1
|
Mellor NJ, Webster TH, Byrne H, Williams AS, Edwards T, DeNardo DF, Wilson MA, Kusumi K, Dolby GA. Divergence in Regulatory Regions and Gene Duplications May Underlie Chronobiological Adaptation in Desert Tortoises. Mol Ecol 2025; 34:e17600. [PMID: 39624910 PMCID: PMC11774117 DOI: 10.1111/mec.17600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Many cellular processes and organismal behaviours are time-dependent, and asynchrony of these phenomena can facilitate speciation through reinforcement mechanisms. The Mojave and Sonoran desert tortoises (Gopherus agassizii and G. morafkai respectively) reside in adjoining deserts with distinct seasonal rainfall patterns and they exhibit asynchronous winter brumation and reproductive behaviours. We used whole genome sequencing of 21 individuals from the two tortoise species and an outgroup to understand genes potentially underlying these characteristics. Genes within the most diverged 1% of the genome (FST ≥ 0.63) with putatively functional variation showed extensive divergence in regulatory elements, particularly promoter regions. Such genes related to UV nucleotide excision repair, mitonuclear and homeostasis functions. Genes mediating chronobiological (cell cycle, circadian and circannual) processes were also among the most highly diverged regions (e.g., XPA and ZFHX3). Putative promoter variants had significant enrichment of genes related to regulatory machinery (ARC-Mediator complex), suggesting that transcriptional cascades driven by regulatory divergence may underlie the behavioural differences between these species, leading to asynchrony-based prezygotic isolation. Further investigation revealed extensive expansion of respiratory and intestinal mucins (MUC5B and MUC5AC) within Gopherus, particularly G. morafkai. This expansion could be a xeric-adaptation to water retention and/or contribute to differential Mycoplasma agassizii infection rates between the two species, as mucins help clear inhaled dust and bacterial. Overall, results highlight the diverse array of genetic changes underlying divergence, adaptation and reinforcement during speciation.
Collapse
Affiliation(s)
- N. Jade Mellor
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City, Utah
| | - Avery S. Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Taylor Edwards
- Arizona Molecular Clinical Core, University of Arizona, Tucson, Arizona 85721
| | - Dale F. DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Greer A. Dolby
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
2
|
Ahi EP, Singh P. Emerging Orchestrator of Ecological Adaptation: m 6A Regulation of Post-Transcriptional Mechanisms. Mol Ecol 2024:e17545. [PMID: 39367666 DOI: 10.1111/mec.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
Genetic mechanisms have been at the forefront of our exploration into the substrate of adaptive evolution and phenotypic diversification. However, genetic variation only accounts for a fraction of phenotypic variation. In the last decade, the significance of RNA modification mechanisms has become more apparent in the context of organismal adaptation to rapidly changing environments. RNA m6A methylation, the most abundant form of RNA modification, is emerging as a potentially significant player in various biological processes. Despite its fundamental function to regulate other major post-transcriptional mechanisms such as microRNA and alternative splicing, its role in ecology and evolution has been understudied. This review highlights the potential importance of m6A RNA methylation in ecological adaptation, emphasising the need for further research, especially in natural systems. We focus on how m6A not only affects mRNA fate but also influences miRNA-mediated gene regulation and alternative splicing, potentially contributing to organismal adaptation. The aim of this review is to synthesise key background information to enhance our understanding of m6A mechanisms driving species survival in dynamic environments and motivate future research into the dynamics of adaptive RNA methylation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Pooja Singh
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| |
Collapse
|
3
|
Leal-Cardín M, Bracamonte SE, Aldegunde J, Magalhaes IS, Ornelas-García CP, Barluenga M. Signatures of convergence in Neotropical cichlid fish. Mol Ecol 2024; 33:e17524. [PMID: 39279721 DOI: 10.1111/mec.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
Convergent evolution of similar phenotypes suggests some predictability in the evolutionary trajectories of organisms, due to strong and repeated selective pressures, and/or developmental constraints. In adaptive radiations, particularly in cichlid fish radiations, convergent phenotypes are commonly found within and across geographical settings. Cichlids show major repeated axes of morphological diversification. Recurrent changes in body patterns reveal adaption to alternative habitats, and modifications of the trophic apparatus respond to the exploitation of different food resources. Here we compare morphologically and genetically two Neotropical cichlid assemblages, the Mexican desert cichlid and the Nicaraguan Midas cichlid, with similar polymorphic body and trophic adaptations despite their independent evolution. We found a common morphological axis of differentiation in trophic structures in both cichlid radiations, but two different axes of differentiation in body shape, defining two alternative limnetic body patterns. Adaptation to limnetic habitats implied regulation of immune functions in the Midas cichlid, while morphogenesis and metabolic functions in the desert cichlid. Convergent phenotypic adaptions could be associated to divergent gene regulation.
