1
|
Zhou N, Lv W, Chen L, Chen K, He Q, Xie G, Ma J, Cao Y, Zhang B, Zhou X. Jujuboside A Attenuates Polycystic Ovary Syndrome Based on Estrogen Metabolism Through Activating AhR-mediated CYP1A2 Expression. Reprod Sci 2024; 31:2234-2245. [PMID: 38499949 DOI: 10.1007/s43032-024-01511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. This study aimed to investigate the therapeutic effects and mechanism of Jujuboside A on PCOS using a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Estrogen and androgen homeostasis was evaluated in serum from both clinical samples and PCOS mice. The stages of the estrous cycle were determined based on vaginal cytology. The ovarian morphology was observed by stained with hematoxylin and eosin. Moreover, we analyzed protein expression of cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2) and aryl hydrocarbon receptor (AhR) in ovary and KGN cells. Molecular docking, immunofluorescence, and luciferase assay were performed to confirm the activation of AhR by Jujuboside A. Jujuboside A effectively alleviated the disturbance of estrogen homeostasis and restored ovarian function, leading to an improvement in the occurrence and progression of PCOS. Furthermore, the protective effect of JuA against PCOS was dependent on increased CYP1A2 levels regulated by AhR. Our findings suggest that Jujuboside A improves estrogen disorders and may be a potential therapeutic agent for the treatment of PCOS.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Wenqiang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Linna Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Kexin Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Qing He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Guangyan Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Jiachen Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yijuan Cao
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 199 South Jiefang Road, Xuzhou, 221004, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 199 South Jiefang Road, Xuzhou, 221004, China.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Serra L, Estienne A, Bongrani A, Ramé C, Caria G, Froger C, Jolivet C, Henriot A, Amalric L, Corbin E, Guérif F, Froment P, Dupont J. The epoxiconazole and tebuconazole fungicides impair granulosa cells functions partly through the aryl hydrocarbon receptor (AHR) signalling with contrasted effects in obese, normo-weight and polycystic ovarian syndrome (PCOS) patients. Toxicol Rep 2024; 12:65-81. [PMID: 38259722 PMCID: PMC10801249 DOI: 10.1016/j.toxrep.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS), frequently associated to obesity, is the main reproductive disorder in women in age to procreate. Some evidence suggests that pesticides can result in alterations of the female reproductive system, including polycystic ovary syndrome (PCOS). Here, we detected two fungicides, Tebuconazole (Tb) and Epoxiconazole (Epox) in the soils and waters of French area. Our hypothesis is that these two triazoles could be associated to the etiology of PCOS. We used the human KGN cell line and primary human granulosa cells (hGCs) from different group of patients: normal weight non PCOS (NW), normal weight PCOS (PCOS NW), obese (obese) and obese PCOS (PCOS obese). We exposed in vitro these cells to Tb and Epox from 0 up to 10 mM for 24 and 48 h and analysed cell viability and steroidogenesis. In hGCs NW, cell viability was reduced from 12.5 µM for Tb and 75 µM for Epox. In hGCs NW, Epox decreased progesterone (Pg) and estradiol (E2) secretions and inhibited STAR, HSD3B and CYP19A1 mRNA expressions from 25 µM and increased AHR mRNA expression from 75 µM. Tb exposure also reduced steroid secretion and STAR and CYP19A1 mRNA expressions and increased AHR mRNA expression but at cytotoxic concentrations. Silencing of AHR in KGN cells reduced inhibitory effects of Tb and Epox on steroid secretion. Tb and Epox exposure decreased more steroid secretion in hGCs from obese, PCOS NW and PCOS obese groups than in NW group. Moreover, we found a higher gene expression of AHR within these three groups. Taken together, both Epox and Tb reduced steroidogenesis in hGCs through partly AHR and Tb was more cytotoxic than Epox. These triazoles alter more strongly PCOS and/or obese hGCs suggesting that human with reproductive disorders are more sensitive to triazoles exposure.
