate of decay of its active signalling form was much slower, consistent with dim light adaptation in other vertebrate rhodopsins. Using site-directed mutagenesis combined with spectroscopic assays, we found that a key amino acid substitution present in some Central American cichlids accelerates the rate of decay of active rhodopsin, which may mediate adaptation to clear water habitats.
Collapse
Affiliation(s)
- Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Katriina L Ilves
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
- Department of Biology, Pace University, New York, NY
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Curr Opin Genet Dev 2017; 47:110-120. [PMID: 29102895 DOI: 10.1016/j.gde.2017.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023]
Abstract
Sensory systems provide valuable insight into the evolution of molecular mechanisms underlying organismal anatomy, physiology, and behaviour. Visual pigments, which mediate the first step in visual transduction, offer a unique window into the relationship between molecular variation and visual performance, and enhance our understanding of how ecology, life history, and physiology may shape genetic variation across a variety of organisms. Here we review recent work investigating vertebrate visual pigments from a number of perspectives. Opsin gene duplication, loss, differential expression, structural variation, and the physiological context in which they operate, have profoundly shaped the visual capabilities of vertebrates adapting to novel environments. We note the importance of conceptual frameworks in investigating visual pigment diversity in vertebrates, highlighting key examples including evolutionary transitions between different photic environments, major shifts in life history evolution and ecology, evolutionary innovations in visual system anatomy and physiology, as well as shifts in visually mediated behaviours and behavioural ecology. We emphasize the utility of studying visual pigment evolution in the context of these different perspectives, and demonstrate how the integrative approaches discussed in this review contribute to a better understanding of the underlying molecular processes mediating adaptation in sensory systems, and the contexts in which they occur.
Collapse
|
35
|
Abstract
High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates-properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.
Collapse
|
36
|
Morrow JM, Castiglione GM, Dungan SZ, Tang PL, Bhattacharyya N, Hauser FE, Chang BSW. An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease. FEBS Lett 2017; 591:1720-1731. [PMID: 28369862 DOI: 10.1002/1873-3468.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/22/2017] [Accepted: 03/25/2017] [Indexed: 11/05/2022]
Abstract
Rhodopsin is the visual pigment that mediates dim-light vision in vertebrates and is a model system for the study of retinal disease. The majority of rhodopsin experiments are performed using bovine rhodopsin; however, recent evidence suggests that significant functional differences exist among mammalian rhodopsins. In this study, we identify differences in both thermal decay and light-activated retinal release rates between bovine and human rhodopsin and perform mutagenesis studies to highlight two clusters of substitutions that contribute to these differences. We also demonstrate that the retinitis pigmentosa-associated mutation G51A behaves differently in human rhodopsin compared to bovine rhodopsin and determine that the thermal decay rate of an ancestrally reconstructed mammalian rhodopsin displays an intermediate phenotype compared to the two extant pigments.
Collapse
Affiliation(s)
- James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | | | - Sarah Z Dungan
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Portia L Tang
- Department of Cell and Systems Biology, University of Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | | | - Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Canada
| |
Collapse
|
37
|
Lan Y, Sun J, Tian R, Bartlett DH, Li R, Wong YH, Zhang W, Qiu JW, Xu T, He LS, Tabata HG, Qian PY. Molecular adaptation in the world's deepest-living animal: Insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas. Mol Ecol 2017; 26:3732-3743. [PMID: 28429829 DOI: 10.1111/mec.14149] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022]
Abstract
The Challenger Deep in the Mariana Trench is the deepest point in the oceans of our planet. Understanding how animals adapt to this harsh environment characterized by high hydrostatic pressure, food limitation, dark and cold is of great scientific interest. Of the animals dwelling in the Challenger Deep, amphipods have been captured using baited traps. In this study, we sequenced the transcriptome of the amphipod Hirondellea gigas collected at a depth of 10,929 m from the East Pond of the Challenger Deep. Assembly of these sequences resulted in 133,041 contigs and 22,046 translated proteins. Functional annotation of these contigs was made using the go and kegg databases. Comparison of these translated proteins with those of four shallow-water amphipods revealed 10,731 gene families, of which 5659 were single-copy orthologs. Base substitution analysis on these single-copy orthologs showed that 62 genes are positively selected in H. gigas, including genes related to β-alanine biosynthesis, energy metabolism and genetic information processing. For multiple-copy orthologous genes, gene family expansion analysis revealed that cold-inducible proteins (i.e., transcription factors II A and transcription elongation factor 1) as well as zinc finger domains are expanded in H. gigas. Overall, our results indicate that genetic adaptation to the hadal environment by H. gigas may be mediated by both gene family expansion and amino acid substitutions of specific proteins.