Collapse
Affiliation(s)
- Mariana Leal-Cardín
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- University of Alcalá de Henares, Madrid, Spain
| | - Seraina E Bracamonte
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Javier Aldegunde
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Isabel S Magalhaes
- School of Life and Health Sciences, Centre for Integrated Research in Life and Health Sciences, University of Roehampton, London, UK
| | - Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de Mexico, México City, Mexico
| | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
4
|
Li Q, Wu J, Mao X. The roles of different gene expression regulators in acoustic variation in the intermediate horseshoe bat revealed by long-read and short-read RNA sequencing data. Curr Zool 2024; 70:575-588. [PMID: 39463690 PMCID: PMC11502156 DOI: 10.1093/cz/zoad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2024] Open
Abstract
Gene expression changes contribute greatly to phenotypic variations in nature. Studying patterns of regulators of gene expression is important to fully understand the molecular mechanism underlying phenotypic variations. In horseshoe bats, the cochleae are finely tuned to echoes of call frequency. Here, using 2 recently diverged subspecies of the intermediate horseshoe bat (Rhinolophus affinis hainanus and R. a. himalayanus) with great acoustic variations as the system, we aim to explore relative roles of different regulators of gene expression (differential gene expression, alternative splicing (AS) and long non-coding RNAs (lncRNAs)) in phenotypic variation with a combination of Illumina short-read and Nanopore long-read RNA-seq data from the cochlea. Compared to R. a. hainanus, R. a. himalayanus exhibited much more upregulated differentially expressed genes (DEGs) and multiple of them may play important roles in the maintenance and damage repair of auditory hair cells. We identified 411 differentially expressed lncRNAs and their target DEGs upregulated in R. a. himalayanus were also mainly involved in a protective mechanism for auditory hair cells. Using 3 different methods of AS analysis, we identified several candidate alternatively spliced genes (ASGs) that expressed different isoforms which may be associated with acoustic divergence of the 2 subspecies. We observed significantly less overlap than expected between DEGs and ASGs, supporting complementary roles of differential gene expression and AS in generating phenotypic variations. Overall, our study highlights the importance of a combination of short-read and long-read RNA-seq data in examining the regulation of gene expression changes responsible for phenotypic variations.
Collapse
Affiliation(s)
- Qianqian Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Jianyu Wu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Sarkies P, Westoby J, Kilner RM, Mashoodh R. Gene body methylation evolves during the sustained loss of parental care in the burying beetle. Nat Commun 2024; 15:6606. [PMID: 39098855 PMCID: PMC11298552 DOI: 10.1038/s41467-024-50359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Epigenetic modifications, such as 5-methylcytosine (5mC), can sometimes be transmitted between generations, provoking speculation that epigenetic changes could play a role in adaptation and evolution. Here, we use experimental evolution to investigate how 5mC levels evolve in populations of biparental insect (Nicrophorus vespilloides) derived from a wild source population and maintained independently under different regimes of parental care in the lab. We show that 5mC levels in the transcribed regions of genes (gene bodies) diverge between populations that have been exposed to different levels of care for 30 generations. These changes in 5mC do not reflect changes in the levels of gene expression. However, the accumulation of 5mC within genes between populations is associated with reduced variability in gene expression within populations. Our results suggest that evolved change in 5mC could contribute to phenotypic evolution by influencing variability in gene expression in invertebrates.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Rahia Mashoodh
- Department of Zoology, University of Cambridge, Cambridge, UK.
