1
|
Lo Giudice A, Papale M, Rizzo C, Giannarelli S, Caruso G, Aspholm PE, Maimone G, Azzaro M. First report on pollutant accumulation and associated microbial communities in the freshwater sponge Spongilla lacustris (Linnaeus, 1759) from the sub-Arctic Pasvik River (Norway). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11039. [PMID: 38787335 DOI: 10.1002/wer.11039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
This explorative study was aimed at first characterizing the sponge Spongilla lacustris (Linnaeus, 1759) from the sub-Arctic Pasvik River (Northern Fennoscandia), in terms of associated microbial communities and pollutant accumulation. Persistent organic pollutants were determined in sponge mesohyl tissues, along with the estimation of the microbial enzymatic activity rates, prokaryotic abundance and morphometric traits, and the analysis of the taxonomic bacterial diversity by next-generation sequencing techniques. The main bacterial groups associated with S. lacustris were Alphaproteobacteria and Gammaproteobacteria, followed by Chloroflexi and Acidobacteria. The structure of the S. lacustris-associated bacterial communities was in sharp contrast to those of the bacterioplankton, being statistically close to those found in sediments. Dieldrin was measured at higher concentrations in the sponge tissues (3.1 ± 0.4 ng/g) compared to sediment of the same site (0.04 ± 0.03 ng/g). Some taxonomic groups were possibly related to the occurrence of certain contaminants, as was the case of Patescibacteria and dieldrin. Obtained results substantially contribute to the still scarce knowledge of bacterial community diversity, activities, and ecology in freshwater sponges. PRACTITIONER POINTS: Microbial community associated with Spongilla lacustris is probably shaped by the occurrence of certain contaminants, mainly dieldrin and heavy metals. A higher accumulation of dieldrin in the sponge mesohyl tissues than in sediment was determined. S. lacustris is suggested as sponge species to be used as a sentinel of pesticide pollution in the Pasvik River. S. lacustris, living in tight contact with soft substrates, harbored communities more similar to sediment than water communities.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Messina, Italy
| | - Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), Messina, Italy
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Messina, Italy
- Department of Marine Biotechnology, Zoological Station "Anton Dohrn", Messina, Italy
| | - Stefania Giannarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (CNR-ISP), Messina, Italy
| | | | - Giovanna Maimone
- Institute of Polar Sciences, National Research Council (CNR-ISP), Messina, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Messina, Italy
| |
Collapse
|
2
|
Lo Giudice A, Rizzo C. Freshwater Sponges as a Neglected Reservoir of Bacterial Biodiversity. Microorganisms 2023; 12:25. [PMID: 38257852 PMCID: PMC10819713 DOI: 10.3390/microorganisms12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Freshwater sponges (Spongillida: Demospongiae), including more than 240 described species, are globally distributed in continental waters (except for Antarctica), where they cover both natural and artificial surfaces. However, fragmentary studies have targeted their microbiome, making it difficult to test hypotheses about sponge-microbe specificity and metabolic relationships, along with the environmental factors playing key roles in structuring the associated microbial communities. To date, particular attention has been paid to sponges (family Lubomirskiidae) that are endemic to Lake Baikal. Few other freshwater sponge species (e.g., Ephydatia spp., Eunapius spp., and Spongilla lacustris), from lakes and rivers spanning from Europe to South and North America, have been targeted for microbiological studies. Representatives of the phyla Proteobacteria, Bacteroidetes, and Actinobacteria largely predominated, and high differences were reported between the microbiome of freshwater and marine sponges. Several bacterial strains isolated from freshwater sponges can produce bioactive compounds, mainly showing antibiotic activities, with potential application in biotechnology. Understanding the roles played by sponge microbiomes in freshwater ecosystems is still in its infancy and has yet to be clarified to disentangle the ecological and evolutionary significance of these largely under-investigated microbial communities. This review was aimed at providing the main available information on the composition and biotechnological potential of prokaryotic communities associated with healthy freshwater sponges, as a neglected component of the global sponge microbiome, to stimulate researchers interested in the field.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy;