Collapse
Affiliation(s)
- Loise Serra
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Alice Bongrani
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Christelle Ramé
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Giovanni Caria
- INRAE, Laboratoire d'Analyses des Sols, 273, rue de Cambrai, 62000 Arras, France
| | - Claire Froger
- INRAE Orléans - US 1106, Unité INFOSOL, Orléans, France
| | | | - Abel Henriot
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2, France
| | - Laurence Amalric
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2, France
| | - Emilie Corbin
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Fabrice Guérif
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, F-37044 Tours, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| |
Collapse
|
3
|
Gaspari L, Haouzi D, Gennetier A, Granes G, Soler A, Sultan C, Paris F, Hamamah S. Transgenerational Transmission of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Effects in Human Granulosa Cells: The Role of MicroRNAs. Int J Mol Sci 2024; 25:1144. [PMID: 38256218 PMCID: PMC10816780 DOI: 10.3390/ijms25021144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) might contribute to the increase in female-specific cancers in Western countries. 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) is considered the "prototypical toxicant" to study EDCs' effects on reproductive health. Epigenetic regulation by small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), is crucial for controlling cancer development. The aim of this study was to analyze transcriptional activity and sncRNA expression changes in the KGN cell line after acute (3 h) and chronic (72 h) exposure to 10 nM TCDD in order to determine whether sncRNAs' deregulation may contribute to transmitting TCDD effects to the subsequent cell generations (day 9 and day 14 after chronic exposure). Using Affymetrix GeneChip miRNA 4.0 arrays, 109 sncRNAs were found to be differentially expressed (fold change < -2 or >2; p-value < 0.05) between cells exposed or not (control) to TCDD for 3 h and 72 h and on day 9 and day 14 after chronic exposure. Ingenuity Pathway Analysis predicted that following the acute and chronic exposure of KGN cells, sncRNAs linked to cellular development, growth and proliferation were downregulated, and those linked to cancer promotion were upregulated on day 9 and day 14. These results indicated that TCDD-induced sncRNA dysregulation may have transgenerational cancer-promoting effects.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Delphine Haouzi
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Département de Biologie de la Reproduction et DPI (ART/PGD), Hôpital A. de Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| | - Aurélie Gennetier
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Gaby Granes
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Alexandra Soler
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Global ART Innovation Network (GAIN), 34295 Montpellier, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Samir Hamamah
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Département de Biologie de la Reproduction et DPI (ART/PGD), Hôpital A. de Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| |
Collapse
|
4
|
Perono GA, Petrik JJ, Thomas PJ, Holloway AC. The effects of polycyclic aromatic compounds (PACs) on mammalian ovarian function. Curr Res Toxicol 2022; 3:100070. [PMID: 35492299 PMCID: PMC9043394 DOI: 10.1016/j.crtox.2022.100070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/09/2022] Open
Abstract
Toxicity of polycyclic aromatic compounds (PACs) is limited to a subset of PACs. Exposure to these compounds impact major processes necessary for ovarian function. PAC exposure causes follicle loss and aberrant steroid production and angiogenesis. PAC exposure may increase the risk for impaired fertility and ovarian pathologies. The study of PACs as ovarian toxicants should include additional compounds.
Polycyclic aromatic compounds (PACs) are a broad class of contaminants ubiquitously present in the environment due to natural and anthropogenic activities. With increasing industrialization and reliance on petroleum worldwide, PACs are increasingly being detected in different environmental compartments. Previous studies have shown that PACs possess endocrine disruptive properties as these compounds often interfere with hormone signaling and function. In females, the ovary is largely responsible for regulating reproductive and endocrine function and thus, serves as a primary target for PAC-mediated toxicity. Perturbations in the signaling pathways that mediate ovarian folliculogenesis, steroidogenesis and angiogenesis can lead to adverse reproductive outcomes including polycystic ovary syndrome, premature ovarian insufficiency, and infertility. To date, the impact of PACs on ovarian function has focused predominantly on polycyclic aromatic hydrocarbons like benzo(a)pyrene, 3-methylcholanthrene and 7,12-dimethylbenz[a]anthracene. However, investigation into the impact of substituted PACs including halogenated, heterocyclic, and alkylated PACs on mammalian reproduction has been largely overlooked despite the fact that these compounds are found in higher abundance in free-ranging wildlife. This review aims to discuss current literature on the effects of PACs on the ovary in mammals, with a particular focus on folliculogenesis, steroidogenesis and angiogenesis, which are key processes necessary for proper ovarian functions.
Collapse
|
5
|
Sharma D, Rani P, Onteru SK, Roy P, Tyagi RK, Singh SP, Singh D. Reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay for detection of AhR receptor responsive xenobiotics. Toxicol Mech Methods 2021; 31:359-366. [PMID: 33563076 DOI: 10.1080/15376516.2021.1884923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dioxins are a group of highly toxic environmental persistent organic pollutants, which are lipophilic in nature. 2, 3, 7, 8- tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic representative of this class. TCDD causes several human health effects like endocrine disruption, carcinogenesis and reproductive toxicity mediated by aryl-hydrocarbon receptor. Current detection methods of dioxins like gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry etc. are costly and time consuming. Therefore, the present study aims to develop a relatively faster and cheaper technique called reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay to detect dioxins. Cultured granulosa cells used as a model system were treated with different doses (5, 10 and 15 pg/mL) of aryl hydrocarbon receptor (AhR)responsive xenobiotic, TCDD, in accordance with maximum residue limit values. Cells were treated for 6, 12 and 24 h, respectively to study the gene expression of TCDD receptor called AhR and AhR responsive genes, CYP1A1 and CYP1B1, in a dose and time dependent manner. All targeted genes expression significantly increased after 6 and 12 h by 1.3-8 folds. For the development of RT-LAMP assay, CYP1A1 gene was used with 6 h TCDD treatment. RT-LAMP assay was standardized with optimal color change at 30 min using 50 ng of cellular RNA. In all the cases, we could distinguish RT-LAMP-positive condition from one sample to another sample due to intensity of color. The method was also validated by spectrometric method. In conclusion, the developed method will be used to screen AhR receptor responsive xenobiotics by observing the color change in RT-LAMP assay like dioxin used in the present study.