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
6
|
Heinrichs-Caldas W, Ikert H, Almeida-Val VMF, Craig PM. Sex matters: Gamete-specific contribution of microRNA following parental exposure to hypoxia in zebrafish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101090. [PMID: 37267726 DOI: 10.1016/j.cbd.2023.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
Oxygen availability varies among aquatic environments, and oxygen concentration has been demonstrated to drive behavioral, metabolic, and genetic adaptations in numerous aquatic species. MicroRNAs (miRNAs) are epigenetic modulators that act at the interface of the environment and the transcriptome and are known to drive plastic responses following environmental stressors. An area of miRNA that has remained underexplored is the sex specific action of miRNAs following hypoxia exposure and its effects as gene expression regulator in fishes. This study aimed to identify differences in mRNA and miRNA expression in the F1 generation of zebrafish (Danio rerio) at 1 hpf after either F0 parental male or female were exposed to 2 weeks of continuous (45 %) hypoxia. In general, F1 embryos at 1 hpf demonstrated differences in mRNA and miRNAs expression related to the stressor and to the specific sex of the F0 that was exposed to hypoxia. Bioinformatic pathway analysis of predicted miRNA:mRNA relationships indicated responses in known hypoxia signaling and mitochondrial bioenergetic pathways. This research demonstrates the importance of examining the specific male and female contributions to phenotypic variation in subsequent generations and provides evidence that there is both maternal and paternal contribution of miRNA through eggs and sperm.
Collapse
Affiliation(s)
- Waldir Heinrichs-Caldas
- LEEM - Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Campus I, Manaus, Amazonas, Brazil.
| | - Heather Ikert
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| | - Vera Maria Fonseca Almeida-Val
- LEEM - Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Campus I, Manaus, Amazonas, Brazil
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
7
|
Jiménez-Ruiz CA, de la Herrán R, Robles F, Navajas-Pérez R, Cross I, Rebordinos L, Ruiz-Rejón C. miR-430 microRNA Family in Fishes: Molecular Characterization and Evolution. Animals (Basel) 2023; 13:2399. [PMID: 37570208 PMCID: PMC10417697 DOI: 10.3390/ani13152399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
The miR-430 microRNA family has been described in multiple fish species as one of the first microRNAs expressed by the zygote. It has been suggested that this family is implicated in maternal mRNA elimination, but may also play a role in steroidogenesis, sexual differentiation, and flatfish metamorphosis. The miR-430 sequences have been found in multiple-copy tandem clusters but evidence of their conservation outside of teleost fishes is scarce. In the present study, we have characterized the tandem repeats organization of these microRNAs in different fish species, both model and of interest in aquaculture. A phylogenetic analysis of this family has allowed us to identify that the miR-430 duplication, which took place before the Chondrostei and Neopterygii groups' divergence, has resulted in three variants ("a", "b", and "c"). According to our data, variant "b" is the most closely related to the ancestral sequence. Furthermore, we have detected isolated instances of the miR-430 repeat subunit in some species, which suggests that this microRNA family may be affected by DNA rearrangements. This study provides new data about the abundance, variability, and organization of the miR-430 family in fishes.
Collapse
Affiliation(s)
- Claudio A. Jiménez-Ruiz
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Ismael Cross
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, 11510 Cádiz, Spain
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, 11510 Cádiz, Spain
| | - Carmelo Ruiz-Rejón
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
8
|
Santos ME, Lopes JF, Kratochwil CF. East African cichlid fishes. EvoDevo 2023; 14:1. [PMID: 36604760 PMCID: PMC9814215 DOI: 10.1186/s13227-022-00205-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolution, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary patterns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes cichlid fishes a fascinating research system.
Collapse
Affiliation(s)
- M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - João F Lopes
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
9
|
Vernaz G, Hudson AG, Santos ME, Fischer B, Carruthers M, Shechonge AH, Gabagambi NP, Tyers AM, Ngatunga BP, Malinsky M, Durbin R, Turner GF, Genner MJ, Miska EA. Epigenetic divergence during early stages of speciation in an African crater lake cichlid fish. Nat Ecol Evol 2022; 6:1940-1951. [PMID: 36266459 PMCID: PMC9715432 DOI: 10.1038/s41559-022-01894-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/26/2022] [Indexed: 12/15/2022]
Abstract
Epigenetic variation can alter transcription and promote phenotypic divergence between populations facing different environmental challenges. Here, we assess the epigenetic basis of diversification during the early stages of speciation. Specifically, we focus on the extent and functional relevance of DNA methylome divergence in the very young radiation of Astatotilapia calliptera in crater Lake Masoko, southern Tanzania. Our study focuses on two lake ecomorphs that diverged approximately 1,000 years ago and a population in the nearby river from which they separated approximately 10,000 years ago. The two lake ecomorphs show no fixed genetic differentiation, yet are characterized by different morphologies, depth preferences and diets. We report extensive genome-wide methylome divergence between the two lake ecomorphs, and between the lake and river populations, linked to key biological processes and associated with altered transcriptional activity of ecologically relevant genes. Such genes differing between lake ecomorphs include those involved in steroid metabolism, hemoglobin composition and erythropoiesis, consistent with their divergent habitat occupancy. Using a common-garden experiment, we found that global methylation profiles are often rapidly remodeled across generations but ecomorph-specific differences can be inherited. Collectively, our study suggests an epigenetic contribution to the early stages of vertebrate speciation.
