1
|
Martin G, Istace B, Baurens FC, Belser C, Hervouet C, Labadie K, Cruaud C, Noel B, Guiougou C, Salmon F, Mahadeo J, Ahmad F, Volkaert HA, Droc G, Rouard M, Sardos J, Wincker P, Yahiaoui N, Aury JM, D'Hont A. Unravelling genomic drivers of speciation in Musa through genome assemblies of wild banana ancestors. Nat Commun 2025; 16:961. [PMID: 39843949 PMCID: PMC11754795 DOI: 10.1038/s41467-025-56329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Hybridization between wild Musa species and subspecies from Southeast Asia is at the origin of cultivated bananas. The genomes of these cultivars are complex mosaics involving nine genetic groups, including two previously unknown contributors. This study provides continuous genome assemblies for six wild genetic groups, one of which represents one of the unknown ancestor, identified as M.acuminata ssp. halabanensis. The second unknown ancestor partially present in a seventh assembly appears related to M. a. ssp. zebrina. These assemblies provide key resources for banana genetics and for improving cultivar assemblies, including that of the emblematic triploid Cavendish. Comparative and phylogenetic analyses reveal an ongoing speciation process within Musa, characterised by large chromosome rearrangements and centromere differentiation through the integration of different types of repeated sequences, including rDNA tandem repeats. This speciation process may have been favoured by reproductive isolation related to the particular context of climate and land connectivity fluctuations in the Southeast Asian region.
Collapse
Affiliation(s)
- Guillaume Martin
- CIRAD, UMR AGAP Institut, Montpellier, France.
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Chantal Guiougou
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Capesterre-Belle-Eau, France
| | - Frederic Salmon
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Capesterre-Belle-Eau, France
| | - Joël Mahadeo
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, CRB-PT, Roujol Petit-Bourg, France
| | - Fajarudin Ahmad
- Research Center for Applied Botany, Organization Research for Live Sciences and Environment, BRIN, Bogor, Indonesia
| | - Hugo A Volkaert
- Center for Agricultural Biotechnology, Kasetsart University Kamphaengsaen Campus, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, Thailand
| | - Gaëtan Droc
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Mathieu Rouard
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| | - Julie Sardos
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP Institut, Montpellier, France.
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
2
|
Beránková D, Čížková J, Majzlíková G, Doležalová A, Mduma H, Brown A, Swennen R, Hřibová E. Striking variation in chromosome structure within Musa acuminata subspecies, diploid cultivars, and F1 diploid hybrids. FRONTIERS IN PLANT SCIENCE 2024; 15:1387055. [PMID: 39027673 PMCID: PMC11255410 DOI: 10.3389/fpls.2024.1387055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
The majority of cultivated bananas originated from inter- and intra(sub)specific crosses between two wild diploid species, Musa acuminata and Musa balbisiana. Hybridization and polyploidization events during the evolution of bananas led to the formation of clonally propagated cultivars characterized by a high level of genome heterozygosity and reduced fertility. The combination of low fertility in edible clones and differences in the chromosome structure among M. acuminata subspecies greatly hampers the breeding of improved banana cultivars. Using comparative oligo-painting, we investigated large chromosomal rearrangements in a set of wild M. acuminata subspecies and cultivars that originated from natural and human-made crosses. Additionally, we analyzed the chromosome structure of F1 progeny that resulted from crosses between Mchare bananas and the wild M. acuminata 'Calcutta 4' genotype. Analysis of chromosome structure within M. acuminata revealed the presence of a large number of chromosomal rearrangements showing a correlation with banana speciation. Chromosome painting of F1 hybrids was complemented by Illumina resequencing to identify the contribution of parental subgenomes to the diploid hybrid clones. The balanced presence of both parental genomes was revealed in all F1 hybrids, with the exception of one clone, which contained only Mchare-specific SNPs and thus most probably originated from an unreduced diploid gamete of Mchare.
Collapse
Affiliation(s)
- Denisa Beránková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Gabriela Majzlíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Alžběta Doležalová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Hassan Mduma
- International Institute of Tropical Agriculture, Banana Breeding, Arusha, Tanzania
| | - Allan Brown
- International Institute of Tropical Agriculture, Banana Breeding, Arusha, Tanzania
| | - Rony Swennen
- International Institute of Tropical Agriculture, Kampala, Uganda
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| |
Collapse
|
3
|
Capo-Chichi DBE, Tchokponhoué DA, Sogbohossou DEO, Achigan-Dako EG. Narrow genetic diversity in germplasm from the Guinean and Sudano-Guinean zones in Benin indicates the need to broaden the genetic base of sweet fig banana (Musa acuminata cv Sotoumon). PLoS One 2023; 18:e0294315. [PMID: 37972084 PMCID: PMC10653437 DOI: 10.1371/journal.pone.0294315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Sweet fig (M. acuminata cv. Sotoumon) is an economically important dessert banana in Benin, with high nutritional, medicinal, and cultural values. Nevertheless, its productivity and yield are threatened by biotic and abiotic stresses. Relevant knowledge of the genetic diversity of this economically important crop is essential for germplasm conservation and the development of breeding programs. However, very little is known about the genetic makeup of this cultivar in Benin. To advance the understanding of genetic diversity in sweet fig banana germplasm, a Genotype-By-Sequencing (GBS) was performed on a panel of 273 accessions collected in different phytogeographical zones of Benin. GBS generated 8,457 quality SNPs, of which 1992 were used for analysis after filtering. The results revealed a low diversity in the studied germplasm (He = 0.0162). Genetic differentiation was overall very low in the collection as suggested by the negative differentiation index (Fstg = -0.003). The Analysis of Molecular Variance (AMOVA) indicated that the variation between accessions within populations accounted for 83.8% of the total variation observed (P < 0.001). The analysis of population structure and neighbor-joining tree partitioned the germplasm into three clusters out of which a predominant major one contained 98.1% of all accessions. These findings demonstrate that current sweet fig banana genotypes shared a common genetic background, which made them vulnerable to biotic and abiotic stress. Therefore, broadening the genetic base of the crop while maintaining its quality attributes and improving yield performance is of paramount importance. Moreover, the large genetic group constitutes an asset for future genomic selection studies in the crop and can guide the profiling of its conservation strategies.