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy;
- Zoological Station “Anton Dohrn”, Department of Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello, 98168 Messina, Italy
| |
Collapse
|
3
|
Roberts WR, Ruck EC, Downey KM, Pinseel E, Alverson AJ. Resolving Marine-Freshwater Transitions by Diatoms Through a Fog of Gene Tree Discordance. Syst Biol 2023; 72:984-997. [PMID: 37335140 DOI: 10.1093/sysbio/syad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Despite the obstacles facing marine colonists, most lineages of aquatic organisms have colonized and diversified in freshwaters repeatedly. These transitions can trigger rapid morphological or physiological change and, on longer timescales, lead to increased rates of speciation and extinction. Diatoms are a lineage of ancestrally marine microalgae that have diversified throughout freshwater habitats worldwide. We generated a phylogenomic data set of genomes and transcriptomes for 59 diatom taxa to resolve freshwater transitions in one lineage, the Thalassiosirales. Although most parts of the species tree were consistently resolved with strong support, we had difficulties resolving a Paleocene radiation, which affected the placement of one freshwater lineage. This and other parts of the tree were characterized by high levels of gene tree discordance caused by incomplete lineage sorting and low phylogenetic signal. Despite differences in species trees inferred from concatenation versus summary methods and codons versus amino acids, traditional methods of ancestral state reconstruction supported six transitions into freshwaters, two of which led to subsequent species diversification. Evidence from gene trees, protein alignments, and diatom life history together suggest that habitat transitions were largely the product of homoplasy rather than hemiplasy, a condition where transitions occur on branches in gene trees not shared with the species tree. Nevertheless, we identified a set of putatively hemiplasious genes, many of which have been associated with shifts to low salinity, indicating that hemiplasy played a small but potentially important role in freshwater adaptation. Accounting for differences in evolutionary outcomes, in which some taxa became locked into freshwaters while others were able to return to the ocean or become salinity generalists, might help further distinguish different sources of adaptive mutation in freshwater diatoms.
Collapse
Affiliation(s)
- Wade R Roberts
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
4
|
Steffen K, Proux-Wéra E, Soler L, Churcher A, Sundh J, Cárdenas P. Whole genome sequence of the deep-sea sponge Geodia barretti (Metazoa, Porifera, Demospongiae). G3 (BETHESDA, MD.) 2023; 13:jkad192. [PMID: 37619978 PMCID: PMC10542158 DOI: 10.1093/g3journal/jkad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Sponges are among the earliest branching extant animals. As such, genetic data from this group are valuable for understanding the evolution of various traits and processes in other animals. However, like many marine organisms, they are notoriously difficult to sequence, and hence, genomic data are scarce. Here, we present the draft genome assembly for the North Atlantic deep-sea high microbial abundance species Geodia barretti Bowerbank 1858, from a single individual collected on the West Coast of Sweden. The nuclear genome assembly has 4,535 scaffolds, an N50 of 48,447 bp and a total length of 144 Mb; the mitochondrial genome is 17,996 bp long. BUSCO completeness was 71.5%. The genome was annotated using a combination of ab initio and evidence-based methods finding 31,884 protein-coding genes.
