1
|
Vlček J, Espinoza-Ulloa S, Cowles SA, Ortiz-Catedral L, Coutu C, Chaves JA, Andrés J, Štefka J. Genomes of Galápagos Mockingbirds Reveal the Impact of Island Size and Past Demography on Inbreeding and Genetic Load in Contemporary Populations. Mol Ecol 2025; 34:e17665. [PMID: 39912126 DOI: 10.1111/mec.17665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Restricted range size brings about noteworthy genetic consequences that may affect the viability of a population and eventually its extinction. Particularly, the question if an increase in inbreeding can avert the accumulation of genetic load via purging is hotly debated in the conservation genetic field. Insular populations with limited range sizes represent an ideal setup for relating range size to these genetic factors. Leveraging a set of eight differently sized populations of Galápagos mockingbirds (Mimus), we investigated how island size shaped effective population size (Ne), inbreeding and genetic load. We assembled a genome of M. melanotis and genotyped three individuals per population by whole-genome resequencing. Demographic inference showed that the Ne of most populations remained high after the colonisation of the archipelago 1-2 Mya. Ne decline in M. parvulus happened only 10-20 Kya, whereas the critically endangered M. trifasciatus showed a longer history of reduced Ne. Despite these historical fluctuations, the current island size determines Ne in a linear fashion. In contrast, significant inbreeding coefficients, derived from runs of homozygosity, were identified only in the four smallest populations. The index of additive genetic load suggested purging in M. parvulus, where the smallest populations showed the lowest load. By contrast, M. trifasciatus carried the highest genetic load, possibly due to a recent rapid bottleneck. Overall, our study demonstrates a complex effect of demography on inbreeding and genetic load, providing implications in conservation genetics in general and in a conservation project of M. trifasciatus in particular.
Collapse
Affiliation(s)
- Jakub Vlček
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sebastian Espinoza-Ulloa
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sarah A Cowles
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Luis Ortiz-Catedral
- School of Natural Sciences, Ecology & Conservation Lab, Massey University, Auckland, New Zealand
| | - Cathy Coutu
- Agriculture & Agri-Food Canada, Saskatoon, Canada
| | - Jaime A Chaves
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Galapagos Science Center, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jose Andrés
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Jan Štefka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Mah JC, Lohmueller KE, Garud NR. Inference of the Demographic Histories and Selective Effects of Human Gut Commensal Microbiota Over the Course of Human History. Mol Biol Evol 2025; 42:msaf010. [PMID: 39838923 PMCID: PMC11824422 DOI: 10.1093/molbev/msaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/07/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Despite the importance of gut commensal microbiota to human health, there is little knowledge about their evolutionary histories, including their demographic histories and distributions of fitness effects (DFEs) of mutations. Here, we infer the demographic histories and DFEs for amino acid-changing mutations of 39 of the most prevalent and abundant commensal gut microbial species found in Westernized individuals over timescales exceeding human generations. Some species display contractions in population size and others expansions, with several of these events coinciding with several key historical moments in human history. DFEs across species vary from highly to mildly deleterious, with differences between accessory and core gene DFEs largely driven by genetic drift. Within genera, DFEs tend to be more congruent, reflective of underlying phylogenetic relationships. Together, these findings suggest that gut microbes have distinct demographic and selective histories.
Collapse
Affiliation(s)
- Jonathan C Mah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Human Genetics, University of California, Los Angeles, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Human Genetics, University of California, Los Angeles, USA
| |
Collapse
|
3
|
Burgarella C, Brémaud MF, Von Hirschheydt G, Viader V, Ardisson M, Santoni S, Ranwez V, de Navascués M, David J, Glémin S. Mating systems and recombination landscape strongly shape genetic diversity and selection in wheat relatives. Evol Lett 2024; 8:866-880. [PMID: 39677571 PMCID: PMC11637685 DOI: 10.1093/evlett/qrae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2024] [Accepted: 08/03/2024] [Indexed: 12/17/2024] Open
Abstract
How and why genetic diversity varies among species is a long-standing question in evolutionary biology. Life history traits have been shown to explain a large part of observed diversity. Among them, mating systems have one of the strongest impacts on genetic diversity, with selfing species usually exhibiting much lower diversity than outcrossing relatives. Theory predicts that a high rate of selfing amplifies selection at linked sites, reducing genetic diversity genome-wide, but frequent bottlenecks and rapid population turn-over could also explain low genetic diversity in selfers. However, how linked selection varies with mating systems and whether it is sufficient to explain the observed difference between selfers and outcrossers has never been tested. Here, we used the Aegilops/Triticum grass species, a group characterized by contrasted mating systems (from obligate outcrossing to high selfing) and marked recombination rate variation across the genome, to quantify the effects of mating system and linked selection on patterns of neutral and selected polymorphism. By analyzing phenotypic and transcriptomic data of 13 species, we show that selfing strongly affects genetic diversity and the efficacy of selection by amplifying the intensity of linked selection genome-wide. In particular, signatures of adaptation were only found in the highly recombining regions in outcrossing species. These results bear implications for the evolution of mating systems and, more generally, for our understanding of the fundamental drivers of genetic diversity.
Collapse
Affiliation(s)
- Concetta Burgarella
- CNRS, Univ. Montpellier, ISEM – UMR 5554, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Marie-Fleur Brémaud
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Veronique Viader
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Morgane Ardisson
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Santoni
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Vincent Ranwez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Miguel de Navascués
- UMR CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jacques David
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Glémin
- CNRS, Univ. Rennes, ECOBIO – UMR 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Amorim CEG, Di C, Lin M, Marsden C, Del Carpio CA, Mah JC, Robinson J, Kim BY, Mooney JA, Cornejo OE, Lohmueller KE. Evolutionary consequences of domestication on the selective effects of new amino acid changing mutations in canids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623529. [PMID: 39605619 PMCID: PMC11601280 DOI: 10.1101/2024.11.13.623529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The domestication of wild canids led to dogs no longer living in the wild but instead residing alongside humans. Extreme changes in behavior and diet associated with domestication may have led to the relaxation of the selective pressure on traits that may be less important in the domesticated context. Thus, here we hypothesize that strongly deleterious mutations may have become less deleterious in domesticated populations. We test this hypothesis by estimating the distribution of fitness effects (DFE) for new amino acid changing mutations using whole-genome sequence data from 24 gray wolves and 61 breed dogs. We find that the DFE is strikingly similar across canids, with 26-28% of new amino acid changing mutations being neutral/nearly neutral (|s| < 1e-5), and 41-48% under strong purifying selection (|s| > 1e-2). Our results are robust to different model assumptions suggesting that the DFE is stable across short evolutionary timescales, even in the face of putative drastic changes in the selective pressure caused by artificial selection during domestication and breed formation. On par with previous works describing DFE evolution, our data indicate that the DFE of amino acid changing mutations depends more strongly on genome structure and organismal characteristics, and less so on shifting selective pressures or environmental factors. Given the constant DFE and previous data showing that genetic variants that differentiate wolf and dog populations are enriched in regulatory elements, we speculate that domestication may have had a larger impact on regulatory variation than on amino acid changing mutations.
Collapse
Affiliation(s)
| | - Chenlu Di
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Meixi Lin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Clare Marsden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
- Serology/DNA unit, Forensic Science Division, Los Angeles Police Department, Los Angeles CA 90032
| | - Christina A. Del Carpio
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Jonathan C. Mah
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Jacqueline Robinson
- Institute for Human Genetics, University of California San Francisco, San Francisco CA 94143
| | - Bernard Y. Kim
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jazlyn A. Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, 90089, USA
| | - Omar E. Cornejo
- Ecology & Evolutionary Biology Department, University of California, Santa Cruz, California, 95060, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
5
|
Yi H, Wang J, Dong S, Kang M. Genomic signatures of inbreeding and mutation load in tree ferns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1522-1535. [PMID: 39387366 DOI: 10.1111/tpj.17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Ferns (Pteridophyta), as the second largest group of vascular plants, play important roles in ecosystem functioning. Homosporous ferns exhibit a remarkable range of mating systems, from extreme inbreeding to obligate outcrossing, which may have significant evolutionary and ecological implications. Despite their significance, the impact of genome-wide inbreeding on genetic diversity and mutation load within the fern lineage remain largely unexplored. In this study, we utilized whole-genome sequencing to investigate the genomic signatures of inbreeding and genetic load in three Alsophila tree fern species. Our analysis revealed extremely high inbreeding in A. spinulosa, in contrast to the predominantly outcrossing observed in A. costularis and A. latebrosa. This difference likely reflects divergent mating systems and demographic histories. Consistent with its extreme inbreeding propensity, A. spinulosa exhibits reduced genetic diversity and a pronounced decline in effective population size. Comparison of genetic load revealed an overall reduction in deleterious mutations in the highly inbred A. spinulosa, highlighting that long-term inbreeding may have contributed to the purging of strongly deleterious mutations, thereby prolonging the survival of A. spinulosa. Despite this, however, A. spinulosa carries a substantive realized genetic load that may potentially instigate future fitness decline. Our findings illuminate the complex evolutionary interplay between inbreeding and mutation load in homosporous ferns, yielding insights with important implications for the conservation and management of these species.
Collapse
Affiliation(s)
- Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Shiyong Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
6
|
Monjaraz-Ruedas R, Starrett J, Newton L, Bond JE, Hedin M. Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae). Mol Ecol 2024; 33:e17540. [PMID: 39377248 DOI: 10.1111/mec.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Although patterns of population genomic variation are well-studied in animals, there remains room for studies that focus on non-model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome-wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within- and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small-bodied taxa. We also predicted greater genetic differentiation in small-bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation-by-distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species-rich animal clade.