Collapse
Affiliation(s)
- Dènoumi B. E. Capo-Chichi
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology and Plant Breeding (PAGEV), Faculty of Agricultural Sciences (FSA), University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - Dèdéou A. Tchokponhoué
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology and Plant Breeding (PAGEV), Faculty of Agricultural Sciences (FSA), University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - Dêêdi E. O. Sogbohossou
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology and Plant Breeding (PAGEV), Faculty of Agricultural Sciences (FSA), University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - Enoch G. Achigan-Dako
- Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology and Plant Breeding (PAGEV), Faculty of Agricultural Sciences (FSA), University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| |
Collapse
|
4
|
Liu X, Arshad R, Wang X, Li WM, Zhou Y, Ge XJ, Huang HR. The phased telomere-to-telomere reference genome of Musa acuminata, a main contributor to banana cultivars. Sci Data 2023; 10:631. [PMID: 37716992 PMCID: PMC10505225 DOI: 10.1038/s41597-023-02546-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
Musa acuminata is a main wild contributor to banana cultivars. Here, we reported a haplotype-resolved and telomere-to-telomere reference genome of M. acuminata by incorporating PacBio HiFi reads, Nanopore ultra-long reads, and Hi-C data. The genome size of the two haploid assemblies was estimated to be 469.83 Mb and 470.21 Mb, respectively. Multiple assessments confirmed the contiguity (contig N50: 16.53 Mb and 18.58 Mb; LAI: 20.18 and 19.48), completeness (BUSCOs: 98.57% and 98.57%), and correctness (QV: 45.97 and 46.12) of the genome. The repetitive sequences accounted for about half of the genome size. In total, 40,889 and 38,269 protein-coding genes were annotated in the two haploid assemblies, respectively, of which 9.56% and 3.37% were newly predicted. Genome comparison identified a large reciprocal translocation involving 3 Mb and 10 Mb from chromosomes 01 and 04 within M. acuminata. This reference genome of M. acuminata provides a valuable resource for further understanding of subgenome evolution of Musa species, and precise genetic improvement of banana.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rida Arshad
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wei-Ming Li
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, 530008, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Hui-Run Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
5
|
Chen A, Sun J, Viljoen A, Mostert D, Xie Y, Mangila L, Bothma S, Lyons R, Hřibová E, Christelová P, Uwimana B, Amah D, Pearce S, Chen N, Batley J, Edwards D, Doležel J, Crisp P, Brown AF, Martin G, Yahiaoui N, D'Hont A, Coin L, Swennen R, Aitken EAB. Genetic Mapping, Candidate Gene Identification and Marker Validation for Host Plant Resistance to the Race 4 of Fusarium oxysporum f. sp. cubense Using Musa acuminata ssp. malaccensis. Pathogens 2023; 12:820. [PMID: 37375510 PMCID: PMC10303076 DOI: 10.3390/pathogens12060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.
Collapse
Affiliation(s)
- Andrew Chen
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Jiaman Sun
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
- School of Life Science, Jiaying University, Meizhou 514015, China
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Diane Mostert
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Yucong Xie
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Leroy Mangila
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Sheryl Bothma
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rebecca Lyons
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Bio-Technological and Agricultural Research, CZ-77900 Olomouc, Czech Republic
| | - Pavla Christelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Bio-Technological and Agricultural Research, CZ-77900 Olomouc, Czech Republic
| | - Brigitte Uwimana
- International Institute of Tropical Agriculture, Kampala P.O. Box 7878, Uganda
| | - Delphine Amah
- International Institute of Tropical Agriculture, Ibadan PMB 5320, Nigeria
| | - Stephen Pearce
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Ning Chen
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- The Centre for Applied Bioinformatics, University of Western Australia, Crawley, Perth, WA 6009, Australia
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Bio-Technological and Agricultural Research, CZ-77900 Olomouc, Czech Republic
| | - Peter Crisp
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Allan F Brown
- International Institute of Tropical Agriculture, Arusha P.O. Box 447, Tanzania
| | - Guillaume Martin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Angelique D'Hont
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Lachlan Coin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3004, Australia
| | - Rony Swennen
- International Institute of Tropical Agriculture, Kampala P.O. Box 7878, Uganda
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Elizabeth A B Aitken
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4067, Australia
| |
Collapse
|
6
|
Cheng Z, Song W, Zhang X. Genic male and female sterility in vegetable crops. HORTICULTURE RESEARCH 2022; 10:uhac232. [PMID: 36643746 PMCID: PMC9832880 DOI: 10.1093/hr/uhac232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Vegetable crops are greatly appreciated for their beneficial nutritional and health components. Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance, which require the participation of male (stamen) and female (pistil) reproductive organs. Male- or female-sterile plants are commonly used for production of hybrid seeds or seedless fruits in vegetables. In this review we will focus on the types of genic male sterility and factors affecting female fertility, summarize typical gene function and research progress related to reproductive organ identity and sporophyte and gametophyte development in vegetable crops [mainly tomato (Solanum lycopersicum) and cucumber (Cucumis sativus)], and discuss the research trends and application perspectives of the sterile trait in vegetable breeding and hybrid production, in order to provide a reference for fertility-related germplasm innovation.