Collapse
Affiliation(s)
- Grégoire Vernaz
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Alan G Hudson
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | - Alexandra M Tyers
- School of Natural Sciences, Bangor University, Bangor, UK
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Milan Malinsky
- Wellcome Sanger Institute, Hinxton, UK
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Eric A Miska
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
10
|
Mehta TK, Penso-Dolfin L, Nash W, Roy S, Di-Palma F, Haerty W. Evolution of miRNA-Binding Sites and Regulatory Networks in Cichlids. Mol Biol Evol 2022; 39:msac146. [PMID: 35748824 PMCID: PMC9260339 DOI: 10.1093/molbev/msac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The divergence of regulatory regions and gene regulatory network (GRN) rewiring is a key driver of cichlid phenotypic diversity. However, the contribution of miRNA-binding site turnover has yet to be linked to GRN evolution across cichlids. Here, we extend our previous studies by analyzing the selective constraints driving evolution of miRNA and transcription factor (TF)-binding sites of target genes, to infer instances of cichlid GRN rewiring associated with regulatory binding site turnover. Comparative analyses identified increased species-specific networks that are functionally associated to traits of cichlid phenotypic diversity. The evolutionary rewiring is associated with differential models of miRNA- and TF-binding site turnover, driven by a high proportion of fast-evolving polymorphic sites in adaptive trait genes compared with subsets of random genes. Positive selection acting upon discrete mutations in these regulatory regions is likely to be an important mechanism in rewiring GRNs in rapidly radiating cichlids. Regulatory variants of functionally associated miRNA- and TF-binding sites of visual opsin genes differentially segregate according to phylogeny and ecology of Lake Malawi species, identifying both rewired, for example, clade-specific and conserved network motifs of adaptive trait associated GRNs. Our approach revealed several novel candidate regulators, regulatory regions, and three-node motifs across cichlid genomes with previously reported associations to known adaptive evolutionary traits.
Collapse
Affiliation(s)
- Tarang K Mehta
- Regulatory and Systems Genomics, Earlham Institute (EI), Norwich, UK
| | - Luca Penso-Dolfin
- Bioinformatics Department, Silence Therapeutics GmbH, Robert-Rössle-Straße 10, Germany
| | - Will Nash
- Regulatory and Systems Genomics, Earlham Institute (EI), Norwich, UK
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, UW Madison, Madison, WI, USA
- Roy Lab, Wisconsin Institute for Discovery (WID), Madison, WI, USA
- Department of Computer Sciences, UW Madison, Madison, WI, USA
| | - Federica Di-Palma
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Research and Innovation, Genome British Columbia, Vancouver, Canada
| | - Wilfried Haerty
- Regulatory and Systems Genomics, Earlham Institute (EI), Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
11
|
Li Q, Chen W, Mao X. Characterization of microRNA and gene expression in the cochlea of an echolocating bat ( Rhinolophus affinis). Ecol Evol 2022; 12:e9025. [PMID: 35784079 PMCID: PMC9217883 DOI: 10.1002/ece3.9025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and play key roles in many biological processes, such as development and response to multiple stresses. However, little is known about their roles in generating novel phenotypes and phenotypic variation during the course of animal evolution. Here, we, for the first time, characterized the miRNAs of the cochlea in an echolocating bat (Rhinolophus affinis). We sampled eight individuals from two R. affinis subspecies with significant echolocation call frequency differences. We identified 365 miRNAs and 121 of them were novel. By searching sequences of these miRNAs precursors in multiple high-quality mammal genomes, we found one specific miRNA shared by all echolocating bats but not present in all other nonecholocating mammals. The targeted genes of this miRNA included several known hearing genes (e.g., KCNQ4 and GJB6). Together with the matched mRNA-seq data, we identified 1766 differentially expressed genes (DEGs) between the two subspecies and 555 of them were negatively regulated by differentially expressed miRNAs (DEMs). We found that almost half of known hearing genes in the list of all DEGs were regulated negatively by DEMs, suggesting an important role of miRNAs in call frequency variation of the two subspecies. These targeted DEGs included several important hearing genes (e.g., Piezo1, Piezo2, and CDH23) that have been shown to be important in ultrasonic hearing of echolocating mammals.