Collapse
Affiliation(s)
| | - James Starrett
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| | - Lacie Newton
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Jason E Bond
- Department of Entomology and Nematology, University of California Davis, Davis, California, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
7
|
Milesi P, Kastally C, Dauphin B, Cervantes S, Bagnoli F, Budde KB, Cavers S, Fady B, Faivre-Rampant P, González-Martínez SC, Grivet D, Gugerli F, Jorge V, Lesur Kupin I, Ojeda DI, Olsson S, Opgenoorth L, Pinosio S, Plomion C, Rellstab C, Rogier O, Scalabrin S, Scotti I, Vendramin GG, Westergren M, Lascoux M, Pyhäjärvi T. Resilience of genetic diversity in forest trees over the Quaternary. Nat Commun 2024; 15:8538. [PMID: 39402024 PMCID: PMC11473659 DOI: 10.1038/s41467-024-52612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/11/2024] [Indexed: 10/17/2024] Open
Abstract
The effect of past environmental changes on the demography and genetic diversity of natural populations remains a contentious issue and has rarely been investigated across multiple, phylogenetically distant species. Here, we perform comparative population genomic analyses and demographic inferences for seven widely distributed and ecologically contrasting European forest tree species based on concerted sampling of 164 populations across their natural ranges. For all seven species, the effective population size, Ne, increased or remained stable over many glacial cycles and up to 15 million years in the most extreme cases. Surprisingly, the drastic environmental changes associated with the Pleistocene glacial cycles have had little impact on the level of genetic diversity of dominant forest tree species, despite major shifts in their geographic ranges. Based on their trajectories of Ne over time, the seven tree species can be divided into three major groups, highlighting the importance of life history and range size in determining synchronous variation in genetic diversity over time. Altogether, our results indicate that forest trees have been able to retain their evolutionary potential over very long periods of time despite strong environmental changes.
Collapse
Affiliation(s)
- Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Chedly Kastally
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Benjamin Dauphin
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Sandra Cervantes
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Francesca Bagnoli
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino, Italy
| | - Katharina B Budde
- Department of Forest Genetics and Forest Tree Breeding, Georg-August-University Goettingen, Göttingen, Germany
- Department of Forest Genetic Resources, Northwest German Forest Research Institute, Hann. Münden, Germany
| | - Stephen Cavers
- UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, UK
| | - Bruno Fady
- INRAE, URFM, Ecology of Mediterranean Forests, Avignon, France
| | | | | | - Delphine Grivet
- Institute of Forest Sciences (ICIFOR), INIA-CSIC, Madrid, Spain
| | - Felix Gugerli
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Isabelle Lesur Kupin
- University of Bordeaux, INRAE, BIOGECO, Cestas, France
- Helix Venture, Mérignac, France
| | - Dario I Ojeda
- Department of Forest Biodiversity, Norwegian Institute of Bioeconomy Research (NIBIO), Aas, Norway
| | - Sanna Olsson
- Institute of Forest Sciences (ICIFOR), INIA-CSIC, Madrid, Spain
| | - Lars Opgenoorth
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Plant Ecology and Geobotany, Philipps-Universität Marburg, Marburg, Germany
| | - Sara Pinosio
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino, Italy
- Institute of Applied Genomics (IGA), Udine, Italy
| | | | - Christian Rellstab
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | | | - Ivan Scotti
- INRAE, URFM, Ecology of Mediterranean Forests, Avignon, France
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino, Italy
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Tanja Pyhäjärvi
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Schoen DJ, Speed D. The heritability of fitness in a wild annual plant population with hierarchical size structure. Evolution 2024; 78:1739-1745. [PMID: 39046460 DOI: 10.1093/evolut/qpae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The relative magnitude of additive genetic vs. residual variation for fitness traits is important in models for predicting the rate of evolution and population persistence in response to changes in the environment. In many annual plants, lifetime reproductive fitness is correlated with end-of-season plant biomass, which can vary significantly from plant to plant in the same population. We measured end-of-season plant biomasses and obtained single nucleotide polymorphism (SNP) genotypes of plants in a dense, natural population of the annual plant species Impatiens capensis with hierarchical size structure. These data were used to estimate the amount of heritable variation for position in the size hierarchy and for plant biomass. Additive genetic variance for a position in the size hierarchy and plant biomass were both significantly different from zero. These results are discussed in relationship to the theory for the heritability of fitness in natural populations and ecological factors that potentially influence heritable variation for fitness in this species.
Collapse
Affiliation(s)
- Daniel J Schoen
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Doug Speed
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Liu L, James J, Zhang YQ, Wang ZF, Arakaki M, Vadillo G, Zhou QJ, Lascoux M, Ge XJ. The 'queen of the Andes' (Puya raimondii) is genetically fragile and fragmented: a consequence of long generation time and semelparity? THE NEW PHYTOLOGIST 2024; 244:277-291. [PMID: 39135394 DOI: 10.1111/nph.20036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 09/17/2024]
Abstract
Understanding how life history shapes genetic diversity is a fundamental issue in evolutionary biology, with important consequences for conservation. However, we still have an incomplete picture of the impact of life history on genome-wide patterns of diversity, especially in long-lived semelparous plants. Puya raimondii is a high-altitude semelparous species from the Andes that flowers at 40-100 years of age. We sequenced the whole genome and estimated the nucleotide diversity of 200 individuals sampled from nine populations. Coalescent-based approaches were then used to infer past population dynamics. Finally, these results were compared with results obtained for the iteroparous species, Puya macrura. The nine populations of P. raimondii were highly divergent, highly inbred, and carried an exceptionally high genetic load. They are genetically depauperate, although, locally in the genome, balancing selection contributed to the maintenance of genetic polymorphism. While both P. raimondii and P. macrura went through a severe bottleneck during the Pleistocene, P. raimondii did not recover from it and continuously declined, while P. macrura managed to bounce back. Our results demonstrate the importance of life history, in particular generation time and reproductive strategy, in affecting population dynamics and genomic variation, and illustrate the genetic fragility of long-lived semelparous plants.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Jennifer James
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
- Swedish Collegium of Advanced Study, Uppsala University, Uppsala, 75236, Sweden
| | - Yu-Qu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712044, China
| | - Zheng-Feng Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mónica Arakaki
- Natural History Museum, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Giovana Vadillo
- Plant Physiology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, 15081, Peru
| | - Qiu-Jie Zhou
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Xue-Jun Ge
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
10
|
Roberts M, Josephs EB. Previously unmeasured genetic diversity explains part of Lewontin's paradox in a k -mer-based meta-analysis of 112 plant species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594778. [PMID: 38798362 PMCID: PMC11118579 DOI: 10.1101/2024.05.17.594778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
At the molecular level, most evolution is expected to be neutral. A key prediction of this expectation is that the level of genetic diversity in a population should scale with population size. However, as was noted by Richard Lewontin in 1974 and reaffirmed by later studies, the slope of the population size-diversity relationship in nature is much weaker than expected under neutral theory. We hypothesize that one contributor to this paradox is that current methods relying on single nucleotide polymorphisms (SNPs) called from aligning short reads to a reference genome underestimate levels of genetic diversity in many species. To test this idea, we calculated nucleotide diversity ( π ) and k -mer-based metrics of genetic diversity across 112 plant species, amounting to over 205 terabases of DNA sequencing data from 27,488 individual plants. We then compared how these different metrics correlated with proxies of population size that account for both range size and population density variation across species. We found that our population size proxies scaled anywhere from about 3 to over 20 times faster with k -mer diversity than nucleotide diversity after adjusting for evolutionary history, mating system, life cycle habit, cultivation status, and invasiveness. The relationship between k -mer diversity and population size proxies also remains significant after correcting for genome size, whereas the analogous relationship for nucleotide diversity does not. These results suggest that variation not captured by common SNP-based analyses explains part of Lewontin's paradox in plants.
Collapse
Affiliation(s)
- Miles Roberts
- Genetics and Genome Sciences Program, Michigan State University, East Lansing MI
| | - Emily B. Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI
- Plant Resilience Institute, Michigan State University, East Lansing, MI
| |
Collapse
|
11
|
Kou YX, Liu ML, López-Pujol J, Zhang QJ, Zhang ZY, Li ZH. Contrasting demographic history and mutational load in three threatened whitebark pines (Pinus subsect. Gerardianae): implications for conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2967-2981. [PMID: 39115017 DOI: 10.1111/tpj.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024]
Abstract
Demographic history and mutational load are of paramount importance for the adaptation of the endangered species. However, the effects of population evolutionary history and genetic load on the adaptive potential in endangered conifers remain unclear. Here, using population transcriptome sequencing, whole chloroplast genomes and mitochondrial DNA markers, combined with niche analysis, we determined the demographic history and mutational load for three threatened whitebark pines having different endangered statuses, Pinus bungeana, P. gerardiana and P. squamata. Demographic inference indicated that severe bottlenecks occurred in all three pines at different times, coinciding with periods of major climate and geological changes; in contrast, while P. bungeana experienced a recent population expansion, P. gerardiana and P. squamata maintained small population sizes after bottlenecking. Abundant homozygous-derived variants accumulated in the three pines, particularly in P. squamata, while the species with most heterozygous variants was P. gerardiana. Abundant moderately and few highly deleterious variants accumulated in the pine species that have experienced the most severe demographic bottlenecks (P. gerardiana and P. squamata), most likely because of purging effects. Finally, niche modeling showed that the distribution of P. bungeana might experience a significant expansion in the future, and the species' identified genetic clusters are also supported by differences in the ecological niche. The integration of genomic, demographic and niche data has allowed us to prove that the three threatened pines have contrasting patterns of demographic history and mutational load, which may have important implications in their adaptive potential and thus are also key for informing conservation planning.