Collapse
Affiliation(s)
- Deeksha Sharma
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Payal Rani
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Partha Roy
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar Tyagi
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Surya Pratap Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
6
|
Gogola J, Hoffmann M, Nimpsz S, Ptak A. Disruption of 17β-estradiol secretion by persistent organic pollutants present in human follicular fluid is dependent on the potential of ovarian granulosa tumor cell lines to metabolize estrogen. Mol Cell Endocrinol 2020; 503:110698. [PMID: 31891770 DOI: 10.1016/j.mce.2019.110698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Endocrine-disrupting chemicals (EDCs), such as perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyl 153 are persistent pollutants that are found in human follicular fluid (FF). These compounds may affect endocrine function, disrupt steroid secretion by granulosa cells, and play a role in granulosa cell tumor (GCT) development. GCTs demonstrate endocrine activity, expressing aromatase and secreting 17β-estradiol (E2). We aimed to determine the effects of a mixture of EDCs, similar to that found in human FF, on human granulosa tumor cell lines representing the juvenile (JGCT) and adult (AGCT) forms (COV434 and KGN cells, respectively). We found that all the individual compounds and mixtures tested altered granulosa tumor cell function by disrupting E2 secretion. In KGN cells, which possess significantly higher basal aromatase gene expression, and therefore secrete more E2 than JGCT cells, EDC mixtures activated estrogen receptors (ERs) and G protein-coupled receptor-30 signaling, thereby stimulating E2 secretion, without affecting aromatase expression. By contrast, in COV434 cells, which demonstrate higher CYP1A1 expression, a key mediator of estrogen metabolism, than KGN cells, EDC mixtures reduced E2 secretion in parallel with increases in the 2-hydroxyestrogen 1/E2 ratio and CYP1A1 expression, implying an upregulation of E2 metabolism. These results indicate that the EDC mixture present in FF disrupts E2 secretion in JGCT and AGCT cells according to the estrogen metabolic potential of the cell type, involving both classical and non-classical ER pathways.
Collapse
Affiliation(s)
- Justyna Gogola
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Marta Hoffmann
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Samantha Nimpsz
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
7
|
Ishida T, Takechi S. β-Naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor, disrupts zinc homeostasis in human hepatoma HepG2 cells. J Toxicol Sci 2020; 44:711-720. [PMID: 31588062 DOI: 10.2131/jts.44.711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recent studies have demonstrated a relationship between the disruption of zinc homeostasis and the onset of diseases. However, little is known about the factors that disrupt zinc homeostasis. Here, we investigated the effects of β-naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor (AHR), on intracellular zinc levels. Human hepatoma HepG2 cells were treated with β-naphthoflavone for 3 days, and intracellular labile and total zinc levels were assessed through flow cytometry and inductively coupled plasma atom emission spectroscopy, respectively. The mRNA levels of zinc transporters were determined by real-time PCR. Treatment of cells with β-naphthoflavone induced a decrease in intracellular labile zinc in a dose-dependent manner, with significantly decreased levels observed at 1 µM compared with controls. Additionally, intracellular total zinc levels demonstrated a decreasing trend with 10 µM β-naphthoflavone. Zinc pyrithione recovered the decrease in intracellular labile zinc levels induced by β-naphthoflavone, while zinc sulfate had no effect. Moreover, significant decreases in the mRNA levels of zinc transporters ZnT10 and ZIP5 were observed in response to 10 µM β-naphthoflavone. These results demonstrated that β-naphthoflavone has the potential to disrupt zinc homeostasis in hepatocytes. Although the underlying mechanism remains to be determined, suppression of zinc transporter transcription through AHR activation may be involved in the β-naphthoflavone-induced disruption of intracellular zinc levels.