Collapse
Affiliation(s)
- Qianqian Li
- School of Ecological and Environmental Sciences, Institute of Eco‐Chongming (IEC)East China Normal UniversityShanghaiChina
| | - Wenli Chen
- School of Ecological and Environmental Sciences, Institute of Eco‐Chongming (IEC)East China Normal UniversityShanghaiChina
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, Institute of Eco‐Chongming (IEC)East China Normal UniversityShanghaiChina
| |
Collapse
|
12
|
Desvignes T, Bardou P, Montfort J, Sydes J, Guyomar C, George S, Postlethwait JH, Bobe J. FishmiRNA: An evolutionarily supported microRNA annotation and expression database for ray-finned fishes. Mol Biol Evol 2022; 39:6502288. [PMID: 35020925 PMCID: PMC8826519 DOI: 10.1093/molbev/msac004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
microRNAs are important post-transcriptional regulators of gene expression involved in countless biological processes and are widely studied across metazoans. While miRNA research continues to grow, the large community of fish miRNA researchers lacks exhaustive resources consistent among species. To fill this gap, we developed FishmiRNA, an evolutionarily supported microRNA annotation and expression database for ray-finned fishes: www.fishmirna.org. The self-explanatory database contains detailed, manually-curated miRNA annotations with orthology relationships rigorously established by sequence similarity and conserved syntenies, and expression data provided for each detected mature miRNA. In just few clicks, users can download the annotation and expression database in several convenient formats either in its entirety or a subset. Simple filters and BLAST search options also permit the simultaneous exploration and visual comparison of expression data for up to any ten mature miRNAs across species and organs. FishmiRNA was specifically designed for ease of use to reach a wide audience.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Philippe Bardou
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, F-31326, France
| | | | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Cervin Guyomar
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, F-31326, France
| | - Simon George
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
13
|
Daane JM, William Detrich H. Adaptations and Diversity of Antarctic Fishes: A Genomic Perspective. Annu Rev Anim Biosci 2021; 10:39-62. [PMID: 34748709 DOI: 10.1146/annurev-animal-081221-064325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antarctic notothenioid fishes are the classic example of vertebrate adaptive radiation in a marine environment. Notothenioids diversified from a single common ancestor ∼25 Mya to more than 140 species today, and they represent ∼90% of fish biomass on the continental shelf of Antarctica. As they diversified in the cold Southern Ocean, notothenioids evolved numerous traits, including osteopenia, anemia, cardiomegaly, dyslipidemia, and aglomerular kidneys, that are beneficial or tolerated in their environment but are pathological in humans. Thus, notothenioids are models for understanding adaptive radiations, physiological and biochemical adaptations to extreme environments, and genetic mechanisms of human disease. Since 2014, 16 notothenioid genomes have been published, which enable a first-pass holistic analysis of the notothenioid radiation and the genetic underpinnings of novel notothenioid traits. Here, we review the notothenioid radiation from a genomic perspective and integrate our insights with recent observations from other fish radiations. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| |
Collapse
|
14
|
Desvignes T, Sydes J, Montfort J, Bobe J, Postlethwait JH. Evolution after Whole-Genome Duplication: Teleost MicroRNAs. Mol Biol Evol 2021; 38:3308-3331. [PMID: 33871629 PMCID: PMC8321539 DOI: 10.1093/molbev/msab105] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene expression regulators implicated in many biological processes, but we lack a global understanding of how miRNA genes evolve and contribute to developmental canalization and phenotypic diversification. Whole-genome duplication events likely provide a substrate for species divergence and phenotypic change by increasing gene numbers and relaxing evolutionary pressures. To understand the consequences of genome duplication on miRNA evolution, we studied miRNA genes following the teleost genome duplication (TGD). Analysis of miRNA genes in four teleosts and in spotted gar, whose lineage diverged before the TGD, revealed that miRNA genes were retained in ohnologous pairs more frequently than protein-coding genes, and that gene losses occurred rapidly after the TGD. Genomic context influenced retention rates, with clustered miRNA genes retained more often than nonclustered miRNA genes and intergenic miRNA genes retained more frequently than intragenic miRNA genes, which often shared the evolutionary fate of their protein-coding host. Expression analyses revealed both conserved and divergent expression patterns across species in line with miRNA functions in phenotypic canalization and diversification, respectively. Finally, major strands of miRNA genes experienced stronger purifying selection, especially in their seeds and 3'-complementary regions, compared with minor strands, which nonetheless also displayed evolutionary features compatible with constrained function. This study provides the first genome-wide, multispecies analysis of the mechanisms influencing metazoan miRNA evolution after whole-genome duplication.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | | | |
Collapse
|
15
|
Fruciano C, Franchini P, Jones JC. Capturing the rapidly evolving study of adaptation. J Evol Biol 2021; 34:856-865. [PMID: 34145685 DOI: 10.1111/jeb.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Research on the genomics of adaptation is rapidly changing. In the last few decades, progress in this area has been driven by methodological advances, not only in the way increasingly large amounts of molecular data are generated (e.g. with high-throughput sequencing), but also in the way these data are analysed. This includes a growing appreciation and quantitative treatment of covariation among units within the same data type (e.g. genes) or across data types (e.g. genes and phenotypes). The development and adoption of more and more integrative tools have resulted in richer and more interesting empirical work. This special issue - comprising methodological, empirical, and review papers - aims to capture a 'snapshot' of this rapidly evolving field. We discuss in particular three important themes in the study of adaptation: the genetic architecture of adaptive variation, protein-coding and regulatory changes, and parallel evolution. We highlight how more traditional key themes in the study of genetic architecture (e.g. the number of loci underlying adaptive traits and the distribution of their effects) are now being complemented by other factors (e.g. how patterns of linkage and number of loci interact to affect the ability to adapt). Similarly, apart from addressing the relative importance of protein-coding and regulatory changes, we now have the tools to look in-depth at specific types of regulatory variation to gain a clearer picture of regulatory networks. Finally, parallel evolution has always been central to the study of adaptation, but now we are often able to address the question of whether - and to what extent - parallelism at the organismal or phenotypic level is matched by parallelism at the genetic level. Perhaps most importantly, we can now determine what mechanisms are driving parallelism (or lack thereof) across levels of biological organization. All these recent methodological developments open up new directions for future studies of adaptive changes across traits, levels of biological organization, demographic contexts and time scales.
Collapse
Affiliation(s)
- Carmelo Fruciano
- National Research Council - Institute of Marine Biological Resources and Biotechnologies, Messina, Italy.,Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, PSL Université Paris, Paris, France.,School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julia C Jones
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Nascimento-Oliveira JI, Fantinatti BEA, Wolf IR, Cardoso AL, Ramos E, Rieder N, de Oliveira R, Martins C. Differential expression of miRNAs in the presence of B chromosome in the cichlid fish Astatotilapia latifasciata. BMC Genomics 2021; 22:344. [PMID: 33980143 PMCID: PMC8117508 DOI: 10.1186/s12864-021-07651-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND B chromosomes (Bs) are extra elements observed in diverse eukaryotes, including animals, plants and fungi. Although Bs were first identified a century ago and have been studied in hundreds of species, their biology is still enigmatic. Recent advances in omics and big data technologies are revolutionizing the B biology field. These advances allow analyses of DNA, RNA, proteins and the construction of interactive networks for understanding the B composition and behavior in the cell. Several genes have been detected on the B chromosomes, although the interaction of B sequences and the normal genome remains poorly understood. RESULTS We identified 727 miRNA precursors in the A. latifasciata genome, 66% which were novel predicted sequences that had not been identified before. We were able to report the A. latifasciata-specific miRNAs and common miRNAs identified in other fish species. For the samples carrying the B chromosome (B+), we identified 104 differentially expressed (DE) miRNAs that are down or upregulated compared to samples without B chromosome (B-) (p < 0.05). These miRNAs share common targets in the brain, muscle and gonads. These targets were used to construct a protein-protein-miRNA network showing the high interaction between the targets of differentially expressed miRNAs in the B+ chromosome samples. Among the DE-miRNA targets there are protein-coding genes reported for the B chromosome that are present in the protein-protein-miRNA network. Additionally, Gene Ontology (GO) terms related to nuclear matrix organization and response to stimulus are exclusive to DE miRNA targets of B+ samples. CONCLUSIONS This study is the first to report the connection of B chromosomes and miRNAs in a vertebrate species. We observed that the B chromosome impacts the miRNAs expression in several tissues and these miRNAs target several mRNAs involved with important biological processes.