Collapse
Affiliation(s)
- Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Droc G, Martin G, Guignon V, Summo M, Sempéré G, Durant E, Soriano A, Baurens FC, Cenci A, Breton C, Shah T, Aury JM, Ge XJ, Harrison PH, Yahiaoui N, D’Hont A, Rouard M. The banana genome hub: a community database for genomics in the Musaceae. HORTICULTURE RESEARCH 2022; 9:uhac221. [PMID: 36479579 PMCID: PMC9720444 DOI: 10.1093/hr/uhac221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
The Banana Genome Hub provides centralized access for genome assemblies, annotations, and the extensive related omics resources available for bananas and banana relatives. A series of tools and unique interfaces are implemented to harness the potential of genomics in bananas, leveraging the power of comparative analysis, while recognizing the differences between datasets. Besides effective genomic tools like BLAST and the JBrowse genome browser, additional interfaces enable advanced gene search and gene family analyses including multiple alignments and phylogenies. A synteny viewer enables the comparison of genome structures between chromosome-scale assemblies. Interfaces for differential expression analyses, metabolic pathways and GO enrichment were also added. A catalogue of variants spanning the banana diversity is made available for exploration, filtering, and export to a wide variety of software. Furthermore, we implemented new ways to graphically explore gene presence-absence in pangenomes as well as genome ancestry mosaics for cultivated bananas. Besides, to guide the community in future sequencing efforts, we provide recommendations for nomenclature of locus tags and a curated list of public genomic resources (assemblies, resequencing, high density genotyping) and upcoming resources-planned, ongoing or not yet public. The Banana Genome Hub aims at supporting the banana scientific community for basic, translational, and applied research and can be accessed at https://banana-genome-hub.southgreen.fr.
Collapse
Affiliation(s)
| | - Guillaume Martin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Valentin Guignon
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Marilyne Summo
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Guilhem Sempéré
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France
- INTERTRYP, Université de Montpellier, CIRAD, IRD, 34398 Montpellier, France
| | - Eloi Durant
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Syngenta Seeds SAS, Saint-Sauveur, 31790, France
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, 34830, France
| | - Alexandre Soriano
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Alberto Cenci
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Catherine Breton
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | | | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Pat Heslop Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Angélique D’Hont
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | | |
Collapse
|
8
|
Šimoníková D, Čížková J, Zoulová V, Christelová P, Hřibová E. Advances in the Molecular Cytogenetics of Bananas, Family Musaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040482. [PMID: 35214815 PMCID: PMC8879896 DOI: 10.3390/plants11040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 05/03/2023]
Abstract
The banana is a staple food crop and represents an important trade commodity for millions of people living in tropical and subtropical countries. The most important edible banana clones originated from natural crosses between diploid Musa balbisiana and various subspecies of M. acuminata. It is worth mentioning that evolution and speciation in the Musaceae family were accompanied by large-scale chromosome structural changes, indicating possible reasons for lower fertility or complete sterility of these vegetatively propagated clones. Chromosomal changes, often accompanied by changes in genome size, are one of the driving forces underlying speciation in plants. They can clarify the genomic constitution of edible bananas and shed light on their origin and on diversification processes in members of the Musaceae family. This article reviews the development of molecular cytogenetic approaches, ranging from classical fluorescence in situ hybridization (FISH) using common cytogenetic markers to oligo painting FISH. We discuss differences in genome size and chromosome number across the Musaceae family in addition to the development of new chromosome-specific cytogenetic probes and their use in genome structure and comparative karyotype analysis. The impact of these methodological advances on our knowledge of Musa genome evolution at the chromosomal level is demonstrated. In addition to citing published results, we include our own new unpublished results and outline future applications of molecular cytogenetics in banana research.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
| | - Veronika Zoulová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900 Olomouc, Czech Republic
| | - Pavla Christelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
- Correspondence: ; Tel.: +420-585-238-713
| |
Collapse
|
9
|
Tian S, Ge J, Ai G, Jiang J, Liu Q, Chen X, Liu M, Yang J, Zhang X, Yuan L. A 2.09 Mb fragment translocation on chromosome 6 causes abnormalities during meiosis and leads to less seed watermelon. HORTICULTURE RESEARCH 2021; 8:256. [PMID: 34848689 PMCID: PMC8633341 DOI: 10.1038/s41438-021-00687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Seedlessness is a valuable agronomic trait in watermelon (Citrullus lanatus) breeding. Conventional less seed watermelons are mainly triploid, which has many disadvantages due to unbalanced genome content. Less seed watermelon can be achieved at the diploid level when certain reproductive genes are mutated or by chromosome translocation, which leads to defects during meiosis. However, the formation mechanism of diploid less seed watermelons remains largely unknown. Here, we identified a spontaneous mutant line, watermelon line "148", which can set seeds normally when self-pollinated. A total of 148 × JM F1 hybrid plants exhibited seed number reductions to 50.3% and 47.3% of those of the two parental lines, respectively, which are considered to be less seed. Examination of pollen viability and hybridization experiments revealed that F1 hybrids produce semisterile pollen and ovules. Further cytological observations indicated that semisterility was a result of a reciprocal translocation of chromosomes, which exhibited one quadrivalent ring of four chromosomes at prometaphase I during meiosis. RT-qPCR analysis indirectly confirmed that the semisterile phenotype is caused by chromosome translocation rather than disruption of specific meiotic gene expression. F2 population genetic analysis indicated that the "148" watermelon line is a homozygous translocation and that the less seed phenotype of the F1 hybrid is prompted by one chromosome fragment translocation. The translocated fragment was further fine mapped to a 2.09 Mb region on chromosome 6 by whole-genome resequencing and genetic map cloning procedures. Our work revealed that a 2.09 Mb chromosome fragment translocation on chromosome 6, causing meiotic defects at metaphase I during meiosis, leads to diploid less seed watermelon. Our findings provide a new promising method for less seed watermelon breeding at the diploid level, as well as a fragment size reference for breeding less seed watermelon through artificially induced chromosome translocation.