Collapse
|
8
|
Molcan T, Swigonska S, Nynca A, Sadowska A, Ruszkowska M, Orlowska K, Ciereszko RE. Is CYP1B1 involved in the metabolism of dioxins in the pig? Biochim Biophys Acta Gen Subj 2018; 1863:291-303. [PMID: 30278240 DOI: 10.1016/j.bbagen.2018.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most difficult to biodegradate and the most toxic dioxin congener. Previously, we demonstrated in silico the ability of pig CYP1A1 to hydroxylate 2,7-dichlorodibenzo-p-dioxin (DiCDD), but not TCDD. To increase our knowledge concerning the low effectiveness of TCDD biodegradability, we analyzed in silico the binding selectivity and affinity between pig CYP1B1 and the two dioxins by means of molecular modeling. We also compared the effects of TCDD and DiCDD on CYP1B1 gene expression (qRT-PCR) and catalytic (EROD) activity in porcine granulosa cells. It was found that DiCDD and TCDD were stabilized within the pig CYP1B1 active site by hydrophobic interactions. The analysis of substrate channel availability revealed that both dioxins opened the exit channel S, allowing metabolites to leave the enzyme active site. Moreover, DiCDD and TCDD increased the CYP1B1 gene expression and catalytic activity in porcine granulosa cells. On the other hand, TCDD demonstrated higher than DiCDD calculated affinity to pig CYP1B1, hindering TCDD exit from the active site. The great distance between CYP1B1's heme and TCDD also might contribute to the lower hydroxylation effectiveness of TCDD compared to that of DiCDD. Moreover, the narrow active site of pig CYP1B1 may immobilize TCDD molecule, inhibiting its hydroxylation. The results of the access channel analysis and the distance from pig CYP1B1's heme to TCDD suggest that the metabolizing potential of pig CYP1B1 is higher than that of pig CYP1A1. However, this potential is probably not sufficiently high to considerably improve the slow TCDD biodegradation.
Collapse
Affiliation(s)
- Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
9
|
Hao J, Tuck AR, Sjödin MOD, Lindberg J, Sand A, Niklasson B, Argyraki M, Hovatta O, Damdimopoulou P. Resveratrol supports and alpha-naphthoflavone disrupts growth of human ovarian follicles in an in vitro tissue culture model. Toxicol Appl Pharmacol 2017; 338:73-82. [PMID: 29146461 DOI: 10.1016/j.taap.2017.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/25/2022]
Abstract
Infertility is a global health problem with an estimated incidence of 15%. Exposure to chemicals is a potential causal factor, and there is a lack of studies examining the effects on female germ cells. Here, we have studied the impact of different aryl hydrocarbon receptor (AHR) modulators on human ovarian follicles using a human ovarian tissue culture model. Expression of AHR was analyzed in tissue samples, and effects of the selected ligands resveratrol (RSVL), 6-formylindolo(3,2-b)carbazole (FICZ), and alpha-naphthoflavone (aNF) on AHR transactivation studied in a granulosa cell tumor line. Cortical human ovarian tissue containing preantral follicles was exposed to the ligands or vehicle (dimethylsulfoxide, DMSO) for seven days in vitro. Follicle growth was assessed by counting and measuring follicles from serial tissue sections, cell death quantified using in situ Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay, and steroid hormone production measured using a newly developed ultra-performance liquid chromatography method. AHR was expressed in all donated ovarian tissue samples. FICZ induced AHR transactivation in the granulosa cell line while aNF antagonised it. Compared to DMSO control, FICZ had no effect on follicles in culture, RSVL increased the proportion of growing follicles, and aNF increased cell death, disrupted growth of secondary follicles, increased testosterone, and reduced estradiol levels. We conclude that RSVL supports and aNF disrupts growth of human ovarian follicles in culture. We further conclude that the human ovarian tissue culture model is suitable for studying effects of chemicals on follicular biology.
Collapse
Affiliation(s)
- Jie Hao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Astrud R Tuck
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Forskargatan 20, SE-15136 Södertälje, Sweden
| | - Marcus O D Sjödin
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Forskargatan 20, SE-15136 Södertälje, Sweden
| | - Johan Lindberg
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Forskargatan 20, SE-15136 Södertälje, Sweden
| | - Anna Sand
- Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Boel Niklasson
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Maria Argyraki
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Outi Hovatta
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Forskargatan 20, SE-15136 Södertälje, Sweden; Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden.