Collapse
Affiliation(s)
- Jordana Inácio Nascimento-Oliveira
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | | | - Ivan Rodrigo Wolf
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Erica Ramos
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Nathalie Rieder
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
| | - Rogerio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
17
|
Xiong P, Hulsey CD, Fruciano C, Wong WY, Nater A, Kautt AF, Simakov O, Pippel M, Kuraku S, Meyer A, Franchini P. The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Mol Ecol 2021; 30:955-972. [PMID: 33305470 PMCID: PMC8607476 DOI: 10.1111/mec.15774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Factors ranging from ecological opportunity to genome composition might explain why only some lineages form adaptive radiations. While being rare, particular systems can provide natural experiments within an identical ecological setting where species numbers and phenotypic divergence in two closely related lineages are notably different. We investigated one such natural experiment using two de novo assembled and 40 resequenced genomes and asked why two closely related Neotropical cichlid fish lineages, the Amphilophus citrinellus species complex (Midas cichlids; radiating) and Archocentrus centrarchus (Flyer cichlid; nonradiating), have resulted in such disparate evolutionary outcomes. Although both lineages inhabit many of the same Nicaraguan lakes, whole-genome inferred demography suggests that priority effects are not likely to be the cause of the dissimilarities. Also, genome-wide levels of selection, transposable element dynamics, gene family expansion, major chromosomal rearrangements and the number of genes under positive selection were not markedly different between the two lineages. To more finely investigate particular subsets of the genome that have undergone adaptive divergence in Midas cichlids, we also examined if there was evidence for 'molecular pre-adaptation' in regions identified by QTL mapping of repeatedly diverging adaptive traits. Although most of our analyses failed to pinpoint substantial genomic differences, we did identify functional categories containing many genes under positive selection that provide candidates for future studies on the propensity of Midas cichlids to radiate. Our results point to a disproportionate role of local, rather than genome-wide factors underlying the propensity for these cichlid fishes to adaptively radiate.
Collapse
Affiliation(s)
- Peiwen Xiong
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - C. Darrin Hulsey
- Department of BiologyUniversity of KonstanzKonstanzGermany
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Carmelo Fruciano
- Department of BiologyUniversity of KonstanzKonstanzGermany
- National Research Council (CNR) – IRBIMMessinaItaly
| | - Wai Y. Wong
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | | | - Andreas F. Kautt
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Oleg Simakov
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Shigehiro Kuraku
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Axel Meyer
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | |
Collapse
|
18
|
Kelley JL, Desvignes T, McGowan KL, Perez M, Rodriguez LA, Brown AP, Culumber Z, Tobler M. microRNA expression variation as a potential molecular mechanism contributing to adaptation to hydrogen sulphide. J Evol Biol 2020; 34:977-988. [PMID: 33124163 DOI: 10.1111/jeb.13727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022]
Abstract
microRNAs (miRNAs) are post-transcriptional regulators of gene expression and can play an important role in modulating organismal development and physiology in response to environmental stress. However, the role of miRNAs in mediating adaptation to diverse environments in natural study systems remains largely unexplored. Here, we characterized miRNAs and their expression in Poecilia mexicana, a species of small fish that inhabits both normal streams and extreme environments in the form of springs rich in toxic hydrogen sulphide (H2 S). We found that P. mexicana has a similar number of miRNA genes as other teleosts. In addition, we identified a large population of mature miRNAs that were differentially expressed between locally adapted populations in contrasting habitats, indicating that miRNAs may contribute to P. mexicana adaptation to sulphidic environments. In silico identification of differentially expressed miRNA-mRNA pairs revealed, in the sulphidic environment, the downregulation of miRNAs predicted to target mRNAs involved in sulphide detoxification and cellular homeostasis, which are pathways essential for life in H2 S-rich springs. In addition, we found that predicted targets of upregulated miRNAs act in the mitochondria (16.6% of predicted annotated targets), which is the main site of H2 S toxicity and detoxification, possibly modulating mitochondrial function. Together, the differential regulation of miRNAs between these natural populations suggests that miRNAs may be involved in H2 S adaptation by promoting functions needed for survival and reducing functions affected by H2 S. This study lays the groundwork for further research to directly demonstrate the role of miRNAs in adaptation to H2 S. Overall, this study provides a critical stepping-stone towards a comprehensive understanding of the regulatory mechanisms underlying the adaptive variation in gene expression in a natural system.