Collapse
Affiliation(s)
- Yi-Xuan Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona, Catalonia, 08038, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón, 091650, Ecuador
| | - Qi-Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
12
|
Wang C, Liu L, Yin M, Liu B, Wu Y, Eller F, Gao Y, Brix H, Wang T, Guo W, Salojärvi J. Chromosome-level genome assemblies reveal genome evolution of an invasive plant Phragmites australis. Commun Biol 2024; 7:1007. [PMID: 39154094 PMCID: PMC11330502 DOI: 10.1038/s42003-024-06660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
Biological invasions pose a significant threat to ecosystems, disrupting local biodiversity and ecosystem functions. The genomic underpinnings of invasiveness, however, are still largely unknown, making it difficult to predict and manage invasive species effectively. The common reed (Phragmites australis) is a dominant grass species in wetland ecosystems and has become particularly invasive when transferred from Europe to North America. Here, we present a high-quality gap-free, telomere-to-telomere genome assembly of Phragmites australis consisting of 24 pseudochromosomes and a B chromosome. Fully phased subgenomes demonstrated considerable subgenome dominance and revealed the divergence of diploid progenitors approximately 30.9 million years ago. Comparative genomics using chromosome-level scaffolds for three other lineages and a previously published draft genome assembly of an invasive lineage revealed that gene family expansions in the form of tandem duplications may have contributed to the invasiveness of the lineage. This study sheds light on the genome evolution of Arundinoideae grasses and suggests that genetic drivers, such as gene family expansions and tandem duplications, may underly the processes of biological invasion in plants. These findings provide a crucial step toward understanding and managing the genetic basis of invasiveness in plant species.
Collapse
Affiliation(s)
- Cui Wang
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lele Liu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Meiqi Yin
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yiming Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | | | - Yingqi Gao
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China.
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
13
|
Spurgin LG, Bosse M, Adriaensen F, Albayrak T, Barboutis C, Belda E, Bushuev A, Cecere JG, Charmantier A, Cichon M, Dingemanse NJ, Doligez B, Eeva T, Erikstad KE, Fedorov V, Griggio M, Heylen D, Hille S, Hinde CA, Ivankina E, Kempenaers B, Kerimov A, Krist M, Kvist L, Laine VN, Mänd R, Matthysen E, Nager R, Nikolov BP, Norte AC, Orell M, Ouyang J, Petrova-Dinkova G, Richner H, Rubolini D, Slagsvold T, Tilgar V, Török J, Tschirren B, Vágási CI, Yuta T, Groenen MAM, Visser ME, van Oers K, Sheldon BC, Slate J. The great tit HapMap project: A continental-scale analysis of genomic variation in a songbird. Mol Ecol Resour 2024; 24:e13969. [PMID: 38747336 DOI: 10.1111/1755-0998.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.
Collapse
Affiliation(s)
- Lewis G Spurgin
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Mirte Bosse
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Department of Ecological Science, Animal Ecology Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Adriaensen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tamer Albayrak
- Department of Biology, Science and art Faculty, Mehmet Akif Ersoy University, Istiklal Yerleskesi, Burdur, Turkey
- Biology Education, Buca Faculty of Education, Mathematics and Science Education, Dokuz Eylül University, İzmir, Turkey
| | | | - Eduardo Belda
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, València, Spain
| | - Andrey Bushuev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano Emilia, Italy
| | | | - Mariusz Cichon
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU München, Planegg-Martinsried, Germany
| | - Blandine Doligez
- UMR CNRS 5558-LBBE, Biométrie et Biologie Évolutive, Villeurbanne, France
- Department of Ecology and Evolution, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Kjell Einar Erikstad
- Norwegian Institute for Nature Research, FRAM-High North Research Centre for Climate and the Environment, Tromsø, Norway
| | | | - Matteo Griggio
- Department of Biology, University of Padova, Padova, Italy
| | - Dieter Heylen
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Sabine Hille
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Science, Vienna, Austria
| | - Camilla A Hinde
- Behavioural Ecology Group, Department of Life Sciences, Anglia Ruskin University, Cambridgeshire, UK
| | - Elena Ivankina
- Faculty of Biology, Zvenigorod Biological Station, Lomonosov Moscow State University, Moscow, Russia
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Anvar Kerimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Milos Krist
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Laura Kvist
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Raivo Mänd
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ruedi Nager
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Boris P Nikolov
- Bulgarian Ornithological Centre, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ana Claudia Norte
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Markku Orell
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Gergana Petrova-Dinkova
- Bulgarian Ornithological Centre, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Heinz Richner
- Evolutionary Ecology Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, Milan, Italy
| | - Tore Slagsvold
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vallo Tilgar
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Csongor I Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Teru Yuta
- Yamashina Institute for Ornithology, Abiko, Japan
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ben C Sheldon
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Plavskin Y, de Biase MS, Ziv N, Janská L, Zhu YO, Hall DW, Schwarz RF, Tranchina D, Siegal ML. Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects. PLoS Biol 2024; 22:e3002698. [PMID: 38950062 PMCID: PMC11244821 DOI: 10.1371/journal.pbio.3002698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
The fitness effects of new mutations determine key properties of evolutionary processes. Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-effect deleterious mutations, whose combined effect can burden otherwise adaptive lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as viruses, microbes, and tumors. The small effect sizes of these important mutations have made accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on growth can be especially instructive, as this complex phenotype is closely linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribution of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers may impose a significant burden on evolving lineages. By using lines that accumulated mutations in either wild-type or slippage repair-defective backgrounds, we further disentangle the effects of 2 common types of mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they have distinct effects on yeast growth rate. Although the average effect of a simple sequence repeat mutation is very small (approximately 0.3%), many do alter growth rate, implying that this class of frequent mutations has an important evolutionary impact.
Collapse
Affiliation(s)
- Yevgeniy Plavskin
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Maria Stella de Biase
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Humboldt-Universität zu Berlin, Department of Biology, Berlin, Germany
| | - Naomi Ziv
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Libuše Janská
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Yuan O. Zhu
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - David W. Hall
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Computational Cancer Biology, Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
| | - Daniel Tranchina
- Department of Biology, New York University, New York, New York, United States of America
- Courant Math Institute, New York University, New York, New York, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
15
|
Plavskin Y, de Biase MS, Ziv N, Janská L, Zhu YO, Hall DW, Schwarz RF, Tranchina D, Siegal ML. Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.04.547687. [PMID: 37461506 PMCID: PMC10349969 DOI: 10.1101/2023.07.04.547687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The fitness effects of new mutations determine key properties of evolutionary processes. Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-effect deleterious mutations, whose combined effect can burden otherwise adaptive lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as viruses, microbes, and tumors. The small effect sizes of these important mutations have made accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on growth can be especially instructive, as this complex phenotype is closely linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribution of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers may impose a significant burden on evolving lineages. By using lines that accumulated mutations in either wild-type or slippage repair-defective backgrounds, we further disentangle the effects of two common types of mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they have distinct effects on yeast growth rate. Although the average effect of a simple sequence repeat mutation is very small (~0.3%), many do alter growth rate, implying that this class of frequent mutations has an important evolutionary impact.
Collapse
|
16
|
Wang Y, Duchen P, Chávez A, Sree KS, Appenroth KJ, Zhao H, Höfer M, Huber M, Xu S. Population genomics and epigenomics of Spirodela polyrhiza provide insights into the evolution of facultative asexuality. Commun Biol 2024; 7:581. [PMID: 38755313 PMCID: PMC11099151 DOI: 10.1038/s42003-024-06266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.
Collapse
Affiliation(s)
- Yangzi Wang
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Alexandra Chávez
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periya, 671320, India
| | - Klaus J Appenroth
- Matthias Schleiden Institute - Plant Physiology, Friedrich Schiller University of Jena, 07743, Jena, Germany
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 6100641, Chengdu, China
| | - Martin Höfer
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Meret Huber
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany.
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany.
- Institute for Quantitative and Computational Biosciences, University of Mainz, 55218, Mainz, Germany.
| |
Collapse
|
17
|
Shi T, Zhang X, Hou Y, Jia C, Dan X, Zhang Y, Jiang Y, Lai Q, Feng J, Feng J, Ma T, Wu J, Liu S, Zhang L, Long Z, Chen L, Street NR, Ingvarsson PK, Liu J, Yin T, Wang J. The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees. MOLECULAR PLANT 2024; 17:725-746. [PMID: 38486452 DOI: 10.1016/j.molp.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.
Collapse
Affiliation(s)
- Tingting Shi
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yukang Hou
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changfu Jia
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yulin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Lai
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jianju Feng
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| | - Tao Ma
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jiali Wu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Shuyu Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqin Long
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Liyang Chen
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Västerbotten, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Rajendran S, Kang YM, Yang IB, Eo HB, Baek KL, Jang S, Eybishitz A, Kim HC, Je BI, Park SJ, Kim CM. Functional characterization of plant specific Indeterminate Domain (IDD) transcription factors in tomato (Solanum lycopersicum L.). Sci Rep 2024; 14:8015. [PMID: 38580719 PMCID: PMC10997639 DOI: 10.1038/s41598-024-58903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/04/2024] [Indexed: 04/07/2024] Open
Abstract
Plant-specific transcription factors (TFs) are responsible for regulating the genes involved in the development of plant-specific organs and response systems for adaptation to terrestrial environments. This includes the development of efficient water transport systems, efficient reproductive organs, and the ability to withstand the effects of terrestrial factors, such as UV radiation, temperature fluctuations, and soil-related stress factors, and evolutionary advantages over land predators. In rice and Arabidopsis, INDETERMINATE DOMAIN (IDD) TFs are plant-specific TFs with crucial functions, such as development, reproduction, and stress response. However, in tomatoes, IDD TFs remain uncharacterized. Here, we examined the presence, distribution, structure, characteristics, and expression patterns of SlIDDs. Database searches, multiple alignments, and motif alignments suggested that 24 TFs were related to Arabidopsis IDDs. 18 IDDs had two characteristic C2H2 domains and two C2HC domains in their coding regions. Expression analyses suggest that some IDDs exhibit multi-stress responsive properties and can respond to specific stress conditions, while others can respond to multiple stress conditions in shoots and roots, either in a tissue-specific or universal manner. Moreover, co-expression database analyses suggested potential interaction partners within IDD family and other proteins. This study functionally characterized SlIDDs, which can be studied using molecular and bioinformatics methods for crop improvement.