| |
Collapse
|
10
|
Miki Y, Hata S, Ono K, Suzuki T, Ito K, Kumamoto H, Sasano H. Roles of Aryl Hydrocarbon Receptor in Aromatase-Dependent Cell Proliferation in Human Osteoblasts. Int J Mol Sci 2017; 18:ijms18102159. [PMID: 29039776 PMCID: PMC5666840 DOI: 10.3390/ijms18102159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and its expression is influenced by environmental compounds, such as 3-methylcholanthrene (3-MC) and β-naphthoflavone (β-NF). AhR and its downstream genes, such as CYP1A1, are considered to play a pivotal role in xenobiotic responses. AhR signaling has also been proposed to mediate osteogenesis in experimental animals, but its details have remained unclear. Therefore, in this study, we examined the possible roles of AhR in human bone. Immunohistochemical analysis revealed that AhR was detected in both osteoblasts and osteoclasts. We then screened AhR-target genes using a microarray analysis in human osteoblastic hFOB cells. Results of microarray and subsequent PCR analysis did reveal that estrogen metabolizing and synthesizing enzymes, such as CYP1B1 and aromatase, were increased by 3-MC in hFOB and osteosarcoma cell line, MG-63. The subsequent antibody cytokine analysis also demonstrated that interleukin-1β and -6 expression was increased by 3-MC and β-NF in hFOB cells and these interleukins were well known to induce aromatase. We then examined the cell proliferation rate of hFOB and MG-63 cells co-treated with 3-MC and testosterone as an aromatase substrate. The status of cell proliferation in both hFOB and MG-63 cells was stimulated by 3-MC and testosterone treatment, which was also inhibited by an estrogen blocker, aromatase inhibitor, or AhR antagonist. These findings indicated that AhR could regulate estrogen synthesis and metabolism in bone tissues through cytokine/aromatase signaling.
Collapse
Affiliation(s)
- Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Miyagi 980-8575, Japan.
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
- Department of Oral Pathology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan.
| | - Shuko Hata
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Katsuhiko Ono
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Kiyoshi Ito
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Miyagi 980-8575, Japan.
| | - Hiroyuki Kumamoto
- Department of Oral Pathology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan.
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
11
|
Zhang Q, Zhang Y, Du J, Zhao M. Environmentally relevant levels of λ-cyhalothrin, fenvalerate, and permethrin cause developmental toxicity and disrupt endocrine system in zebrafish (Danio rerio) embryo. CHEMOSPHERE 2017; 185:1173-1180. [PMID: 28772355 DOI: 10.1016/j.chemosphere.2017.07.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Synthetic pyrethroids (SPs) are one of the most widely used pesticides and frequently detected in the aquatic environment. Previous studies have shown that SPs posed high aquatic toxicity, but information on the developmental toxicity and endocrine disruption on zebrafish (Danio rerio) at environmentally relevant concentrations is limited. In this study, zebrafish embryos were employed to examine the adverse effects of λ-cyhalothrin (LCT), fenvalerate (FEN), and permethrin (PM) at 2.5, 10, 25, 125, 500 nM for 96 h. The results showed these 3 SPs caused dose-dependent mortality, malformation rate, and hatching rate. Thyroid hormone triiodothyronine (T3) levels were significantly decreased after exposure to LCT and FEN. Quantitative real-time PCR analysis was then performed on a series of nuclear receptors (NRs) genes involved in the hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-adrenocortical (HPA) axes, and oxidative-stress-related system. Our results showed that LCT, FEN, and PM downregulated AR expression while upregulated ER1 expression, and caused alteration to ER2a and ER2b expression. As for the expression of TRα and TRβ, they were both decreased following exposure to the 3 SPs. LCT and PM downregulated the MR expression and FEN induced MR expression. In addition, the expression of GR was increased after treating with LCT, while it was suppressed after exposure to FEN and PM. The 3 SPs also caused various alterations to the expression of genes including AhRs, PPARα, and PXR. These findings suggest that these 3 SPs may cause developmental toxicity to zebrafish larvae by disrupting endocrine signaling at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Yi Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Jie Du
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| |
Collapse
|
12
|
Effects of human blood levels of two PAH mixtures on the AHR signalling activation pathway and CYP1A1 and COMT target genes in granulosa non-tumor and granulosa tumor cell lines. Toxicology 2017; 389:1-12. [DOI: 10.1016/j.tox.2017.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022]
|
13
|
Sadowska A, Nynca A, Ruszkowska M, Paukszto L, Myszczynski K, Orlowska K, Swigonska S, Molcan T, Jastrzebski JP, Ciereszko RE. Transcriptional profiling of porcine granulosa cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. CHEMOSPHERE 2017; 178:368-377. [PMID: 28340459 DOI: 10.1016/j.chemosphere.2017.03.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic man-made chemical compound contaminating the environment. An exposure of living organisms to TCDD may result in numerous disorders, including reproductive pathologies. The aim of the current study was to examine the effects of TCDD on the transcriptome of porcine granulosa cell line AVG-16. By employing next-generation sequencing (NGS) we aimed to identify genes potentially involved in the mechanism of TCDD action and toxicity in porcine granulosa cells. The AVG-16 cells were treated with TCDD (100 nM) for 3, 12 or 24 h, and afterwards total cellular RNA was isolated and sequenced. In TCDD-treated cells we identified 141 differentially expressed genes (DEGs; padjusted < 0.05 and log2 fold change ≥1.0). The DEGs were assigned to GO term, covering biological processes, molecular functions and cellular components. Due to the large number of genes with altered expression, in the current study we analyzed only the genes involved in follicular growth, development and functioning. The obtained results showed that TCDD may affect ovarian follicle fate by influencing granulosa cell cycle, proliferation and DNA repair. The demonstrated over-time changes in the quantity and quality of genes being affected by TCDD treatment showed that the effects of TCDD on granulosa cells changed dramatically between 3-, 12- and 24-h of cell culture. This finding indicate that timing of gene expression measurement is critical for drawing correct conclusions on detailed relationships between the TCDD-affected genes and resulting intracellular processes. These conclusions have to be confirmed and extended by research involving proteomic and functional studies.