Collapse
Affiliation(s)
- Shujuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gongli Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiao Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiyan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiner Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Man Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianqiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Uwimana B, Mwanje G, Batte M, Akech V, Shah T, Vuylsteke M, Swennen R. Continuous Mapping Identifies Loci Associated With Weevil Resistance [ Cosmopolites sordidus (Germar)] in a Triploid Banana Population. FRONTIERS IN PLANT SCIENCE 2021; 12:753241. [PMID: 34912355 PMCID: PMC8667469 DOI: 10.3389/fpls.2021.753241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
The first step toward marker-assisted selection is linking the phenotypes to molecular markers through quantitative trait loci (QTL) analysis. While the process is straightforward in self-pollinating diploid (2x) species, QTL analysis in polyploids requires unconventional methods. In this study, we have identified markers associated with weevil Cosmopolites sordidus (Germar) resistance in bananas using 138 triploid (2n = 3x) hybrids derived from a cross between a tetraploid "Monyet" (2n = 4x) and a 2x "Kokopo" (2n = 2x) banana genotypes. The population was genotyped by Diversity Arrays Technology Sequencing (DArTSeq), resulting in 18,009 polymorphic single nucleotide polymorphisms (SNPs) between the two parents. Marker-trait association was carried out by continuous mapping where the adjusted trait means for the corm peripheral damage (PD) and total cross-section damage (TXD), both on the logit scale, were regressed on the marker allele frequencies. Forty-four SNPs that were associated with corm PD were identified on the chromosomes 5, 6, and 8, with 41 of them located on chromosome 6 and segregated in "Kokopo." Eleven SNPs associated with corm total TXD were identified on chromosome 6 and segregated in "Monyet." The additive effect of replacing one reference allele with the alternative allele was determined at each marker position. The PD QTL was confirmed using conventional QTL linkage analysis in the simplex markers segregating in "Kokopo" (AAAA × RA). We also identified 43 putative genes in the vicinity of the markers significantly associated with the two traits. The identified loci associated with resistance to weevil damage will be used in the efforts of developing molecular tools for marker-assisted breeding in bananas.
Collapse
Affiliation(s)
- Brigitte Uwimana
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Gerald Mwanje
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Michael Batte
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Violet Akech
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Trushar Shah
- International Institute of Tropical Agriculture (IITA), International Livestock Research Institute Campus, Nairobi, Kenya
| | | | - Rony Swennen
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
- Department of Crop Biosystems, KU Leuven, Heverlee, Belgium
| |
Collapse
|
11
|
Mao W, Yao G, Wang S, Zhou L, Chen G, Dong N, Hu G. Chromosome-level genomes of seeded and seedless date plum based on third-generation DNA sequencing and Hi-C analysis. FORESTRY RESEARCH 2021; 1:9. [PMID: 39524504 PMCID: PMC11524226 DOI: 10.48130/fr-2021-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2024]
Abstract
Diospyros lotus L. (Date plum) is an important tree species that produces fruit with a high nutritional value. An accurate chromosomal assembly of a species facilitates research on chromosomal evolution and functional gene mapping. In this study, we assembled the first chromosome-level genomes of seeded and seedless D. lotus using Illumina short reads, PacBio long reads, and Hi-C technology. The assembled genomes comprising 15 chromosomes were 617.66 and 647.31 Mb in size, with a scaffold N50 of 40.72 and 42.67 Mb for the seedless and seeded D. lotus, respectively. A BUSCO analysis revealed that the seedless and seeded D. lotus genomes were 91.53% and 91.60% complete, respectively. Additionally, 20,689 (95.4%) and 22,844 (98.5%) protein-coding genes in the seedless and seeded D. lotus genomes were annotated, respectively. Comparisons of the chromosomes between genomes revealed inversions and translocations on chromosome 8 and inversions on chromosome 11. We identified 490 and 424 gene families that expanded in the seedless and seeded D. lotus, respectively. The enriched pathways among these gene families included the estrogen signaling pathway, the MAPK signaling pathway, and biosynthetic pathways for flavonoids, monoterpenoids, and glucosinolates. Moreover, we constructed the first Diospyros genome database (http://www.persimmongenome.cn). On the basis of our data, we developed the first high-quality annotated D. lotus reference genomes, which will be useful for genomic studies on persimmon and for clarifying the molecular mechanisms underlying important traits. Comparisons between the seeded and seedless D. lotus genomes may also elucidate the molecular basis of seedlessness.