Collapse
Affiliation(s)
- Sujeevan Rajendran
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yu Mi Kang
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - In Been Yang
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hye Bhin Eo
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Kyung Lyung Baek
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Assaf Eybishitz
- World Vegetable Center, P.O. Box 42, Tainan, 74199, Shanhua, Taiwan
| | - Ho Cheol Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Byeong Il Je
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - Soon Ju Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Chul Min Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
19
|
Zeng ZH, Zhong L, Sun HY, Wu ZK, Wang X, Wang H, Li DZ, Barrett SCH, Zhou W. Parallel evolution of morphological and genomic selfing syndromes accompany the breakdown of heterostyly. THE NEW PHYTOLOGIST 2024; 242:302-316. [PMID: 38214455 DOI: 10.1111/nph.19522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Evolutionary transitions from outcrossing to selfing in flowering plants have convergent morphological and genomic signatures and can involve parallel evolution within related lineages. Adaptive evolution of morphological traits is often assumed to evolve faster than nonadaptive features of the genomic selfing syndrome. We investigated phenotypic and genomic changes associated with transitions from distyly to homostyly in the Primula oreodoxa complex. We determined whether the transition to selfing occurred more than once and investigated stages in the evolution of morphological and genomic selfing syndromes using 22 floral traits and both nuclear and plastid genomic data from 25 populations. Two independent transitions were detected representing an earlier and a more recently derived selfing lineage. The older lineage exhibited classic features of the morphological and genomic selfing syndrome. Although features of both selfing syndromes were less developed in the younger selfing lineage, they exhibited parallel development with the older selfing lineage. This finding contrasts with the prediction that some genomic changes should lag behind adaptive changes to morphological traits. Our findings highlight the value of comparative studies on the timing and extent of transitions from outcrossing to selfing between related lineages for investigating the tempo of morphological and molecular evolution.
Collapse
Affiliation(s)
- Zhi-Hua Zeng
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhong
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Ying Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, China
| | - Xin Wang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Wei Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, 674100, China
| |
Collapse
|
20
|
Zhao W, Gao J, Hall D, Andersson BA, Bruxaux J, Tomlinson KW, Drouzas AD, Suyama Y, Wang XR. Evolutionary radiation of the Eurasian Pinus species under pervasive gene flow. THE NEW PHYTOLOGIST 2024. [PMID: 38515228 DOI: 10.1111/nph.19694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Evolutionary radiation, a pivotal aspect of macroevolution, offers valuable insights into evolutionary processes. The genus Pinus is the largest genus in conifers withc . $$ c. $$ 90% of the extant species emerged in the Miocene, which signifies a case of rapid diversification. Despite this remarkable history, our understanding of the mechanisms driving radiation within this expansive genus has remained limited. Using exome capture sequencing and a fossil-calibrated phylogeny, we investigated the divergence history, niche diversification, and introgression among 13 closely related Eurasian species spanning climate zones from the tropics to the boreal Arctic. We detected complex introgression among lineages in subsection Pinus at all stages of the phylogeny. Despite this widespread gene exchange, each species maintained its genetic identity and showed clear niche differentiation. Demographic analysis unveiled distinct population histories among these species, which further influenced the nucleotide diversity and efficacy of purifying and positive selection in each species. Our findings suggest that radiation in the Eurasian pines was likely fueled by interspecific recombination and further reinforced by their adaptation to distinct environments. Our study highlights the constraints and opportunities for evolutionary change, and the expectations of future adaptation in response to environmental changes in different lineages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - David Hall
- Forestry Research Institute of Sweden (Skogforsk), Sävar, SE-91833, Sweden
| | - Bea Angelica Andersson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Kyle W Tomlinson
- Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephant, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Yoshihisa Suyama
- Graduate School of Agricultural Science, Tohoku University, Miyagi, 989-6711, Japan
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
21
|
Kent TV, Schrider DR, Matute DR. Demographic history and the efficacy of selection in the globally invasive mosquito Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.584008. [PMID: 38559089 PMCID: PMC10979846 DOI: 10.1101/2024.03.07.584008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aedes aegypti is the main vector species of yellow fever, dengue, zika and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from 6 countries in Africa, North America, and South America to investigate the demographic history of the spread of Ae. aegypti into the Americas its impact on genomic diversity. In the Americas, we observe patterns of strong population structure consistent with relatively low (but probably non-zero) levels of gene flow but occasional long-range dispersal and/or recolonization events. We also find evidence that the colonization of the Americas has resulted in introduction bottlenecks. However, while each sampling location shows evidence of a past population contraction and subsequent recovery, our results suggest that the bottlenecks in America have led to a reduction in genetic diversity of only ~35% relative to African populations, and the American samples have retained high levels of genetic diversity (expected heterozygosity of ~0.02 at synonymous sites) and have experienced only a minor reduction in the efficacy of selection. These results evoke the image of an invasive species that has expanded its range with remarkable genetic resilience in the face of strong eradication pressure.
Collapse
Affiliation(s)
- Tyler V. Kent
- Department of Biology, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R. Schrider
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R. Matute
- Department of Biology, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Cruz-Nicolás J, Jaramillo-Correa JP, Gernandt DS. Stochastic processes and changes in evolutionary rate are associated with diversification in a lineage of tropical hard pines (Pinus). Mol Phylogenet Evol 2024; 192:108011. [PMID: 38195010 DOI: 10.1016/j.ympev.2024.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/08/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
The study of the patterns of polymorphism and molecular evolution among closely related species is key to understanding the evolutionary forces involved in the diversification of lineages. This point is a big challenge in species with slow evolutionary rates, long life cycles, and ancient, shared polymorphisms such as conifers. Under the premise of divergence in a stepwise migration process, we expect clinal geographical patterns of purifying selection efficiency, and genetic structure related to latitude or longitude. If migration is accompanied by changes in the environment, we could further expect a role of positive selection in driving species divergence. Here, we infer patterns of polymorphism, efficiency of purifying selection, and molecular evolution using a dataset of 161 nuclear genes (∼71 Kb) in a lineage of hard pines from North America, the Caribbean, Mexico, and Central America presumed to have migrated from North America toward lower latitudes with tropical conditions. Under the premise of differences in selective pressures, we also look for possible signals of positive selection. To test our hypothesis, first we estimated different indices to infer patterns of polymorphism and efficiency of purifying selection (Ka, Ks, Ka/Ks, dN, dS, dN/dS, and dxy) and compared these metrics across five clades. Also, we investigated possible clinal patterns in these indices and morphological traits (needle length and cone length). Then we inferred genetic structure and environmental differences among species to test for possible signals of positive selection using phylogenetic methods in specific clades. We found differences among clades using Ka, Ks, and Ka/Ks with a relaxation of purifying selection, especially in the Elliotti and Patula clades. We also found environmental differences related to geographic distance, and among clades suggesting differences in selective pressures. The indices Ks, dxy, and needle length had relationships with geography but not ovulate cone length. Finally, we found that most analyzed genes are under purifying selection, but there was an exception of faster evolutionary rate in some pine species, suggesting the possible action of positive selection in divergence. Our study indicated that stochastic processes have played a key role in the diversification of the group, with a possible input of positive selection in pines from Mexico and Central America.
Collapse
Affiliation(s)
- Jorge Cruz-Nicolás
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México CDMX 04510, Mexico.
| | - Juan Pablo Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México CDMX 04510, Mexico
| | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México CDMX 04510, Mexico.
| |
Collapse
|
23
|
Song B, Buckler ES, Stitzer MC. New whole-genome alignment tools are needed for tapping into plant diversity. TRENDS IN PLANT SCIENCE 2024; 29:355-369. [PMID: 37749022 DOI: 10.1016/j.tplants.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023]
Abstract
Genome alignment is one of the most foundational methods for genome sequence studies. With rapid advances in sequencing and assembly technologies, these newly assembled genomes present challenges for alignment tools to meet the increased complexity and scale. Plant genome alignment is technologically challenging because of frequent whole-genome duplications (WGDs) as well as chromosome rearrangements and fractionation, high nucleotide diversity, widespread structural variation, and high transposable element (TE) activity causing large proportions of repeat elements. We summarize classical pairwise and multiple genome alignment (MGA) methods, and highlight techniques that are widely used or are being developed by the plant research community. We also outline the remaining challenges for precise genome alignment and the interpretation of alignment results in plants.
Collapse
Affiliation(s)
- Baoxing Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA; Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA; Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Michelle C Stitzer
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Zurita AMI, Kyriazis CC, Lohmueller KE. The impact of non-neutral synonymous mutations when inferring selection on non-synonymous mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579314. [PMID: 38370782 PMCID: PMC10871344 DOI: 10.1101/2024.02.07.579314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The distribution of fitness effects (DFE) describes the proportions of new mutations that have different effects on reproductive fitness. Accurate measurements of the DFE are important because the DFE is a fundamental parameter in evolutionary genetics and has implications for our understanding of other phenomena like complex disease or inbreeding depression. Current computational methods to infer the DFE for nonsynonymous mutations from natural variation first estimate demographic parameters from synonymous variants to control for the effects of demography and background selection. Then, conditional on these parameters, the DFE is then inferred for nonsynonymous mutations. This approach relies on the assumption that synonymous variants are neutrally evolving. However, some evidence points toward synonymous mutations having measurable effects on fitness. To test whether selection on synonymous mutations affects inference of the DFE of nonsynonymous mutations, we simulated several possible models of selection on synonymous mutations using SLiM and attempted to recover the DFE of nonsynonymous mutations using Fit∂a∂i, a common method for DFE inference. Our results show that the presence of selection on synonymous variants leads to incorrect inferences of recent population growth. Furthermore, under certain parameter combinations, inferences of the DFE can have an inflated proportion of highly deleterious nonsynonymous mutations. However, this bias can be eliminated if the correct demographic parameters are used for DFE inference instead of the biased ones inferred from synonymous variants. Our work demonstrates how unmodeled selection on synonymous mutations may affect downstream inferences of the DFE.