Collapse
Affiliation(s)
- Agnieszka Sadowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Ruszkowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Kamil Myszczynski
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
14
|
Ernst J, Grabiec U, Greither T, Fischer B, Dehghani F. The endocannabinoid system in the human granulosa cell line KGN. Mol Cell Endocrinol 2016; 423:67-76. [PMID: 26773729 DOI: 10.1016/j.mce.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/01/2015] [Accepted: 01/06/2016] [Indexed: 10/25/2022]
Abstract
Ovarian steroidogenesis is embedded in a sensitive network of regulatory mechanisms crucial for human fertility. The endocannabinoid system (ECS) represents an intrinsic modulating system involved in the regulation of endocrine functions. In the present study we characterized the ECS in the human granulosa cell line KGN and its impact on gonadotropin sensitivity and steroid hormone synthesis under basal and FSH-stimulated conditions. Expression studies were performed and estradiol was measured. CB1, CB2, DAGL, FAAH, GPR55, MAGL, NAPE-PLD and TRPV1 were expressed without FSH-dependent effects. Treatment with selective cannabinoid receptor agonists reduced basal but not FSH-stimulated estradiol and CYP19. Progesterone was not altered by ECS manipulation. CB1 agonist changed the expression of miRNAs associated with granulosa cell function, e.g. miR-23a, miR-24, miR-181a and miR-320a. Present data indicate a modulating role of the intrinsic ovarian ECS in the regulation of estradiol synthesis.
Collapse
Affiliation(s)
- Jana Ernst
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany.
| | - Urszula Grabiec
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany
| |
Collapse
|
15
|
Barć J, Gregoraszczuk EL. Halowax 1051 affects steroidogenesis by down-regulation of aryl hydrocarbon and estrogen receptors and up-regulation of androgen receptor in porcine ovarian follicles. CHEMOSPHERE 2016; 144:467-474. [PMID: 26386772 DOI: 10.1016/j.chemosphere.2015.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/01/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
Polychlorinated naphthalenes (PCNs) are thought to interact with the aryl hydrocarbon receptor (AHR) and to have enzyme-inducing properties comparable to polychlorinated dibenzo-p-dioxins, therefore activation of steroid hormone receptors in endocrine tissues is also possible. The aim of the present study was to examine the effects of PCNs mixture, Halowax 1051 on gene and protein expression of receptors: estradiol (ERα/β), androgen (AR) and AHRGene expression was evaluated by real-time PCR after 6 h of exposition and protein expression by Western blot after 24 h. Levels of sex steroids: androstenedione (A4), estradiol (E2) and testosterone (T) were measured by enzyme immunoassays. Results of the data show down-regulation of AHR gene expression after 6 h in parallel with an inhibition in AHR protein expression at doses 10 pg-10 ng/mL, down-regulation of ER at all doses used, and up-regulation of AR gene expression at doses 1 and 10 ng/mL without affecting their protein expression. To indicate the involvement of AHR, ERs and AR in the impact of PCNs on steroidogenesis, we used their specific blockers. Blocker of AHR reversed the inhibitory effect of Halowax 1051 on A4 secretion, and strengthened its effect on T secretion. Blockers of both ER and AR had no effect on Halowax 1051 action on steroids secretion. The results of this study suggest that AHR is involved in the effect of PCNs on steroidogenesis in the ovary. Additionally, we propose that cross-talk between AHR-ER and AHR-AR receptors mediates the effects of Halowax 1051 on ovarian follicles.