Collapse
Affiliation(s)
- Weitao Mao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
- School of Life Science, Hubei University, Wuhan 430062, China
| | - Guoxin Yao
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Shangde Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Guosong Chen
- Beijing XinTaoYuan Commerce & Trading Co., Ltd., Beijing 101215, China
| | - Ningguang Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China
| | - Guanglong Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China
| |
Collapse
|
12
|
Cormier F, Martin G, Vignes H, Lachman L, Cornet D, Faure Y, Maledon E, Mournet P, Arnau G, Chaïr H. Genetic control of flowering in greater yam (Dioscorea alata L.). BMC PLANT BIOLOGY 2021; 21:163. [PMID: 33794780 PMCID: PMC8015048 DOI: 10.1186/s12870-021-02941-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Greater yam (Dioscorea alata L.) is a major tropical and subtropical staple crop cultivated for its starchy tubers. Breeding of this dioecious species is hampered by its erratic flowering, yet little is currently known on the genetic determinism of its sexual reproduction. RESULT Here we used a genome-wide association approach and identified a major genetic barrier to reproduction in yam on chromosome 1, as represented by two candidate genes. A deleterious effect on male fitness could be hypothesized considering the involvement of these two genes in male reproduction and the low frequency of this non-flowering dominant allele within the male genepool. We also extended the hypothesis of a XX/XY sex-determination system located on chromosome 6 in D. alata to encompass most of the species diversity. Moreover, a kompetitive allele-specific PCR (KASPar) marker was designed and validated that enables accurate cultivar sex estimation. The reconstruction of chromosome 6 associated with the detection of highly putative structural variations confirmed the possible involvement of a major part of the chromosome. CONCLUSION The findings of this study, combined with proper estimation of accession ploidy levels to avoid endosperm incompatibility issues, could facilitate the design of future promising parental combinations in D. alata breeding programs. Moreover, the discovery of this genetic barrier to reproduction opens new avenues for gaining insight into yam reproductive biology and diversification.
Collapse
Affiliation(s)
- Fabien Cormier
- CIRAD, UMR AGAP Institut, 97170, Petit-Bourg, Guadeloupe, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Guillaume Martin
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
| | - Hélène Vignes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
| | - Laurie Lachman
- CIRAD, UMR AGAP Institut, 97170, Petit-Bourg, Guadeloupe, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- Univ. Des Antilles, Pôle Guadeloupe, IUT Saint Claude, Guadeloupe, France
| | - Denis Cornet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
| | - Yoana Faure
- INRA, UR ASTRO Agrosytèmes Tropicaux, Petit-Bourg, Guadeloupe, France
| | - Erick Maledon
- CIRAD, UMR AGAP Institut, 97170, Petit-Bourg, Guadeloupe, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Pierre Mournet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
| | - Gemma Arnau
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
| | - Hâna Chaïr
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France.
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France.
| |
Collapse
|
13
|
Martin G, Baurens F, Hervouet C, Salmon F, Delos J, Labadie K, Perdereau A, Mournet P, Blois L, Dupouy M, Carreel F, Ricci S, Lemainque A, Yahiaoui N, D’Hont A. Chromosome reciprocal translocations have accompanied subspecies evolution in bananas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1698-1711. [PMID: 33067829 PMCID: PMC7839431 DOI: 10.1111/tpj.15031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/02/2020] [Indexed: 05/09/2023]
Abstract
Chromosome rearrangements and the way that they impact genetic differentiation and speciation have long raised questions from evolutionary biologists. They are also a major concern for breeders because of their bearing on chromosome recombination. Banana is a major crop that derives from inter(sub)specific hybridizations between various once geographically isolated Musa species and subspecies. We sequenced 155 accessions, including banana cultivars and representatives of Musa diversity, and genotyped-by-sequencing 1059 individuals from 11 progenies. We precisely characterized six large reciprocal translocations and showed that they emerged in different (sub)species of Musa acuminata, the main contributor to currently cultivated bananas. Most diploid and triploid cultivars analyzed were structurally heterozygous for 1 to 4 M. acuminata translocations, highlighting their complex origin. We showed that all translocations induced a recombination reduction of variable intensity and extent depending on the translocations, involving only the breakpoint regions, a chromosome arm, or an entire chromosome. The translocated chromosomes were found preferentially transmitted in many cases. We explore and discuss the possible mechanisms involved in this preferential transmission and its impact on translocation colonization.