Collapse
Affiliation(s)
- Aina Martinez I Zurita
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Kirk E Lohmueller
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, USA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| |
Collapse
|
25
|
Galtier N. Half a Century of Controversy: The Neutralist/Selectionist Debate in Molecular Evolution. Genome Biol Evol 2024; 16:evae003. [PMID: 38311843 PMCID: PMC10839204 DOI: 10.1093/gbe/evae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2024] [Indexed: 02/06/2024] Open
Abstract
The neutral and nearly neutral theories, introduced more than 50 yr ago, have raised and still raise passionate discussion regarding the forces governing molecular evolution and their relative importance. The debate, initially focused on the amount of within-species polymorphism and constancy of the substitution rate, has spread, matured, and now underlies a wide range of topics and questions. The neutralist/selectionist controversy has structured the field and influences the way molecular evolutionary scientists conceive their research.
Collapse
Affiliation(s)
- Nicolas Galtier
- ISEM, CNRS, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
26
|
Woodruff GC, Willis JH, Phillips PC. Patterns of Genomic Diversity in a Fig-Associated Close Relative of Caenorhabditis elegans. Genome Biol Evol 2024; 16:evae020. [PMID: 38302111 PMCID: PMC10883733 DOI: 10.1093/gbe/evae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Present address: Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
27
|
Feng Y, Comes HP, Chen J, Zhu S, Lu R, Zhang X, Li P, Qiu J, Olsen KM, Qiu Y. Genome sequences and population genomics provide insights into the demographic history, inbreeding, and mutation load of two 'living fossil' tree species of Dipteronia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:177-192. [PMID: 37797086 DOI: 10.1111/tpj.16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
'Living fossils', that is, ancient lineages of low taxonomic diversity, represent an exceptional evolutionary heritage, yet we know little about how demographic history and deleterious mutation load have affected their long-term survival and extinction risk. We performed whole-genome sequencing and population genomic analyses on Dipteronia sinensis and D. dyeriana, two East Asian Tertiary relict trees. We found large-scale genome reorganizations and identified species-specific genes under positive selection that are likely involved in adaptation. Our demographic analyses suggest that the wider-ranged D. sinensis repeatedly recovered from population bottlenecks over late Tertiary/Quaternary periods of adverse climate conditions, while the population size of the narrow-ranged D. dyeriana steadily decreased since the late Miocene, especially after the Last Glacial Maximum (LGM). We conclude that the efficient purging of deleterious mutations in D. sinensis facilitated its survival and repeated demographic recovery. By contrast, in D. dyeriana, increased genetic drift and reduced selection efficacy, due to recent severe population bottlenecks and a likely preponderance of vegetative propagation, resulted in fixation of strongly deleterious mutations, reduced fitness, and continuous population decline, with likely detrimental consequences for the species' future viability and adaptive potential. Overall, our findings highlight the significant impact of demographic history on levels of accumulation and purging of putatively deleterious mutations that likely determine the long-term survival and extinction risk of Tertiary relict trees.
Collapse
Affiliation(s)
- Yu Feng
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shanshan Zhu
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xinyi Zhang
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Kenneth M Olsen
- Department of Biology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Yingxiong Qiu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
28
|
Kyriazis CC, Robinson JA, Lohmueller KE. Using Computational Simulations to Model Deleterious Variation and Genetic Load in Natural Populations. Am Nat 2023; 202:737-752. [PMID: 38033186 PMCID: PMC10897732 DOI: 10.1086/726736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractDeleterious genetic variation is abundant in wild populations, and understanding the ecological and conservation implications of such variation is an area of active research. Genomic methods are increasingly used to quantify the impacts of deleterious variation in natural populations; however, these approaches remain limited by an inability to accurately predict the selective and dominance effects of mutations. Computational simulations of deleterious variation offer a complementary tool that can help overcome these limitations, although such approaches have yet to be widely employed. In this perspective article, we aim to encourage ecological and conservation genomics researchers to adopt greater use of computational simulations to aid in deepening our understanding of deleterious variation in natural populations. We first provide an overview of the components of a simulation of deleterious variation, describing the key parameters involved in such models. Next, we discuss several approaches for validating simulation models. Finally, we compare and validate several recently proposed deleterious mutation models, demonstrating that models based on estimates of selection parameters from experimental systems are biased toward highly deleterious mutations. We describe a new model that is supported by multiple orthogonal lines of evidence and provide example scripts for implementing this model (https://github.com/ckyriazis/simulations_review).
Collapse
Affiliation(s)
- Christopher C. Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles; Los Angeles, CA, USA
| | - Jacqueline A. Robinson
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles; Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA, USA
| |
Collapse
|
29
|
James J, Kastally C, Budde KB, González-Martínez SC, Milesi P, Pyhäjärvi T, Lascoux M. Between but Not Within-Species Variation in the Distribution of Fitness Effects. Mol Biol Evol 2023; 40:msad228. [PMID: 37832225 PMCID: PMC10630145 DOI: 10.1093/molbev/msad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
New mutations provide the raw material for evolution and adaptation. The distribution of fitness effects (DFE) describes the spectrum of effects of new mutations that can occur along a genome, and is, therefore, of vital interest in evolutionary biology. Recent work has uncovered striking similarities in the DFE between closely related species, prompting us to ask whether there is variation in the DFE among populations of the same species, or among species with different degrees of divergence, that is whether there is variation in the DFE at different levels of evolution. Using exome capture data from six tree species sampled across Europe we characterized the DFE for multiple species, and for each species, multiple populations, and investigated the factors potentially influencing the DFE, such as demography, population divergence, and genetic background. We find statistical support for the presence of variation in the DFE at the species level, even among relatively closely related species. However, we find very little difference at the population level, suggesting that differences in the DFE are primarily driven by deep features of species biology, and those evolutionarily recent events, such as demographic changes and local adaptation, have little impact.
Collapse
Affiliation(s)
- Jennifer James
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Swedish Collegium of Advanced Study, Uppsala University, Uppsala, Sweden
| | - Chedly Kastally
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Katharina B Budde
- Department of Forest Genetics and Forest Tree Breeding, Georg-August-University Goettingen, Goettingen, Germany
- Center of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, Germany
| | - Santiago C González-Martínez
- National Research Institute for Agriculture, Food and the Environment (INRAE), University of Bordeaux, BIOGECO, Cestas, France
| | - Pascal Milesi
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Martin Lascoux
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Sandler G, Agrawal AF, Wright SI. Population Genomics of the Facultatively Sexual Liverwort Marchantia polymorpha. Genome Biol Evol 2023; 15:evad196. [PMID: 37883717 PMCID: PMC10667032 DOI: 10.1093/gbe/evad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The population genomics of facultatively sexual organisms are understudied compared with their abundance across the tree of life. We explore patterns of genetic diversity in two subspecies of the facultatively sexual liverwort Marchantia polymorpha using samples from across Southern Ontario, Canada. Despite the ease with which M. polymorpha should be able to propagate asexually, we find no evidence of strictly clonal descent among our samples and little to no signal of isolation by distance. Patterns of identity-by-descent tract sharing further showed evidence of recent recombination and close relatedness between geographically distant isolates, suggesting long distance gene flow and at least a modest frequency of sexual reproduction. However, the M. polymorpha genome contains overall very low levels of nucleotide diversity and signs of inefficient selection evidenced by a relatively high fraction of segregating deleterious variants. We interpret these patterns as possible evidence of the action of linked selection and a small effective population size due to past generations of asexual propagation. Overall, the M. polymorpha genome harbors signals of a complex history of both sexual and asexual reproduction.
Collapse
Affiliation(s)
- George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Wang X, Ingvarsson PK. Quantifying adaptive evolution and the effects of natural selection across the Norway spruce genome. Mol Ecol 2023; 32:5288-5304. [PMID: 37622583 DOI: 10.1111/mec.17106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Detecting natural selection is one of the major goals of evolutionary genomics. Here, we sequenced the whole genome of 25 Picea abies individuals and quantified the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we showed that both negative selection and the rate of positively selected substitutions are very limited in coding regions. We found a positive correlation between the rate of adaptive substitutions and recombination rate and a negative correlation between the rate of adaptive substitutions and gene density, suggesting a widespread influence from Hill-Robertson interference on the efficiency of protein adaptation in P. abies. Finally, the distinct population statistics between genomic regions under either positive or balancing selection with that under neutral regions indicated the impact of natural selection on the genomic architecture of Norway spruce. Further gene ontology enrichment analysis for genes located in regions identified as undergoing either positive or long-term balancing selection also highlighted the specific molecular functions and biological processes that appear to be targets of selection in Norway spruce.
Collapse
Affiliation(s)
- Xi Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
32
|
Andersson BA, Zhao W, Haller BC, Brännström Å, Wang XR. Inference of the distribution of fitness effects of mutations is affected by single nucleotide polymorphism filtering methods, sample size and population structure. Mol Ecol Resour 2023; 23:1589-1603. [PMID: 37340611 DOI: 10.1111/1755-0998.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
The distribution of fitness effects (DFE) of new mutations has been of interest to evolutionary biologists since the concept of mutations arose. Modern population genomic data enable us to quantify the DFE empirically, but few studies have examined how data processing, sample size and cryptic population structure might affect the accuracy of DFE inference. We used simulated and empirical data (from Arabidopsis lyrata) to show the effects of missing data filtering, sample size, number of single nucleotide polymorphisms (SNPs) and population structure on the accuracy and variance of DFE estimates. Our analyses focus on three filtering methods-downsampling, imputation and subsampling-with sample sizes of 4-100 individuals. We show that (1) the choice of missing-data treatment directly affects the estimated DFE, with downsampling performing better than imputation and subsampling; (2) the estimated DFE is less reliable in small samples (<8 individuals), and becomes unpredictable with too few SNPs (<5000, the sum of 0- and 4-fold SNPs); and (3) population structure may skew the inferred DFE towards more strongly deleterious mutations. We suggest that future studies should consider downsampling for small data sets, and use samples larger than 4 (ideally larger than 8) individuals, with more than 5000 SNPs in order to improve the robustness of DFE inference and enable comparative analyses.