Collapse
Affiliation(s)
- Karin Steffen
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Estelle Proux-Wéra
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna SE-17121, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala 752 37, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - John Sundh
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna SE-17121, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
5
|
Bell JJ, Strano F, Broadribb M, Wood G, Harris B, Resende AC, Novak E, Micaroni V. Sponge functional roles in a changing world. ADVANCES IN MARINE BIOLOGY 2023; 95:27-89. [PMID: 37923539 DOI: 10.1016/bs.amb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Sponges are ecologically important benthic organisms with many important functional roles. However, despite increasing global interest in the functions that sponges perform, there has been limited focus on how such functions will be impacted by different anthropogenic stressors. In this review, we describe the progress that has been made in our understanding of the functional roles of sponges over the last 15 years and consider the impacts of anthropogenic stressors on these roles. We split sponge functional roles into interactions with the water column and associations with other organisms. We found evidence for an increasing focus on functional roles among sponge-focused research articles, with our understanding of sponge-mediated nutrient cycling increasing substantially in recent years. From the information available, many anthropogenic stressors have the potential to negatively impact sponge pumping, and therefore have the potential to cause ecosystem level impacts. While our understanding of the importance of sponges has increased in the last 15 years, much more experimental work is required to fully understand how sponges will contribute to reef ecosystem function in future changing oceans.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Manon Broadribb
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gabriela Wood
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Ben Harris
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Anna Carolina Resende
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Emma Novak
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
6
|
Deshpande A, Rivera-Vicéns RE, Thakur NL, Wörheide G. Transcriptomic response of Cinachyrella cf. cavernosa sponges to spatial competition. Mol Ecol 2023. [PMID: 37715558 DOI: 10.1111/mec.17122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/15/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
Spatial competition in the intertidal zones drives the community structure in marine benthic habitats. Organisms inhabiting these areas not only need to withstand fluctuations in temperature, water level, pH, and salinity but also need to compete for the best available space. Sponges are key members of the intertidal zones, and their life history processes (e.g. growth, reproduction, and regeneration) are affected by competition. Here, we used transcriptomics to investigate the effects of interspecific competition between the tetillid sponge Cinachyrella cf. cavernosa, the zoantharid Zoanthus sansibaricus and the macroalgae Dictyota ciliolata in the field. The analysis of differentially expressed genes showed that Z. sansibaricus was the more stressful competitor to C. cf. cavernosa, which showed an upregulation of cellular respiration under stress of competition. Similarly, an upregulation of energy metabolism, lipid metabolism and the heat-shock protein (HSP) 70 was also observed along with an increase in viral load and decreased ability to synthesize protein. A downregulation of purine and pyrimidine metabolism indicated a reduction in the physiological activities of the competing sponges. Moreover, a putative case of possible kleptocnidism, not previously reported in C. cf. cavernosa, was also observed. This study offers a glimpse into the inner workings of marine organisms competing for spatial resources using transcriptome data.
Collapse
Affiliation(s)
- Aabha Deshpande
- CSIR - National Institute of Oceanography, Dona Paula, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramón E Rivera-Vicéns
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | | | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
7
|
The Utilityof 28S rDNA for Barcoding of Freshwater Sponges (Porifera, Spongillida). DIVERSITY 2022. [DOI: 10.3390/d14121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sponges (Porifera, Spongillida) make up the bulk of the benthic biomass in Lake Baikal and are represented by the family Lubomirskiidae, a collection of endemic species, and several species of the cosmopolitan family Spongillidae. We conducted an analysis of the D3 domain of the 28S rDNA of 16 freshwater sponge species. Based on molecular data, we were able to identify all of the collected Spongillidae specimens whose identification was difficult due to the lack of gemmules. Phylogenetic trees have shown that Ephydatia muelleri, Spongilla lacustris, and Eunapius fragilis formed monophyletic clades, and the D3 domain of the 28S rDNA can be used for their DNA barcoding. For the Baikal sponges, the use of this marker is important since the gemmule-less Spongillidae and Lubomirskiidae are, in some cases, indistinguishable from each other in morphology. The 28S rDNA has been shown to be useful for family and species-level identification of freshwater sponges within the Spongillida.
Collapse
|
8
|
Clark CM, Hernandez A, Mullowney MW, Fitz-Henley J, Li E, Romanowski SB, Pronzato R, Manconi R, Sanchez LM, Murphy BT. Relationship between bacterial phylotype and specialized metabolite production in the culturable microbiome of two freshwater sponges. ISME COMMUNICATIONS 2022; 2:22. [PMID: 37938725 PMCID: PMC9723699 DOI: 10.1038/s43705-022-00105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2023]
Abstract
Microbial drug discovery programs rely heavily on accessing bacterial diversity from the environment to acquire new specialized metabolite (SM) lead compounds for the therapeutic pipeline. Therefore, knowledge of how commonly culturable bacterial taxa are distributed in nature, in addition to the degree of variation of SM production within those taxa, is critical to informing these front-end discovery efforts and making the overall sample collection and bacterial library creation process more efficient. In the current study, we employed MALDI-TOF mass spectrometry and the bioinformatics pipeline IDBac to analyze diversity within phylotype groupings and SM profiles of hundreds of bacterial isolates from two Eunapius fragilis freshwater sponges, collected 1.5 km apart. We demonstrated that within two sponge samples of the same species, the culturable bacterial populations contained significant overlap in approximate genus-level phylotypes but mostly nonoverlapping populations of isolates when grouped lower than the level of genus. Further, correlations between bacterial phylotype and SM production varied at the species level and below, suggesting SM distribution within bacterial taxa must be analyzed on a case-by-case basis. Our results suggest that two E. fragilis freshwater sponges collected in similar environments can exhibit large culturable diversity on a species-level scale, thus researchers should scrutinize the isolates with analyses that take both phylogeny and SM production into account to optimize the chemical space entering into a downstream bacterial library.