Collapse
Affiliation(s)
- Yi Lan
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jin Sun
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Renmao Tian
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Douglas H Bartlett
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yue Him Wong
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Weipeng Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Li-Sheng He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Harry G Tabata
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Bhattacharyya N, Darren B, Schott RK, Tropepe V, Chang BSW. Cone-like rhodopsin expressed in the all cone retina of the colubrid pine snake as a potential adaptation to diurnality. J Exp Biol 2017; 220:2418-2425. [DOI: 10.1242/jeb.156430] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
Abstract
Colubridae is the largest and most diverse family of snakes, with visual systems that reflect this diversity, encompassing a variety of retinal photoreceptor organizations. The transmutation theory proposed by Walls postulates that photoreceptors could evolutionarily transition between cell types in squamates, but few studies have tested this theory. Recently, evidence for transmutation and rod-like machinery in an all cone retina has been identified in a diurnal garter snake (Thamnophis), and it appears that the rhodopsin gene at least may be widespread among colubrid snakes. However, functional evidence supporting transmutation beyond the existence of the rhodopsin gene remains rare. We examined the all cone retina of another colubrid, Pituophis melanoleucus, thought to be more secretive/burrowing than Thamnophis. We found that P. melanoleucus expresses two cone opsins (SWS1, LWS) and rhodopsin (RH1) within the eye. Immunohistochemistry localized rhodopsin to the outer segment of photoreceptors in the all-cone retina of the snake and all opsin genes produced functional visual pigments when expressed in vitro. Consistent with other studies, we found that P. melanoleucus rhodopsin is extremely blue-shifted. Surprisingly, P. melanoleucus rhodopsin reacted with hydroxylamine, a typical cone opsin characteristic. These results support the idea that the rhodopsin-containing photoreceptors of P. melanoleucus are the products of evolutionary transmutation from rod ancestors, and suggests that this phenomenon may be widespread in colubrid snakes. We hypothesize that transmutation may be an adaptation for diurnal, brighter-light vision, which could result in increased spectral sensitivity and chromatic discrimination with the potential for colour vision.
Collapse
Affiliation(s)
- Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Benedict Darren
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan K. Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto ON, M5T 3A9, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Maldonado E, Almeida D, Escalona T, Khan I, Vasconcelos V, Antunes A. LMAP: Lightweight Multigene Analyses in PAML. BMC Bioinformatics 2016; 17:354. [PMID: 27597435 PMCID: PMC5011788 DOI: 10.1186/s12859-016-1204-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Background Uncovering how phenotypic diversity arises and is maintained in nature has long been a major interest of evolutionary biologists. Recent advances in genome sequencing technologies have remarkably increased the efficiency to pinpoint genes involved in the adaptive evolution of phenotypes. Reliability of such findings is most often examined with statistical and computational methods using Maximum Likelihood codon-based models (i.e., site, branch, branch-site and clade models), such as those available in codeml from the Phylogenetic Analysis by Maximum Likelihood (PAML) package. While these models represent a well-defined workflow for documenting adaptive evolution, in practice they can be challenging for researchers having a vast amount of data, as multiple types of relevant codon-based datasets are generated, making the overall process hard and tedious to handle, error-prone and time-consuming. Results We introduce LMAP (Lightweight Multigene Analyses in PAML), a user-friendly command-line and interactive package, designed to handle the codeml workflow, namely: directory organization, execution, results gathering and organization for Likelihood Ratio Test estimations with minimal manual user intervention. LMAP was developed for the workstation multi-core environment and provides a unique advantage for processing one, or more, if not all codeml codon-based models for multiple datasets at a time. Our software, proved efficiency throughout the codeml workflow, including, but not limited, to simultaneously handling more than 20 datasets. Conclusions We have developed a simple and versatile LMAP package, with outstanding performance, enabling researchers to analyze multiple different codon-based datasets in a high-throughput fashion. At minimum, two file types are required within a single input directory: one for the multiple sequence alignment and another for the phylogenetic tree. To our knowledge, no other software combines all codeml codon substitution models of adaptive evolution. LMAP has been developed as an open-source package, allowing its integration into more complex open-source bioinformatics pipelines. LMAP package is released under GPLv3 license and is freely available at http://lmapaml.sourceforge.net/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1204-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emanuel Maldonado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Daniela Almeida
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Tibisay Escalona
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Imran Khan
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
40
|
van Hazel I, Dungan SZ, Hauser FE, Morrow JM, Endler JA, Chang BSW. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics. Protein Sci 2016; 25:1308-18. [PMID: 26889650 DOI: 10.1002/pro.2902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well-characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein-coupled receptors. While this substitution is present in some dim-light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site-directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue-shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light-activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure-function as well as their evolutionary significance for dim-light vision across vertebrates.
Collapse
Affiliation(s)
- Ilke van Hazel
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Sarah Z Dungan
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - John A Endler
- Centre for Integrative Ecology, Deakin University, Australia
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Canada
| |
Collapse
|