Collapse
Affiliation(s)
| | - Wei Zhao
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Benjamin C Haller
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Åke Brännström
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami, Japan
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Charmouh AP, Bocedi G, Hartfield M. Inferring the distributions of fitness effects and proportions of strongly deleterious mutations. G3 (BETHESDA, MD.) 2023; 13:jkad140. [PMID: 37337692 PMCID: PMC10468728 DOI: 10.1093/g3journal/jkad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
The distribution of fitness effects is a key property in evolutionary genetics as it has implications for several evolutionary phenomena including the evolution of sex and mating systems, the rate of adaptive evolution, and the prevalence of deleterious mutations. Despite the distribution of fitness effects being extensively studied, the effects of strongly deleterious mutations are difficult to infer since such mutations are unlikely to be present in a sample of haplotypes, so genetic data may contain very little information about them. Recent work has attempted to correct for this issue by expanding the classic gamma-distributed model to explicitly account for strongly deleterious mutations. Here, we use simulations to investigate one such method, adding a parameter (plth) to capture the proportion of strongly deleterious mutations. We show that plth can improve the model fit when applied to individual species but underestimates the true proportion of strongly deleterious mutations. The parameter can also artificially maximize the likelihood when used to jointly infer a distribution of fitness effects from multiple species. As plth and related parameters are used in current inference algorithms, our results are relevant with respect to avoiding model artifacts and improving future tools for inferring the distribution of fitness effects.
Collapse
Affiliation(s)
- Anders P Charmouh
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Bioinformatics Research Centre Aarhus University, University City 81, building 1872, 3rd floor. DK-8000 Aarhus C, Denmark
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Matthew Hartfield
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
34
|
Blois L, de Miguel M, Bert P, Girollet N, Ollat N, Rubio B, Segura V, Voss‐Fels KP, Schmid J, Marguerit E. Genetic structure and first genome-wide insights into the adaptation of a wild relative of grapevine, Vitis berlandieri. Evol Appl 2023; 16:1184-1200. [PMID: 37360024 PMCID: PMC10286229 DOI: 10.1111/eva.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently use in vineyards are derived from breeding programs involving very small numbers of parental individuals. We investigated the structure of a natural population of V. berlandieri and the association of genetic diversity with environmental variables. In this study, we collected seeds from 78 wild V. berlandieri plants in Texas after open fertilization. We genotyped 286 individuals to describe the structure of the population, and environmental information collected at the sampling site made it possible to perform genome-environment association analysis (GEA). De novo long-read whole-genome sequencing was performed on V. berlandieri and a STRUCTURE analysis was performed. We identified and filtered 104,378 SNPs. We found that there were two subpopulations associated with differences in elevation, temperature, and rainfall between sampling sites. GEA identified three QTL for elevation and 15 QTL for PCA coordinates based on environmental parameter variability. This original study is the first GEA study to be performed on a population of grapevines sampled in natural conditions. Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks.
Collapse
Affiliation(s)
- Louis Blois
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVVVillenave d'OrnonFrance
- Department of Grapevine BreedingGeisenheim UniversityGeisenheimGermany
| | - Marina de Miguel
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVVVillenave d'OrnonFrance
| | - Pierre‐François Bert
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVVVillenave d'OrnonFrance
| | - Nabil Girollet
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVVVillenave d'OrnonFrance
| | - Nathalie Ollat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVVVillenave d'OrnonFrance
| | - Bernadette Rubio
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVVVillenave d'OrnonFrance
| | - Vincent Segura
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Kai P. Voss‐Fels
- Department of Grapevine BreedingGeisenheim UniversityGeisenheimGermany
| | - Joachim Schmid
- Department of Grapevine BreedingGeisenheim UniversityGeisenheimGermany
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVVVillenave d'OrnonFrance
| |
Collapse
|
35
|
Kyriazis CC, Robinson JA, Nigenda-Morales SF, Beichman AC, Rojas-Bracho L, Robertson KM, Fontaine MC, Wayne RK, Taylor BL, Lohmueller KE, Morin PA. Models based on best-available information support a low inbreeding load and potential for recovery in the vaquita. Heredity (Edinb) 2023; 130:183-187. [PMID: 36941409 PMCID: PMC10076335 DOI: 10.1038/s41437-023-00608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jacqueline A Robinson
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| | - Sergio F Nigenda-Morales
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav); Irapuato, Guanajuato, Mexico
| | - Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Kelly M Robertson
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Michael C Fontaine
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barbara L Taylor
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA.
| |
Collapse
|
36
|
Insights into the differentiation and adaptation within Circaeasteraceae from Circaeaster agrestis genome sequencing and resequencing. iScience 2023; 26:106159. [PMID: 36895650 PMCID: PMC9988679 DOI: 10.1016/j.isci.2023.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Circaeaster agrestis and Kingdonia uniflora are sister species that reproduce sexually and mainly asexually respectively, providing a good system for comparative genome evolution between taxa with different reproductive models. Comparative genome analyses revealed the two species have similar genome size, but C. agrestis encodes many more genes. The gene families specific to C. agrestis show significant enrichment of genes associated with defense response, while those gene families specific to K. uniflora are enriched in genes regulating root system development. Collinearity analyses revealed C. agrestis experienced two rounds of whole-genome duplication. Fst outlier test across 25 C. agrestis populations uncovered a close inter-relationship between abiotic stress and genetic variability. Genetic feature comparisons showed K. uniflora presents much higher genome heterozygosity, transposable element load, linkage disequilibrium degree, and πN/πS ratio. This study provides new insights into understanding the genetic differentiation and adaptation within ancient lineages characterized by multiple reproductive models.
Collapse
|
37
|
Robinson J, Kyriazis CC, Yuan SC, Lohmueller KE. Deleterious Variation in Natural Populations and Implications for Conservation Genetics. Annu Rev Anim Biosci 2023; 11:93-114. [PMID: 36332644 PMCID: PMC9933137 DOI: 10.1146/annurev-animal-080522-093311] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deleterious mutations decrease reproductive fitness and are ubiquitous in genomes. Given that many organisms face ongoing threats of extinction, there is interest in elucidating the impact of deleterious variation on extinction risk and optimizing management strategies accounting for such mutations. Quantifying deleterious variation and understanding the effects of population history on deleterious variation are complex endeavors because we do not know the strength of selection acting on each mutation. Further, the effect of demographic history on deleterious mutations depends on the strength of selection against the mutation and the degree of dominance. Here we clarify how deleterious variation can be quantified and studied in natural populations. We then discuss how different demographic factors, such as small population size, nonequilibrium population size changes, inbreeding, and gene flow, affect deleterious variation. Lastly, we provide guidance on studying deleterious variation in nonmodel populations of conservation concern.
Collapse
Affiliation(s)
- Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, California, USA;
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Stella C Yuan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
38
|
Peres PA, Mantelatto FL. Demographic changes and life-history strategies predict the genetic diversity in crabs. J Evol Biol 2023; 36:432-443. [PMID: 36537369 DOI: 10.1111/jeb.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Uncovering what predicts genetic diversity (GD) within species can help us access the status of populations and their evolutionary potential. Traits related to effective population size show a proportional association to GD, but evidence supports life-history strategies and habitat as the drivers of GD variation. Instead of investigating highly divergent taxa, focusing on one group could help to elucidate the factors influencing the GD. Additionally, most empirical data is based on vertebrate taxa; therefore, we might be missing novel patterns of GD found in neglected invertebrate groups. Here, we investigated the predictors of the GD in crabs (Brachyura) by compiling the most comprehensive cytochrome c oxidase subunit I (COI) available. Eight predictor variables were analysed across 150 species (16 992 sequences) using linear models (multiple linear regression) and comparative methods (PGLS). Our results indicate that population size fluctuation represents the most critical trait predicting GD, with species that have undergone bottlenecks followed by population expansion showing lower GD. Egg size, pelagic larval duration and habitat might play a role probably because of their association with how species respond to disturbances. Ultimately, K-strategists that have undergone bottlenecks are the species showing lower GD. Some variables do not show an association with GD as expected, most likely due to the taxon-specific role of some predictors, which should be considered in further investigations and generalizations. This work highlights the complexity underlying the predictors of GD and adds results from a marine invertebrate group to the current understanding of this topic.
Collapse
Affiliation(s)
- Pedro A Peres
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), Laboratory of Bioecology and Crustacean Systematics (LBSC), Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Fernando L Mantelatto
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), Laboratory of Bioecology and Crustacean Systematics (LBSC), Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
39
|
García-Berro A, Talla V, Vila R, Wai HK, Shipilina D, Chan KG, Pierce NE, Backström N, Talavera G. Migratory behaviour is positively associated with genetic diversity in butterflies. Mol Ecol 2023; 32:560-574. [PMID: 36336800 PMCID: PMC10100375 DOI: 10.1111/mec.16770] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Migration is typically associated with risk and uncertainty at the population level, but little is known about its cost-benefit trade-offs at the species level. Migratory insects in particular often exhibit strong demographic fluctuations due to local bottlenecks and outbreaks. Here, we use genomic data to investigate levels of heterozygosity and long-term population size dynamics in migratory insects, as an alternative to classical local and short-term approaches such as regional field monitoring. We analyse whole-genome sequences from 97 Lepidoptera species and show that individuals of migratory species have significantly higher levels of genome-wide heterozygosity, a proxy for effective population size, than do nonmigratory species. Also, we contribute whole-genome data for one of the most emblematic insect migratory species, the painted lady butterfly (Vanessa cardui), sampled across its worldwide distributional range. This species exhibits one of the highest levels of genomic heterozygosity described in Lepidoptera (2.95 ± 0.15%). Coalescent modelling (PSMC) shows historical demographic stability in V. cardui, and high effective population size estimates of 2-20 million individuals 10,000 years ago. The study reveals that the high risks associated with migration and local environmental fluctuations do not seem to decrease overall genetic diversity and demographic stability in migratory Lepidoptera. We propose a "compensatory" demographic model for migratory r-strategist organisms in which local bottlenecks are counterbalanced by reproductive success elsewhere within their typically large distributional ranges. Our findings highlight that the boundaries of populations are substantially different for sedentary and migratory insects, and that, in the latter, local and even regional field monitoring results may not reflect whole population dynamics. Genomic diversity patterns may elucidate key aspects of an insect's migratory nature and population dynamics at large spatiotemporal scales.