Collapse
Affiliation(s)
- Chase M Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Antonio Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael W Mullowney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Jhewelle Fitz-Henley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Emma Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sean B Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Renata Manconi
- Dipartimento Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Sandoval K, McCormack GP. Actinoporin-like Proteins Are Widely Distributed in the Phylum Porifera. Mar Drugs 2022; 20:md20010074. [PMID: 35049929 PMCID: PMC8778704 DOI: 10.3390/md20010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70–59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.
Collapse
|
10
|
Abstract
Parasites are important components of biodiversity and contributors to ecosystem functioning, but are often neglected in ecological studies. Most studies examine model parasite systems or single taxa, thus our understanding of community composition is lacking. Here, the seasonal and annual dynamics of parasites was quantified using a 5-year metabarcoding time-series of freshwater plankton, collected weekly. We first identified parasites in the dataset using literature searches of the taxonomic match and using sequence metadata from the National Center for Biotechnology Information (NCBI) nucleotide database. In total, 441 amplicon sequence variants (belonging to 18 phyla/clades) were classified as parasites. The four phyla/clades with the highest relative read abundance and richness were Chytridiomycota, Dinoflagellata, Oomycota and Perkinsozoa. Relative read abundance of total parasite taxa, Dinoflagellata and Perkinsozoa significantly varied with season and was highest in summer. Parasite richness varied significantly with season and year, and was generally lowest in spring. Each season had distinct parasite communities, and the difference between summer and winter communities was most pronounced. Combining DNA metabarcoding with searches of the literature and NCBI metadata allowed us to characterize parasite diversity and community dynamics and revealed the extent to which parasites contribute to the diversity of freshwater plankton communities.
Collapse
|
11
|
Lipaeva P, Vereshchagina K, Drozdova P, Jakob L, Kondrateva E, Lucassen M, Bedulina D, Timofeyev M, Stadler P, Luckenbach T. Different ways to play it cool: Transcriptomic analysis sheds light on different activity patterns of three amphipod species under long-term cold exposure. Mol Ecol 2021; 30:5735-5751. [PMID: 34480774 DOI: 10.1111/mec.16164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
Species of littoral freshwater environments in regions with continental climate experience pronounced seasonal temperature changes. Coping with long cold winters and hot summers requires specific physiological and behavioural adaptations. Endemic amphipods of Lake Baikal, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, show high metabolic activity throughout the year; E. verrucosus even reproduces in winter. In contrast, the widespread Holarctic amphipod Gammarus lacustris overwinters in torpor. This study investigated the transcriptomic hallmarks of E. verrucosus, E. cyaneus and G. lacustris exposed to low water temperatures. Amphipods were exposed to 1.5°C and 12°C (corresponding to the mean winter and summer water temperatures, respectively, in the Baikal littoral) for one month. At 1.5°C, G. lacustris showed upregulation of ribosome biogenesis and mRNA processing genes, as well as downregulation of genes related to growth, reproduction and locomotor activity, indicating enhanced energy allocation to somatic maintenance. Our results suggest that the mitogen-activated protein kinase (MAPK) signalling pathway is involved in the preparation for hibernation; downregulation of the actin cytoskeleton pathway genes could relate to the observed low locomotor activity of G. lacustris at 1.5°C. The differences between the transcriptomes of E. verrucosus and E. cyaneus from the 1.5°C and 12°C exposures were considerably smaller than for G. lacustris. In E. verrucosus, cold-exposure triggered reproductive activity was indicated by upregulation of respective genes, whereas in E. cyaneus, genes related to mitochondria functioning were upregulated, indicating cold compensation in this species. Our data elucidate the molecular characteristics behind the different adaptations of amphipod species from the Lake Baikal area to winter conditions.