Collapse
Affiliation(s)
- Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Kerry L McGowan
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Marcos Perez
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Anthony P Brown
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Zach Culumber
- Biological Sciences Department, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
19
|
Hulsey CD, Cohen KE, Johanson Z, Karagic N, Meyer A, Miller CT, Sadier A, Summers AP, Fraser GJ. Grand Challenges in Comparative Tooth Biology. Integr Comp Biol 2020; 60:563-580. [PMID: 32533826 PMCID: PMC7821850 DOI: 10.1093/icb/icaa038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Teeth are a model system for integrating developmental genomics, functional morphology, and evolution. We are at the cusp of being able to address many open issues in comparative tooth biology and we outline several of these newly tractable and exciting research directions. Like never before, technological advances and methodological approaches are allowing us to investigate the developmental machinery of vertebrates and discover both conserved and excitingly novel mechanisms of diversification. Additionally, studies of the great diversity of soft tissues, replacement teeth, and non-trophic functions of teeth are providing new insights into dental diversity. Finally, we highlight several emerging model groups of organisms that are at the forefront of increasing our appreciation of the mechanisms underlying tooth diversification.
Collapse
Affiliation(s)
- C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Karly E Cohen
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London SW7 5HD, UK
| | - Nidal Karagic
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexa Sadier
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA 90032, USA
| | - Adam P Summers
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, Department of Biology, University of Washington, WA 98195, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Kapheim KM, Jones BM, Søvik E, Stolle E, Waterhouse RM, Bloch G, Ben-Shahar Y. Brain microRNAs among social and solitary bees. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200517. [PMID: 32874647 PMCID: PMC7428247 DOI: 10.1098/rsos.200517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Evolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality. However, deep sequencing of small RNAs in six bee species revealed a substantial proportion (20-35%) of detected miRNAs had lineage-specific expression in the brain, 24-72% of which did not have homologues in other species. Lineage-specific miRNAs disproportionately target lineage-specific genes, and have lower expression levels than shared miRNAs. The predicted targets of lineage-specific miRNAs are not enriched for genes with caste-biased expression or genes under positive selection in social species. Together, these results suggest that novel miRNAs may coevolve with novel genes, and thus contribute to lineage-specific patterns of evolution in bees, but do not appear to have significant influence on social evolution. Our analyses also support the hypothesis that many new miRNAs are purged by selection due to deleterious effects on mRNA targets, and suggest genome structure is not as influential in regulating bee miRNA evolution as has been shown for mammalian miRNAs.
Collapse
Affiliation(s)
- Karen M. Kapheim
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
- Author for correspondence: Karen M. Kapheim e-mail:
| | - Beryl M. Jones
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Eirik Søvik
- Department of Science and Mathematics, Volda University College, 6100 Volda, Norway
| | - Eckart Stolle
- Centre of Molecular Biodiversity Research, Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
21
|
Cropp R, Norbury J. The potential for coral reefs to adapt to a changing climate - an eco-evolutionary modelling perspective. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, Zhang R, Zhu J, Ren Y, Tan Y, Qin C, Li Y, Li X, Chen Y, Zhu F. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 2020; 48:D1031-D1041. [PMID: 31691823 PMCID: PMC7145558 DOI: 10.1093/nar/gkz981] [Citation(s) in RCA: 391] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge of therapeutic targets and early drug candidates is useful for improved drug discovery. In particular, information about target regulators and the patented therapeutic agents facilitates research regarding druggability, systems pharmacology, new trends, molecular landscapes, and the development of drug discovery tools. To complement other databases, we constructed the Therapeutic Target Database (TTD) with expanded information about (i) target-regulating microRNAs and transcription factors, (ii) target-interacting proteins, and (iii) patented agents and their targets (structures and experimental activity values if available), which can be conveniently retrieved and is further enriched with regulatory mechanisms or biochemical classes. We also updated the TTD with the recently released International Classification of Diseases ICD-11 codes and additional sets of successful, clinical trial, and literature-reported targets that emerged since the last update. TTD is accessible at http://bidd.nus.edu.sg/group/ttd/ttd.asp. In case of possible web connectivity issues, two mirror sites of TTD are also constructed (http://db.idrblab.org/ttd/ and http://db.idrblab.net/ttd/).
Collapse
Affiliation(s)
- Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Zhou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Ying Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Runyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxiang Ren
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore 117543, Singapore
| | - Yinghong Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoxu Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore 117543, Singapore
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|