Collapse
Affiliation(s)
- Aurora García-Berro
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Catalonia, Spain
| | - Venkat Talla
- Department of Ecology and Genetics, Program of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Hong Kar Wai
- Novel Bacteria and Drug Discovery Research Group (NBDD) and Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Daria Shipilina
- Department of Ecology and Genetics, Program of Evolutionary Biology, Uppsala University, Uppsala, Sweden.,Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China.,Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Niclas Backström
- Department of Ecology and Genetics, Program of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Catalonia, Spain.,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
40
|
Sun Y, Zhang X, Zhang A, Landis JB, Zhang H, Sun H, Xiang QY(J, Wang H. Population Genomic Analyses Suggest a Hybrid Origin, Cryptic Sexuality, and Decay of Genes Regulating Seed Development for the Putatively Strictly Asexual Kingdonia uniflora (Circaeasteraceae, Ranunculales). Int J Mol Sci 2023; 24:1451. [PMID: 36674965 PMCID: PMC9866071 DOI: 10.3390/ijms24021451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Asexual lineages are perceived to be short-lived on evolutionary timescales. Hence, reports for exceptional cases of putative 'ancient asexuals' usually raise questions about the persistence of such species. So far, there have been few studies to solve the mystery in plants. The monotypic Kingdonia dating to the early Eocene, contains only K. uniflora that has no known definitive evidence for sexual reproduction nor records for having congeneric sexual species, raising the possibility that the species has persisted under strict asexuality for a long period of time. Here, we analyze whole genome polymorphism and divergence in K. uniflora. Our results show that K. uniflora is characterized by high allelic heterozygosity and elevated πN/πS ratio, in line with theoretical expectations under asexual evolution. Allele frequency spectrum analysis reveals the origin of asexuality in K. uniflora occurred prior to lineage differentiation of the species. Although divergence within K. uniflora individuals exceeds that between populations, the topologies of the two haplotype trees, however, fail to match each other, indicating long-term asexuality is unlikely to account for the high allele divergence and K. uniflora may have a recent hybrid origin. Phi-test shows a statistical probability of recombination for the conflicting phylogenetic signals revealed by the split network, suggesting K. uniflora engages in undetected sexual reproduction. Detection of elevated genetic differentiation and premature stop codons (in some populations) in genes regulating seed development indicates mutational degradation of sexuality-specific genes in K. uniflora. This study unfolds the origin and persistence mechanism of a plant lineage that has been known to reproduce asexually and presents the genomic consequences of lack of sexuality.
Collapse
Affiliation(s)
- Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiu-Yun (Jenny) Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
41
|
Zhang Z, Kryvokhyzha D, Orsucci M, Glémin S, Milesi P, Lascoux M. How broad is the selfing syndrome? Insights from convergent evolution of gene expression across species and tissues in the Capsella genus. THE NEW PHYTOLOGIST 2022; 236:2344-2357. [PMID: 36089898 PMCID: PMC9828073 DOI: 10.1111/nph.18477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The shift from outcrossing to selfing is one of the main evolutionary transitions in plants. It is accompanied by profound effects on reproductive traits, the so-called selfing syndrome. Because the transition to selfing also implies deep genomic and ecological changes, one also expects to observe a genomic selfing syndrome. We took advantage of the three independent transitions from outcrossing to selfing in the Capsella genus to characterize the overall impact of mating system change on RNA expression, in flowers but also in leaves and roots. We quantified the extent of both selfing and genomic syndromes, and tested whether changes in expression corresponded to adaptation to selfing or to relaxed selection on traits that were constrained in outcrossers. Mating system change affected gene expression in all three tissues but more so in flowers than in roots and leaves. Gene expression in selfing species tended to converge in flowers but diverged in the two other tissues. Hence, convergent adaptation to selfing dominates in flowers, whereas genetic drift plays a more important role in leaves and roots. The effect of mating system transition is not limited to reproductive tissues and corresponds to both adaptation to selfing and relaxed selection on previously constrained traits.
Collapse
Affiliation(s)
- Zebin Zhang
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
| | - Dmytro Kryvokhyzha
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
- Department of Clinical SciencesLund University Diabetes Centre214 28MalmöSweden
| | - Marion Orsucci
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
- Department of Plant BiologySwedish University of Agricultural Sciences, Uppsala BioCenter750 07UppsalaSweden
| | - Sylvain Glémin
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
- Université de Rennes, Centre National de la Recherche Scientifique (CNRS), ECOBIO (Ecosystèmes, Biodiversité, Evolution) – Unité Mixte de Recherche (UMR) 6553F‐35042RennesFrance
| | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
- Science For Life Laboratory (SciLifeLab)752 37UppsalaSweden
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityNorbyvägen 18D752 36UppsalaSweden
| |
Collapse
|
42
|
Yi H, Wang J, Wang J, Rausher M, Kang M. Genomic insights into inter- and intraspecific mating system shifts in Primulina. Mol Ecol 2022; 31:5699-5713. [PMID: 36178058 DOI: 10.1111/mec.16706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
The mating system shift from outcrossing to selfing is one of the most frequent evolutionary trends in flowering plants. However, the genomic consequences of this shift remain poorly understood. Specifically, the relative importance of the demographic and genetic processes causing changes in genetic variation and selection efficacy associated with the evolution of selfing is unclear. Here we sequenced the genomes of two Primulina species with contrasting mating systems: P. eburnea (outcrossing) versus P. tabacum (outcrossing, mixed-mating and selfing populations). Whole-genome resequencing data were used to investigate the genomic consequences of mating system shifts within and between species. We found that highly selfing populations of P. tabacum display loss of genetic diversity, increased deleterious mutations, higher genomic burden and fewer adaptive substitutions. However, compared with outcrossing populations, mixed-mating populations did not display loss of genetic diversity and accumulation of genetic load. We find no evidence of population bottlenecks associated with the shift to selfing, which suggests that the genetic effects of selfing on Ne and possibly linked selection, rather than demographic history, are the primary drivers of diversity reduction in highly selfing populations. Our results highlight the importance of distinguishing the relative contribution of mating system and demography on the genomic consequences associated with mating system evolution in plants.
Collapse
Affiliation(s)
- Huiqin Yi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jieyu Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mark Rausher
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
43
|
Arnqvist G, Sayadi A. A possible genomic footprint of polygenic adaptation on population divergence in seed beetles? Ecol Evol 2022; 12:e9440. [PMID: 36311399 PMCID: PMC9608792 DOI: 10.1002/ece3.9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Efforts to unravel the genomic basis of incipient speciation are hampered by a mismatch between our toolkit and our understanding of the ecology and genetics of adaptation. While the former is focused on detecting selective sweeps involving few independently acting or linked speciation genes, the latter states that divergence typically occurs in polygenic traits under stabilizing selection. Here, we ask whether a role of stabilizing selection on polygenic traits in population divergence may be unveiled by using a phenotypically informed integrative approach, based on genome‐wide variation segregating in divergent populations. We compare three divergent populations of seed beetles (Callosobruchus maculatus) where previous work has demonstrated a prominent role for stabilizing selection on, and population divergence in, key life history traits that reflect rate‐dependent metabolic processes. We derive and assess predictions regarding the expected pattern of covariation between genetic variation segregating within populations and genetic differentiation between populations. Population differentiation was considerable (mean FST = 0.23–0.26) and was primarily built by genes showing high selective constraints and an imbalance in inferred selection in different populations (positive Tajima's DNS in one and negative in one), and this set of genes was enriched with genes with a metabolic function. Repeatability of relative population differentiation was low at the level of individual genes but higher at the level of broad functional classes, again spotlighting metabolic genes. Absolute differentiation (dXY) showed a very different general pattern at this scale of divergence, more consistent with an important role for genetic drift. Although our exploration is consistent with stabilizing selection on polygenic metabolic phenotypes as an important engine of genome‐wide relative population divergence and incipient speciation in our study system, we note that it is exceedingly difficult to firmly exclude other scenarios.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden,Rheumatology, Department of Medical SciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
44
|
Giles‐Pérez GI, Aguirre‐Planter E, Eguiarte LE, Jaramillo‐Correa JP. Demographic modelling helps track the rapid and recent divergence of a conifer species pair from Central Mexico. Mol Ecol 2022; 31:5074-5088. [PMID: 35951172 PMCID: PMC9804182 DOI: 10.1111/mec.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/05/2023]
Abstract
Secondary contact of recently diverged species may have several outcomes, ranging from rampant hybridization to reinforced reproductive isolation. In plants, selfing tolerance and disjunct reproductive phenology may lead to reproductive isolation at contact zones. However, they may also evolve under both allopatric or parapatric frameworks and originate from adaptive and/or neutral forces. Inferring the historical demography of diverging taxa is thus a crucial step to identify factors that may have led to putative reproductive isolation. We explored various competing demographypotheses to account for the rapid divergence of a fir species complex (Abies flinckii-A. religiosa) distributed in "sky-islands" across central Mexico (i.e., along the Trans-Mexican Volcanic Belt; TMVB). Despite co-occurring in two independent sympatric regions (west and centre), these taxa rarely interbreed because of disjunct reproductive phenologies. We genotyped 1147 single nucleotide polymorphisms, generated by GBS (genotyping by sequencing), across 23 populations, and compared multiple scenarios based on the geological history of the TMVB. The best-fitting model revealed one of the most rapid and complete speciation cases for a conifer species-pair, dating back to ~1.2 million years ago. Coupled with the lack of support for stepwise colonization, our coalescent inferences point to an early cessation of interspecific gene flow under parapatric speciation; ancestral gene flow during divergence was asymmetrical (mostly from western firs into A. religiosa) and exclusive to the most ancient (i.e., central) contact zone. Factors promoting rapid reproductive isolation should be explored in other slowly evolving species complexes as they may account for the large tropical and subtropical diversity.