Collapse
Affiliation(s)
- Polina Lipaeva
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kseniya Vereshchagina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Polina Drozdova
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Lena Jakob
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Magnus Lucassen
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Daria Bedulina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Peter Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Bogotá, Colombia.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
12
|
Conservative and Atypical Ferritins of Sponges. Int J Mol Sci 2021; 22:ijms22168635. [PMID: 34445356 PMCID: PMC8395497 DOI: 10.3390/ijms22168635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.
Collapse
|
13
|
Van Nynatten A, Castiglione GM, de A Gutierrez E, Lovejoy NR, Chang BSW. Recreated Ancestral Opsin Associated with Marine to Freshwater Croaker Invasion Reveals Kinetic and Spectral Adaptation. Mol Biol Evol 2021; 38:2076-2087. [PMID: 33481002 PMCID: PMC8097279 DOI: 10.1093/molbev/msab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhodopsin, the light-sensitive visual pigment expressed in rod photoreceptors, is specialized for vision in dim-light environments. Aquatic environments are particularly challenging for vision due to the spectrally dependent attenuation of light, which can differ greatly in marine and freshwater systems. Among fish lineages that have successfully colonized freshwater habitats from ancestrally marine environments, croakers are known as highly visual benthic predators. In this study, we isolate rhodopsins from a diversity of freshwater and marine croakers and find that strong positive selection in rhodopsin is associated with a marine to freshwater transition in South American croakers. In order to determine if this is accompanied by significant shifts in visual abilities, we resurrected ancestral rhodopsin sequences and tested the experimental properties of ancestral pigments bracketing this transition using in vitro spectroscopic assays. We found the ancestral freshwater croaker rhodopsin is redshifted relative to its marine ancestor, with mutations that recapitulate ancestral amino acid changes along this transitional branch resulting in faster kinetics that are likely to be associated with more rapid dark adaptation. This could be advantageous in freshwater due to the redshifted spectrum and relatively narrow interface and frequent transitions between bright and dim-light environments. This study is the first to experimentally demonstrate that positively selected substitutions in ancestral visual pigments alter protein function to freshwater visual environments following a transition from an ancestrally marine state and provides insight into the molecular mechanisms underlying some of the physiological changes associated with this major habitat transition.
Collapse
Affiliation(s)
- Alexander Van Nynatten
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada
| | - Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nathan R Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Hall C, Camilli S, Dwaah H, Kornegay B, Lacy C, Hill MS, Hill AL. Freshwater sponge hosts and their green algae symbionts: a tractable model to understand intracellular symbiosis. PeerJ 2021; 9:e10654. [PMID: 33614268 PMCID: PMC7882143 DOI: 10.7717/peerj.10654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
In many freshwater habitats, green algae form intracellular symbioses with a variety of heterotrophic host taxa including several species of freshwater sponge. These sponges perform important ecological roles in their habitats, and the poriferan:green algae partnerships offers unique opportunities to study the evolutionary origins and ecological persistence of endosymbioses. We examined the association between Ephydatia muelleri and its chlorophyte partner to identify features of host cellular and genetic responses to the presence of intracellular algal partners. Chlorella-like green algal symbionts were isolated from field-collected adult E. muelleri tissue harboring algae. The sponge-derived algae were successfully cultured and subsequently used to reinfect aposymbiotic E. muelleri tissue. We used confocal microscopy to follow the fate of the sponge-derived algae after inoculating algae-free E. muelleri grown from gemmules to show temporal patterns of symbiont location within host tissue. We also infected aposymbiotic E. muelleri with sponge-derived algae, and performed RNASeq to study differential expression patterns in the host relative to symbiotic states. We compare and contrast our findings with work in other systems (e.g., endosymbiotic Hydra) to explore possible conserved evolutionary pathways that may lead to stable mutualistic endosymbioses. Our work demonstrates that freshwater sponges offer many tractable qualities to study features of intracellular occupancy and thus meet criteria desired for a model system.