Collapse
Affiliation(s)
- Justyna Barć
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Kraków, Kraków, Poland.
| | - Ewa Lucja Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
16
|
Solak KA, Wijnolts FMJ, Nijmeijer SM, Blaauboer BJ, van den Berg M, van Duursen MBM. Excessive levels of diverse phytoestrogens can modulate steroidogenesis and cell migration of KGN human granulosa-derived tumor cells. Toxicol Rep 2014; 1:360-372. [PMID: 28962252 PMCID: PMC5598505 DOI: 10.1016/j.toxrep.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 12/17/2022] Open
Abstract
Phytoestrogens are plant-derived estrogen-like compounds that are increasingly used for their suggested health promoting properties, even by healthy, young women. However, scientific concerns exist regarding potential adverse effects on female reproduction. In this study, naringenin (NAR), 8-prenylnaringenin (8-PN), genistein (GEN), coumestrol (COU), quercetin (QUE) and resveratrol (RSV) up-regulated steroidogenic acute regulatory protein (StaR) mRNA levels in KGN human granulosa-like tumor cells. Most of the phytoestrogens tested also increased CYP19A1 (aromatase) mRNA levels via activation of ovary-specific I.3 and II promoters. Yet, only NAR (3 and 10 μM), COU (10 and 30 μM) and QUE (10 μM) also statistically significantly induced aromatase activity in KGN cells after 24 h. 8-PN, aromatase inhibitor letrozole and estrogen receptor antagonist ICI 182,780 concentration-dependently inhibited aromatase activity with IC50 values of 8 nM, 10 nM and 72 nM, respectively. Co-exposure with ICI 182,780 (0.1 μM) statistically significantly attenuated the induction of aromatase activity by QUE and COU, but not NAR. Cell cycle status and proliferation of KGN cells were not affected by any of the phytoestrogens tested. Nonetheless, the migration of KGN cells was significantly reduced with approximately 30% by COU, RSV and QUE and 46% by GEN at 10 μM, but not NAR and 8-PN. Our results indicate that phytoestrogens can affect various pathways in granulosa-like cells in vitro at concentrations that can be found in plasma upon supplement intake. This implies that phytoestrogens may interfere with ovarian function and caution is in place regarding the use of supplements with high contents of phytoestrogens.
Collapse
Affiliation(s)
- Kamila A Solak
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Fiona M J Wijnolts
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Sandra M Nijmeijer
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Martin van den Berg
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Majorie B M van Duursen
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
17
|
Ernst J, Jann JC, Biemann R, Koch HM, Fischer B. Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN. Mol Hum Reprod 2014; 20:919-28. [PMID: 24950685 DOI: 10.1093/molehr/gau045] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Environmental contaminants binding to transcription factors, such as the aryl hydrocarbon receptor (AhR) and the alpha and gamma peroxisome proliferator-activated receptors (PPARs), contribute to adverse effects on the reproductive system. Expressing both the AhR and PPARs, the human granulosa cell line KGN offers the opportunity to investigate the regulatory mechanisms involved in receptor crosstalk, independent of overriding hormonal control. The aim of the present study was to investigate the impact of two environmental contaminants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an AhR ligand) and di-(2-ethylhexyl) phthalate (DEHP, a PPAR ligand), on gonadotrophin sensitivity and estrogen synthesis in KGN cells. Accumulation of the DEHP metabolite mono-(2-ethylhexyl) phthalate (MEHP) in DEHP-exposed cells was measured by high-performance liquid chromatography mass spectrometry, thereby demonstrating DEHP metabolism to MEHP by KGN cells. By employing TCDD ( an AhR agonist), rosiglitazone (a PPARgamma agonist) or bezafibrate (a PPARalpha agonist), the presence of a functional AhR and PPAR cascade was confirmed in KGN cells. Cytotoxicity testing revealed no effect on KGN cell proliferation for the concentrations of TCDD and DEHP used in the current study. FSH-stimulated cells were exposed to TCDD, DEHP or a mix of both and estradiol synthesis was measured by enzyme-linked immunosorbent assay and gene expression by quantitative RT-PCR. Exposure decreased estradiol synthesis (TCDD, DEHP, mix) and reduced the mRNA expression of CYP19 aromatase (DEHP, mix) and FSHR (DEHP). DEHP induced the expression of the alpha and gamma PPARs and AhR, an effect which was inhibited by selective PPAR antagonists. Studies in the human granulosa cell line KGN show that the action of endocrine-disrupting chemicals may be due to a direct activation of AhR, for example by TCDD, and by a transactivation via PPARs, for example by DEHP, inducing subsequent transcriptional changes with a broad range of effects on granulosa cell function.