Collapse
Affiliation(s)
- Guillaume Martin
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Franc‐Christophe Baurens
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Catherine Hervouet
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Frédéric Salmon
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
- CIRADUMR AGAPCapesterre‐Belle‐EauGuadeloupeF‐97130France
| | - Jean‐Marie Delos
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
- CIRADUMR AGAPCapesterre‐Belle‐EauGuadeloupeF‐97130France
| | - Karine Labadie
- GenoscopeInstitut de biologie François JacobCommissariat à l'Energie Atomique (CEA)Université Paris‐SaclayEvryFrance
| | - Aude Perdereau
- GenoscopeInstitut de biologie François JacobCommissariat à l'Energie Atomique (CEA)Université Paris‐SaclayEvryFrance
| | - Pierre Mournet
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Louis Blois
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Marion Dupouy
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Françoise Carreel
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Sébastien Ricci
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
- CIRADUMR AGAPCapesterre‐Belle‐EauGuadeloupeF‐97130France
| | - Arnaud Lemainque
- GenoscopeInstitut de biologie François JacobCommissariat à l'Energie Atomique (CEA)Université Paris‐SaclayEvryFrance
| | - Nabila Yahiaoui
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| | - Angélique D’Hont
- CIRADUMR AGAPMontpellierF‐34398France
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellier34060France
| |
Collapse
|
14
|
Šimoníková D, Němečková A, Čížková J, Brown A, Swennen R, Doležel J, Hřibová E. Chromosome Painting in Cultivated Bananas and Their Wild Relatives ( Musa spp.) Reveals Differences in Chromosome Structure. Int J Mol Sci 2020; 21:ijms21217915. [PMID: 33114462 PMCID: PMC7672600 DOI: 10.3390/ijms21217915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
| | - Alžběta Němečková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
| | - Allan Brown
- International Institute of Tropical Agriculture, Banana Breeding, PO Box 447 Arusha, Tanzania; (A.B.); (R.S.)
| | - Rony Swennen
- International Institute of Tropical Agriculture, Banana Breeding, PO Box 447 Arusha, Tanzania; (A.B.); (R.S.)
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (A.N.); (J.Č.); (J.D.)
- Correspondence: ; Tel.: +420-585-238-713
| |
Collapse
|
15
|
Piperidis N, D'Hont A. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2039-2051. [PMID: 32537783 DOI: 10.1111/tpj.14881] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/04/2023]
Abstract
Sugarcane (Saccharum spp.) is probably the crop with the most complex genome. Modern cultivars (2n = 100-120) are highly polyploids and aneuploids derived from interspecific hybridization between Saccharum officinarum (2n = 80) and Saccharum spontaneum (2n = 40-128). Chromosome-specific oligonucleotide probes were used in combination with genomic in situ hybridization to analyze the genome architecture of modern cultivars and representatives of their parental species. The results validated a basic chromosome number of x = 10 for S. officinarum. In S. spontaneum, rearrangements occurred from a basic chromosome of x = 10, probably in the Northern part of India, in two steps leading to x = 9 and then x = 8. Each step involved three chromosomes that were rearranged into two. Further polyploidization led to the wide geographical extension of clones with x = 8. We showed that the S. spontaneum contribution to modern cultivars originated from cytotypes with x = 8 and varied in proportion between cultivars (13-20%). Modern cultivars had mainly 12 copies for each of the first four basic chromosomes, and a more variable number for those basic chromosomes whose structure differs between the two parental species. One-four of these copies corresponded to entire S. spontaneum chromosomes or interspecific recombinant chromosomes. In addition, a few inter-chromosome translocations were revealed. The new information and cytogenetic tools described in this study substantially improve our understanding of the extreme level of complexity of modern sugarcane cultivar genomes.
Collapse
Affiliation(s)
- Nathalie Piperidis
- SRA, Sugar Research Australia, 26135 Peak Downs Highway, Te Kowai, Qld, 4741, Australia
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Montpellier, F-34398, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34060, France
| |
Collapse
|
16
|
Martin G, Cardi C, Sarah G, Ricci S, Jenny C, Fondi E, Perrier X, Glaszmann JC, D'Hont A, Yahiaoui N. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1008-1025. [PMID: 31930580 PMCID: PMC7317953 DOI: 10.1111/tpj.14683] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 05/24/2023]
Abstract
Hybridizations between closely related species commonly occur in the domestication process of many crops. Banana cultivars are derived from such hybridizations between species and subspecies of the Musa genus that have diverged in various tropical Southeast Asian regions and archipelagos. Among the diploid and triploid hybrids generated, those with seedless parthenocarpic fruits were selected by humans and thereafter dispersed through vegetative propagation. Musa acuminata subspecies contribute to most of these cultivars. We analyzed sequence data from 14 M. acuminata wild accessions and 10 M. acuminata-based cultivars, including diploids and one triploid, to characterize the ancestral origins along their chromosomes. We used multivariate analysis and single nucleotide polymorphism clustering and identified five ancestral groups as contributors to these cultivars. Four of these corresponded to known M. acuminata subspecies. A fifth group, found only in cultivars, was defined based on the 'Pisang Madu' cultivar and represented two uncharacterized genetic pools. Diverse ancestral contributions along cultivar chromosomes were found, resulting in mosaics with at least three and up to five ancestries. The commercially important triploid Cavendish banana cultivar had contributions from at least one of the uncharacterized genetic pools and three known M. acuminata subspecies. Our results highlighted that cultivated banana origins are more complex than expected - involving multiple hybridization steps - and also that major wild banana ancestors have yet to be identified. This study revealed the extent to which admixture has framed the evolution and domestication of a crop plant.