Collapse
Affiliation(s)
- Chelsea Hall
- Biology, University of Richmond, Richmond, VA, United States of America.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sara Camilli
- Biology, University of Richmond, Richmond, VA, United States of America.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States of America
| | - Henry Dwaah
- Biology, University of Richmond, Richmond, VA, United States of America
| | - Benjamin Kornegay
- Biology, University of Richmond, Richmond, VA, United States of America
| | - Christie Lacy
- Biology, University of Richmond, Richmond, VA, United States of America
| | - Malcolm S Hill
- Biology, University of Richmond, Richmond, VA, United States of America.,Biology, Bates College, Lewiston, ME, United States of America
| | - April L Hill
- Biology, University of Richmond, Richmond, VA, United States of America.,Biology, Bates College, Lewiston, ME, United States of America
| |
Collapse
|
15
|
Kenny NJ, Itskovich VB. Phylogenomic inference of the interrelationships of Lake Baikal sponges. SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1827077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nathan J. Kenny
- Life Sciences, The Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
- Faculty of Health and Life Sciences, Oxford Brookes, Oxford, OX3 0BP, UK
| | - Valeria B. Itskovich
- Limnological Institute, Siberian Branch of the Russian Academy of Science, Irkutsk, 664033, Russia
| |
Collapse
|
16
|
Sackton TB. Studying Natural Selection in the Era of Ubiquitous Genomes. Trends Genet 2020; 36:792-803. [DOI: 10.1016/j.tig.2020.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/15/2023]
|
17
|
Kenny NJ, Francis WR, Rivera-Vicéns RE, Juravel K, de Mendoza A, Díez-Vives C, Lister R, Bezares-Calderón LA, Grombacher L, Roller M, Barlow LD, Camilli S, Ryan JF, Wörheide G, Hill AL, Riesgo A, Leys SP. Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri. Nat Commun 2020; 11:3676. [PMID: 32719321 PMCID: PMC7385117 DOI: 10.1038/s41467-020-17397-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022] Open
Abstract
The genomes of non-bilaterian metazoans are key to understanding the molecular basis of early animal evolution. However, a full comprehension of how animal-specific traits, such as nervous systems, arose is hindered by the scarcity and fragmented nature of genomes from key taxa, such as Porifera. Ephydatia muelleri is a freshwater sponge found across the northern hemisphere. Here, we present its 326 Mb genome, assembled to high contiguity (N50: 9.88 Mb) with 23 chromosomes on 24 scaffolds. Our analyses reveal a metazoan-typical genome architecture, with highly shared synteny across Metazoa, and suggest that adaptation to the extreme temperatures and conditions found in freshwater often involves gene duplication. The pancontinental distribution and ready laboratory culture of E. muelleri make this a highly practical model system which, with RNAseq, DNA methylation and bacterial amplicon data spanning its development and range, allows exploration of genomic changes both within sponges and in early animal evolution.
Collapse
Affiliation(s)
- Nathan J Kenny
- Department of Life Sciences, The Natural History Museum, Cromwell Rd, London, SW7 5BD, UK. .,Faculty of Health and Life Sciences, Oxford Brookes, Oxford, OX3 0BP, UK.
| | - Warren R Francis
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Ramón E Rivera-Vicéns
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany
| | - Ksenia Juravel
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany
| | - Alex de Mendoza
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Cristina Díez-Vives
- Department of Life Sciences, The Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia
| | - Luis A Bezares-Calderón
- College of Life and Environmental Sciences, University of Exeter, Stocker Rd, Exeter, EX4 4QD, UK
| | - Lauren Grombacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Lael D Barlow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Sara Camilli
- Department of Biology, Bates College, Lewiston, ME, 04240, USA
| | - Joseph F Ryan
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL, 32080, USA
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany.,SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333, München, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany
| | - April L Hill
- Department of Biology, Bates College, Lewiston, ME, 04240, USA
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|