Collapse
Affiliation(s)
- Jana Ernst
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, Halle(Saale) D-06097, Germany
| | - Johann-Christoph Jann
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, Halle(Saale) D-06097, Germany
| | - Ronald Biemann
- Department of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Strasse 44, Magdeburg D-39120, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum D-44789, Germany
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, Halle(Saale) D-06097, Germany
| |
Collapse
|
18
|
Binder AK, Rodriguez KF, Hamilton KJ, Stockton PS, Reed CE, Korach KS. The absence of ER-β results in altered gene expression in ovarian granulosa cells isolated from in vivo preovulatory follicles. Endocrinology 2013; 154:2174-87. [PMID: 23580569 PMCID: PMC3740481 DOI: 10.1210/en.2012-2256] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Determining the spatial and temporal expression of genes involved in the ovulatory pathway is critical for the understanding of the role of each estrogen receptor in the modulation of folliculogenesis and ovulation. Estrogen receptor (ER)-β is highly expressed in ovarian granulosa cells, and mice lacking ER-β are subfertile due to inefficient ovulation. Previous work has focused on isolated granulosa cells or cultured follicles and, although informative, provides confounding results due to the heterogeneous cell types present including granulosa and theca cells and oocytes and exposure to in vitro conditions. Herein we isolated preovulatory granulosa cells from wild-type (WT) and ERβ-null mice using laser capture microdissection to examine the genomic transcriptional response downstream of pregnant mare serum gonadotropin (mimicking FSH) and pregnant mare serum gonadotropin/human chorionic gonadotropin (mimicking LH) stimulation. This allows for a direct comparison of in vivo granulosa cells at the same stage of development from both WT and ERβ-null ovaries. ERβ-null granulosa cells showed altered expression of genes known to be regulated by FSH (Akap12 and Runx2) as well as not previously reported (Arnt2 and Pou5f1) in WT granulosa cells. Our analysis also identified 304 genes not previously associated with ERβ in granulosa cells. LH-responsive genes including Abcb1b and Fam110c show reduced expression in ERβ-null granulosa cells; however, novel genes including Rassf2 and Megf10 were also identified as being downstream of LH signaling in granulosa cells. Collectively, our data suggest that granulosa cells from ERβ-null ovaries may not be appropriately differentiated and are unable to respond properly to gonadotropin stimulation.
Collapse
Affiliation(s)
- April K Binder
- National Institute of Environmental Health Sciences, Laboratory of Reproduction and Developmental Toxicology, 111 TW Alexander Drive, MD B3-02, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
19
|
Uimari P, Sironen A, Sevón-Aimonen ML. Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed. Genet Sel Evol 2011; 43:42. [PMID: 22132733 PMCID: PMC3305389 DOI: 10.1186/1297-9686-43-42] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/01/2011] [Indexed: 11/24/2022] Open
Abstract
Background Good genetic progress for pig reproduction traits has been achieved using a quantitative genetics-based multi-trait BLUP evaluation system. At present, whole-genome single nucleotide polymorphisms (SNP) panels provide a new tool for pig selection. The purpose of this study was to identify SNP associated with reproduction traits in the Finnish Landrace pig breed using the Illumina PorcineSNP60 BeadChip. Methods Association of each SNP with different traits was tested with a weighted linear model, using SNP genotype as a covariate and animal as a random variable. Deregressed estimated breeding values of the progeny tested boars were used as the dependent variable and weights were based on their reliabilities. Statistical significance of the associations was based on Bonferroni-corrected P-values. Results Deregressed estimated breeding values were available for 328 genotyped boars. Of the 62 163 SNP in the chip, 57 868 SNP had a call rate > 0.9 and 7 632 SNP were monomorphic. Statistically significant results (P-value < 2.0E-06) were obtained for total number of piglets born in first and later parities and piglet mortality between birth and weaning in later parity, and suggestive associations (P-value < 4.0E-06) for piglet mortality between birth and weaning in first parity, number of stillborn piglets in later parity, first farrowing interval and second farrowing interval. Two of the statistically significant regions for total number of piglets born in first and later parities are located on chromosome 9 around 95 and 79 Mb. The estimated SNP effect in these regions was approximately one piglet between the two homozygote classes. By combining the two most significant SNP in these regions, favourable double homozygote animals are expected to have 1.3 piglets (P-value = 1.69E-08) more than unfavourable double homozygote animals. A region on chromosome 9 (66 Mb) was statistically significant for piglet mortality between birth and weaning in later parity (0.44 piglets between homozygotes, P-value = 6.94E-08). Conclusions Three separate regions on chromosome 9 gave significant results for litter size and pig mortality. The frequencies of favourable alleles of the significant SNP are moderate in the Finnish Landrace population and these SNP are thus valuable candidates for possible marker-assisted selection.
Collapse
Affiliation(s)
- Pekka Uimari
- Agrifood Research Finland, MTT, Biotechnology and Food Research, Jokioinen, Finland.
| | | | | |
Collapse
|