Collapse
Affiliation(s)
- Guillaume Martin
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Céline Cardi
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Gautier Sarah
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Sébastien Ricci
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CARBAP, Rue Dinde, No. 110, Bonanjo, BP 832, Douala, Cameroon
- CIRAD, UMR AGAP, F-97130, Capesterre Belle Eau, France
| | - Christophe Jenny
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Emmanuel Fondi
- CARBAP, Rue Dinde, No. 110, Bonanjo, BP 832, Douala, Cameroon
| | - Xavier Perrier
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Christophe Glaszmann
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
17
|
Nyine M, Uwimana B, Akech V, Brown A, Ortiz R, Doležel J, Lorenzen J, Swennen R. Association genetics of bunch weight and its component traits in East African highland banana (Musa spp. AAA group). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3295-3308. [PMID: 31529270 PMCID: PMC6820618 DOI: 10.1007/s00122-019-03425-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/06/2019] [Indexed: 05/06/2023]
Abstract
The major quantitative trait loci associated with bunch weight and its component traits in the East African highland banana-breeding population are located on chromosome 3. Bunch weight increase is one of the major objectives of banana improvement programs, but little is known about the loci controlling bunch weight and its component traits. Here we report for the first time some genomic loci associated with bunch weight and its component traits in banana as revealed through a genome-wide association study. A banana-breeding population of 307 genotypes varying in ploidy was phenotyped in three locations under different environmental conditions, and data were collected on bunch weight, number of hands and fruits; fruit length and circumference; and diameter of both fruit and pulp for three crop cycles. The population was genotyped with genotyping by sequencing and 27,178 single nucleotide polymorphisms (SNPs) were generated. The association between SNPs and the best linear unbiased predictors of traits was performed with TASSEL v5 using a mixed linear model accounting for population structure and kinship. Using Bonferroni correction, false discovery rate, and long-range linkage disequilibrium (LD), 25 genomic loci were identified with significant SNPs and most were localized on chromosome 3. Most SNPs were located in genes encoding uncharacterized and hypothetical proteins, but some mapped to transcription factors and genes involved in cell cycle regulation. Inter-chromosomal LD of SNPs was present in the population, but none of the SNPs were significantly associated with the traits. The clustering of significant SNPs on chromosome 3 supported our hypothesis that fruit filling in this population was under control of a few quantitative trait loci with major effects.
Collapse
Affiliation(s)
- Moses Nyine
- International Institute of Tropical Agriculture, P.O. Box 7878, Kampala, Uganda
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brigitte Uwimana
- International Institute of Tropical Agriculture, P.O. Box 7878, Kampala, Uganda
| | - Violet Akech
- International Institute of Tropical Agriculture, P.O. Box 7878, Kampala, Uganda
| | - Allan Brown
- International Institute of Tropical Agriculture c/o Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053, Alnarp, Sweden
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 78371, Olomouc, Czech Republic
| | - Jim Lorenzen
- International Institute of Tropical Agriculture, P.O. Box 7878, Kampala, Uganda
- Bill and Melinda Gates Foundation, Seattle, 23350, USA
| | - Rony Swennen
- International Institute of Tropical Agriculture c/o Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit, 3001, Leuven, Belgium.
- Bioversity International, 3001, Leuven, Belgium.
| |
Collapse
|
18
|
Liu S, Cornille A, Decroocq S, Tricon D, Chague A, Eyquard JP, Liu WS, Giraud T, Decroocq V. The complex evolutionary history of apricots: Species divergence, gene flow and multiple domestication events. Mol Ecol 2019; 28:5299-5314. [PMID: 31677192 DOI: 10.1111/mec.15296] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
Domestication is an excellent model to study diversification and this evolutionary process can be different in perennial plants, such as fruit trees, compared to annual crops. Here, we inferred the history of wild apricot species divergence and of apricot domestication history across Eurasia, with a special focus on Central and Eastern Asia, based on microsatellite markers and approximate Bayesian computation. We significantly extended our previous sampling of apricots in Europe and Central Asia towards Eastern Asia, resulting in a total sample of 271 cultivated samples and 306 wild apricots across Eurasia, mainly Prunus armeniaca and Prunus sibirica, with some Prunus mume and Prunus mandshurica. We recovered wild Chinese species as genetically differentiated clusters, with P. sibirica being divided into two clusters, one possibly resulting from hybridization with P. armeniaca. Central Asia also appeared as a diversification centre of wild apricots. We further revealed at least three domestication events, without bottlenecks, that gave rise to European, Southern Central Asian and Chinese cultivated apricots, with ancient gene flow among them. The domestication event in China possibly resulted from ancient hybridization between wild populations from Central and Eastern Asia. We also detected extensive footprints of recent admixture in all groups of cultivated apricots. Our results thus show that apricot is an excellent model for studying speciation and domestication in long-lived perennial fruit trees.