Collapse
Affiliation(s)
- Gustavo I. Giles‐Pérez
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de MéxicoCDMXMexico,Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCDMXMexico
| | - Erika Aguirre‐Planter
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCDMXMexico
| | - Luis E. Eguiarte
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCDMXMexico
| | | |
Collapse
|
45
|
Abstract
We discuss the genetic, demographic, and selective forces that are likely to be at play in restricting observed levels of DNA sequence variation in natural populations to a much smaller range of values than would be expected from the distribution of census population sizes alone-Lewontin's Paradox. While several processes that have previously been strongly emphasized must be involved, including the effects of direct selection and genetic hitchhiking, it seems unlikely that they are sufficient to explain this observation without contributions from other factors. We highlight a potentially important role for the less-appreciated contribution of population size change; specifically, the likelihood that many species and populations may be quite far from reaching the relatively high equilibrium diversity values that would be expected given their current census sizes.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
46
|
Lal M, Bhardwaj E, Chahar N, Yadav S, Das S. Comprehensive analysis of 1R- and 2R-MYBs reveals novel genic and protein features, complex organisation, selective expansion and insights into evolutionary tendencies. Funct Integr Genomics 2022; 22:371-405. [PMID: 35260976 DOI: 10.1007/s10142-022-00836-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Myeloblastosis (MYB) family, the largest plant transcription factor family, has been subcategorised based on the number and type of repeats in the MYB domain. In spite of several reports, evolution of MYB genes and repeats remains enigmatic. Brassicaceae members are endowed with complex genomes, including dysploidy because of its unique history with multiple rounds of polyploidisation, genomic fractionations and rearrangements. The present study is an attempt to gain insights into the complexities of MYB family diversity, understand impacts of genome evolution on gene families and develop an evolutionary framework to understand the origin of various subcategories of MYB gene family. We identified and analysed 1129 MYBs that included 1R-, 2R-, 3R- and atypical-MYBs across sixteen species representing protists, fungi, animals and plants and exclude MYB identified from Brassicaceae except Arabidopsis thaliana; in addition, a total of 1137 2R-MYB genes from six Brassicaceae species were also analysed. Comparative analysis revealed predominance of 1R-MYBs in protists, fungi, animals and lower plants. Phylogenetic reconstruction and analysis of selection pressure suggested ancestral nature of R1-type repeat containing 1R-MYBs that might have undergone intragenic duplication to form multi-repeat MYBs. Distinct differences in gene structure between 1R-MYB and 2R-MYBs were observed regarding intron number, the ratio of gene length to coding DNA sequence (CDS) length and the length of exons encoding the MYB domain. Conserved as well as novel and lineage-specific intron phases were identified. Analyses of physicochemical properties revealed drastic differences indicating functional diversification in MYBs. Phylogenetic reconstruction of 1R- and 2R-MYB genes revealed a shared structure-function relationship in clades which was supported when transcriptome data was analysed in silico. Comparative genomics to study distribution pattern and mapping of 2R-MYBs revealed congruency and greater degree of synteny and collinearity among closely related species. Micro-synteny analysis of genomic segments revealed high conservation of genes that are immediately flanking the surrounding tandemly organised 2R-MYBs along with instances of local duplication, reorganisations and genome fractionation. In summary, polyploidy, dysploidy, reshuffling and genome fractionation were found to cause loss or gain of 2R-MYB genes. The findings need to be supported with functional validation to understand gene structure-function relationship along the evolutionary lineage and adaptive strategies based on comparative functional genomics in plants.
Collapse
Affiliation(s)
- Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Nishu Chahar
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Shobha Yadav
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
47
|
Fields PD, McTaggart S, Reisser CMO, Haag C, Palmer WH, Little TJ, Ebert D, Obbard DJ. Population-genomic analysis identifies a low rate of global adaptive fixation in the proteins of the cyclical parthenogen Daphnia magna. Mol Biol Evol 2022; 39:6542319. [PMID: 35244177 PMCID: PMC8963301 DOI: 10.1093/molbev/msac048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Daphnia are well-established ecological and evolutionary models, and the interaction between D. magna and its microparasites is widely considered a paragon of the host-parasite coevolutionary process. Like other well-studied arthropods such as Drosophila melanogaster and Anopheles gambiae, D. magna is a small, widespread, and abundant species that is therefore expected to display a large long-term population size and high rates of adaptive protein evolution. However, unlike these other species, D. magna is cyclically asexual and lives in a highly structured environment (ponds and lakes) with moderate levels of dispersal, both of which are predicted to impact upon long-term effective population size and adaptive protein evolution. To investigate patterns of adaptive protein fixation, we produced the complete coding genomes of 36 D. magna clones sampled from across the European range (Western Palaearctic), along with draft sequences for the close relatives D. similis and D. lumholtzi, used as outgroups. We analyzed genome-wide patterns of adaptive fixation, with a particular focus on genes that have an a priori expectation of high rates, such as those likely to mediate immune responses, RNA interference against viruses and transposable elements, and those with a strongly male-biased expression pattern. We find that, as expected, D. magna displays high levels of diversity and that this is highly structured among populations. However, compared with Drosophila, we find that D. magna proteins appear to have a high proportion of weakly deleterious variants and do not show evidence of pervasive adaptive fixation across its entire range. This is true of the genome as a whole, and also of putative ‘arms race’ genes that often show elevated levels of adaptive substitution in other species. In addition to the likely impact of extensive, and previously documented, local adaptation, we speculate that these findings may reflect reduced efficacy of selection associated with cyclical asexual reproduction.
Collapse
Affiliation(s)
- Peter D Fields
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, Basel, CH-4051, Switzerland
| | - Seanna McTaggart
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Céline M O Reisser
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, campus CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, France.,MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Christoph Haag
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, campus CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - William H Palmer
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Tom J Little
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Dieter Ebert
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, Basel, CH-4051, Switzerland
| | - Darren J Obbard
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| |
Collapse
|
48
|
Barry P, Broquet T, Gagnaire P. Age-specific survivorship and fecundity shape genetic diversity in marine fishes. Evol Lett 2022; 6:46-62. [PMID: 35127137 PMCID: PMC8802244 DOI: 10.1002/evl3.265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Genetic diversity varies among species due to a range of eco-evolutionary processes that are not fully understood. The neutral theory predicts that the amount of variation in the genome sequence between different individuals of the same species should increase with its effective population size (N e ). In real populations, multiple factors that modulate the variance in reproductive success among individuals causeN e to differ from the total number of individuals ( N ). Among these, age-specific mortality and fecundity rates are known to have a direct impact on theN e / N ratio. However, the extent to which vital rates account for differences in genetic diversity among species remains unknown. Here, we addressed this question by comparing genome-wide genetic diversity across 16 marine fish species with similar geographic distributions but contrasted lifespan and age-specific survivorship and fecundity curves. We sequenced the whole genome of 300 individuals to high coverage and assessed their genome-wide heterozygosity with a reference-free approach. Genetic diversity varied from 0.2% to 1.4% among species, and showed a negative correlation with adult lifespan, with a large negative effect (s l o p e = - 0.089 per additional year of lifespan) that was further increased when brooding species providing intense parental care were removed from the dataset (s l o p e = - 0.129 per additional year of lifespan). Using published vital rates for each species, we showed that theN e / N ratio resulting simply from life tables parameters can predict the observed differences in genetic diversity among species. Using simulations, we further found that the extent of reduction inN e / N with increasing adult lifespan is particularly strong under Type III survivorship curves (high juvenile and low adult mortality) and increasing fecundity with age, a typical characteristic of marine fishes. Our study highlights the importance of vital rates as key determinants of species genetic diversity levels in nature.
Collapse
Affiliation(s)
- Pierre Barry
- ISEM, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Thomas Broquet
- UMR 7144, Station Biologique de Roscoff, CNRS & Sorbonne UniversitéRoscoffFrance
| | | |
Collapse
|
49
|
Chen J, Bataillon T, Glémin S, Lascoux M. What does the distribution of fitness effects of new mutations reflect? Insights from plants. THE NEW PHYTOLOGIST 2022; 233:1613-1619. [PMID: 34704271 DOI: 10.1111/nph.17826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The distribution of fitness effects (DFE) of new mutations plays a central role in molecular evolution. It is therefore crucial to be able to estimate it accurately from genomic data and to understand the factors that shape it. After a rapid overview of available methods to characterize the fitness effects of mutations, we review what is known on the factors affecting them in plants. Available data indicate that life history traits (e.g. mating system and longevity) have a major effect on the DFE. By contrast, the impact of demography within species appears to be more limited. These results remain to be confirmed, and methods to estimate the joint evolution of demography, life history traits, and the DFE need to be developed.
Collapse
Affiliation(s)
- Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, C.F. Möllers Allé 8, Aarhus C, DK-8000, Denmark
| | - Sylvain Glémin
- Centre National de la Recherche Scientifique (CNRS), ECOBIO (Ecosystèmes, Biodiversité, Evolution) - Unité Mixte de Recherche (UMR) 6553, Université de Rennes, Rennes, F-35000, France
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, 75236, Sweden
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, 75236, Sweden
| |
Collapse
|
50
|
Leroy T, Nabholz B. Response to Kratochvíl and Rovatsos. Curr Biol 2022; 32:R30-R31. [PMID: 35015990 DOI: 10.1016/j.cub.2021.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Thibault Leroy and Benoit Nabholz respond to the letter by Lukáš Kratochvíl and Michail Rovatsos that comments on the original authors' study of island songbirds.
Collapse
Affiliation(s)
- Thibault Leroy
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France; Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
| | - Benoit Nabholz
- ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|