Collapse
Affiliation(s)
- Shuo Liu
- UMR BFP, INRA-Université de Bordeaux, Villenave d'Ornon, France.,Liaoning Institute of Pomology, Yingkou City, China
| | - Amandine Cornille
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - David Tricon
- UMR BFP, INRA-Université de Bordeaux, Villenave d'Ornon, France
| | - Aurélie Chague
- UMR BFP, INRA-Université de Bordeaux, Villenave d'Ornon, France
| | | | | | - Tatiana Giraud
- Ecologie Systematique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | | |
Collapse
|
19
|
Dupouy M, Baurens FC, Derouault P, Hervouet C, Cardi C, Cruaud C, Istace B, Labadie K, Guiougou C, Toubi L, Salmon F, Mournet P, Rouard M, Yahiaoui N, Lemainque A, Martin G, D’Hont A. Two large reciprocal translocations characterized in the disease resistance-rich burmannica genetic group of Musa acuminata. ANNALS OF BOTANY 2019; 124:319-329. [PMID: 31241133 PMCID: PMC6758587 DOI: 10.1093/aob/mcz078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/09/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Banana cultivars are derived from hybridizations involving Musa acuminata subspecies. The latter diverged following geographical isolation in distinct South-east Asian continental regions and islands. Observation of chromosome pairing irregularities in meiosis of hybrids between these subspecies suggested the presence of large chromosomal structural variations. The aim of this study was to characterize such rearrangements. METHODS Marker (single nucleotide polymorphism) segregation in a self-progeny of the 'Calcutta 4' accession and mate-pair sequencing were used to search for chromosomal rearrangements in comparison with the M. acuminata ssp. malaccensis genome reference sequence. Signature segment junctions of the revealed chromosome structures were identified and searched in whole-genome sequencing data from 123 wild and cultivated Musa accessions. KEY RESULTS Two large reciprocal translocations were characterized in the seedy banana M. acuminata ssp. burmannicoides 'Calcutta 4' accession. One consisted of an exchange of a 240 kb distal region of chromosome 2 with a 7.2 Mb distal region of chromosome 8. The other involved an exchange of a 20.8 Mb distal region of chromosome 1 with a 11.6 Mb distal region of chromosome 9. Both translocations were found only in wild accessions belonging to the burmannicoides/burmannica/siamea subspecies. Only two of the 87 cultivars analysed displayed the 2/8 translocation, while none displayed the 1/9 translocation. CONCLUSION Two large reciprocal translocations were identified that probably originated in the burmannica genetic group. Accurate characterization of these translocations should enhance the use of this disease resistance-rich burmannica group in breeding programmes.
Collapse
Affiliation(s)
- Marion Dupouy
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Paco Derouault
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Céline Cardi
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Corinne Cruaud
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Benjamin Istace
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Karine Labadie
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | | | | | | | - Pierre Mournet
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Nabila Yahiaoui
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Arnaud Lemainque
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Angélique D’Hont
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- For correspondence. E-mail
| |
Collapse
|
20
|
Baurens FC, Martin G, Hervouet C, Salmon F, Yohomé D, Ricci S, Rouard M, Habas R, Lemainque A, Yahiaoui N, D'Hont A. Recombination and Large Structural Variations Shape Interspecific Edible Bananas Genomes. Mol Biol Evol 2019; 36:97-111. [PMID: 30403808 PMCID: PMC6340459 DOI: 10.1093/molbev/msy199] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as “AB,” “AAB,” or “ABB” based on morphological characters. We used NGS sequence data to characterize the A versus B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies.
Collapse
Affiliation(s)
- Franc-Christophe Baurens
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Frédéric Salmon
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.,CIRAD, UMR AGAP, F-97130 Capesterre Belle Eau, Guadeloupe, France
| | | | - Sébastien Ricci
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.,CIRAD, UMR AGAP, F-97130 Capesterre Belle Eau, Guadeloupe, France.,CARBAP, Bonanjo, Douala, Cameroon
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, Cedex 5, France
| | - Remy Habas
- CIRAD, UMR BGPI, F-34398 Montpellier, France.,BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Arnaud Lemainque
- Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biologie François-Jacob, Genoscope, Evry, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
21
|
Drapal M, de Carvalho EB, Rouard M, Amah D, Sardos J, Van den Houwe I, Brown A, Roux N, Swennen R, Fraser PD. Metabolite profiling characterises chemotypes of Musa diploids and triploids at juvenile and pre-flowering growth stages. Sci Rep 2019; 9:4657. [PMID: 30874619 PMCID: PMC6420674 DOI: 10.1038/s41598-019-41037-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Bananas (Musa spp.) are consumed worldwide as dessert and cooking types. Edible banana varieties are for the most part seedless and sterile and therefore vegetatively propagated. This confers difficulties for breeding approaches against pressing biotic and abiotic threats and for the nutritional enhancement of banana pulp. A panel of banana accessions, representative of the diversity of wild and cultivated bananas, was analysed to assess the range of chemotypes available globally. The focus of this assessment was banana leaves at two growth stages (juvenile and pre-flowering), to see when during the plant growth metabolic differences can be established. The metabolic data corresponded to genomic trends reported in previous studies and demonstrated a link between metabolites/pathways and the genomes of M. acuminata and M. balbisiana. Furthermore, the vigour and resistance traits of M. balbisiana was connected to the phenolic composition and showed differences with the number of B genes in the hybrid accessions. Differences in the juvenile and pre-flowering data led to low correlation between the growth stages for prediction purposes.
Collapse
Affiliation(s)
- Margit Drapal
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | | | - Mathieu Rouard
- Bioversity France, Parc Scientifique Agropolis II, 34397, Montpellier, Cedex 5, France
| | - Delphine Amah
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Julie Sardos
- Bioversity France, Parc Scientifique Agropolis II, 34397, Montpellier, Cedex 5, France
| | | | - Allan Brown
- International Institute of Tropical Agriculture, Arusha, Tanzania
| | - Nicolas Roux
- Bioversity France, Parc Scientifique Agropolis II, 34397, Montpellier, Cedex 5, France
| | - Rony Swennen
- International Institute of Tropical Agriculture, Arusha, Tanzania.,Bioversity International, W. De Croylaan 42, 3001, Heverlee, Belgium.,Department of Biosystem, KU Leuven University, Oude Markt 13 - bus 5005, 3000, Leuven, Belgium
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
22
|
Caspermeyer J. More to the Bunch: Study Finds Large Chromosomal Swaps Key to Banana Domestication. Mol Biol Evol 2017; 34:2425. [DOI: 10.1093/molbev/msx204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|