1
|
Gokyer D, Akinboro S, Zhou LT, Kleinhans A, Laronda MM, Duncan FE, Riley JK, Goldman KN, Babayev E. The oocyte microenvironment is altered in adolescents compared to oocyte donors. Hum Reprod Open 2024; 2024:hoae047. [PMID: 39211054 PMCID: PMC11361810 DOI: 10.1093/hropen/hoae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY QUESTION Do the molecular signatures of cumulus cells (CCs) and follicular fluid (FF) of adolescents undergoing fertility preservation differ from that of oocyte donors? SUMMARY ANSWER The microenvironment immediately surrounding the oocyte, including the CCs and FF, is altered in adolescents undergoing fertility preservation compared to oocyte donors. WHAT IS KNOWN ALREADY Adolescents experience a period of subfecundity following menarche. Recent evidence suggests that this may be at least partially due to increased oocyte aneuploidy. Reproductive juvenescence in mammals is associated with suboptimal oocyte quality. STUDY DESIGN SIZE DURATION This was a prospective cohort study. Adolescents (10-19 years old, n = 23) and oocyte donors (22-30 years old, n = 31) undergoing ovarian stimulation and oocyte retrieval at a single center between 1 November 2020 and 1 May 2023 were enrolled in this study. PARTICIPANTS/MATERIALS SETTING METHODS Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were collected for all participants. The transcriptome of CCs associated with mature oocytes was compared between adolescents (10-19 years old, n = 19) and oocyte donors (22-30 years old, n = 19) using bulk RNA-sequencing. FF cytokine profiles (10-19 years old, n = 18 vs 25-30 years old, n = 16) were compared using cytokine arrays. MAIN RESULTS AND THE ROLE OF CHANCE RNA-seq analysis revealed 581 differentially expressed genes in CCs of adolescents relative to oocyte donors, with 361 genes downregulated and 220 upregulated. Genes enriched in pathways involved in cell cycle and cell division (e.g. GO: 1903047, P = 3.5 × 10-43; GO: 0051983, P = 4.1 × 10-30; GO: 0000281, P = 7.7 × 10-15; GO: 0044839, P = 5.3 × 10-13) were significantly downregulated, while genes enriched in several pathways involved in cellular and vesicle organization (e.g. GO: 0010256, P = 1.2 × 10-8; GO: 0051129, P = 6.8 × 10-7; GO: 0016050, P = 7.4 × 10-7; GO: 0051640, P = 8.1 × 10-7) were upregulated in CCs of adolescents compared to oocyte donors. The levels of nine cytokines were significantly increased in FF of adolescents compared to oocyte donors: IL-1 alpha (2-fold), IL-1 beta (1.7-fold), I-309 (2-fold), IL-15 (1.6-fold), TARC (1.9-fold), TPO (2.1-fold), IGFBP-4 (2-fold), IL-12-p40 (1.7-fold), and ENA-78 (1.4-fold). Interestingly, seven of these cytokines have known pro-inflammatory roles. Importantly, neither the CC transcriptomes nor FF cytokine profiles were different in adolescents with or without cancer. LARGE SCALE DATA Original high-throughput sequencing data have been deposited in Gene Expression Omnibus (GEO) database with the accession number GSE265995. LIMITATIONS REASONS FOR CAUTION This study aims to gain insights into the associated gamete quality by studying the immediate oocyte microenvironment. The direct study of oocytes is more challenging due to sample scarcity, as they are cryopreserved for future use, but would provide a more accurate assessment of oocyte reproductive potential. WIDER IMPLICATIONS OF THE FINDINGS Our findings have implications for the adolescent fertility preservation cycles. Understanding the expected quality of cryopreserved eggs in this age group will lead to better counseling of these patients about their reproductive potential and may help to determine the number of eggs that is recommended to be banked to achieve a reasonable chance of future live birth(s). STUDY FUNDING/COMPETING INTERESTS This project was supported by Friends of Prentice organization SP0061324 (M.M.L. and E.B.), Gesualdo Family Foundation (Research Scholar: M.M.L.), and NIH/NICHD K12 HD050121 (E.B.). The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sophia Akinboro
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Monica M Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Basic and Preclinical Science, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joan K Riley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Kara N Goldman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Burke S. Hypoxia, NSAIDs, and autism: A biocultural analysis of stressors in gametogenesis. Am J Hum Biol 2024; 36:e24042. [PMID: 38282542 DOI: 10.1002/ajhb.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Cultural and generational trends have increasingly favored "anti-inflammatory" action, innovating a new class of analgesic, non-steroidal anti-inflammatory drugs (NSAIDs) in the 20th century. The modern human body has been molded over evolutionary time and while acknowledging inflammation can be pathologically entwined, it also serves an important role in healthy folliculogenesis and ovulation, shaping cues that drive needed vascular change. This review argues that because of anti-inflammatory action, the cultural invention of NSAIDs represents a particular stressor on female reproductive-age bodies, interacting with natural, underlying variation and placing limits on healthy growth and development in the follicles, creating potential autism risk through hypoxia and mutagenic or epigenetic effects. Since testes are analogs to ovaries, the biological grounding extends naturally to spermatogenesis. This review suggests the introduction of over-the-counter NSAIDs in the 1980s failed to recognize the unique functioning of reproductive-age bodies, challenging the cyclical inflammation needed for healthy gamete development. NSAIDs are framed as one (notable) stressor in an anti-inflammatory era focused on taming the risks of inflammation in modern human life.
Collapse
Affiliation(s)
- Stacie Burke
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Li X, Gao B, Gao B, Li X, Xia X. Transcriptome profiling reveals dysregulation of inflammatory and protein synthesis genes in PCOS. Sci Rep 2024; 14:16596. [PMID: 39025980 PMCID: PMC11258128 DOI: 10.1038/s41598-024-67461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
To analyze the differential expression genes of polycystic ovary syndrome (PCOS), clarify their functions and pathways, as well as the protein-protein interaction network, identify HUB genes, and explore the pathological mechanism. PCOS microarray datasets were screened from the GEO database. Common differentially expressed genes (co-DEGs) were obtained using GEO2R and Venn analysis. Enrichment and pathway analyses were conducted using the DAVID online tool, with results presented in bubble charts. Protein-protein interaction analysis was performed using the STRING tool. HUB genes were identified using Cytoscape software and further interpreted with the assistance of the GeneCards database. A total of two sets of co-DEGs (108 and 102), key proteins (15 and 55), and hub genes (10 and 10) were obtained. The co-DEGs: (1) regulated inflammatory responses and extracellular matrix, TNF, and IL-17 signaling pathways; (2) regulated ribosomes and protein translation, ribosome and immune pathways. The key proteins: (1) regulated inflammation, immunity, transcription, matrix metabolism, proliferation/differentiation, energy, and repair; (2) regulated ubiquitination, enzymes, companion proteins, respiratory chain components, and fusion proteins. The Hub genes: (1) encoded transcription factors and cytokines, playing vital roles in development and proliferation; (2) encoded ribosomes and protein synthesis, influencing hormone and protein synthesis, associated with development and infertility. The dysregulated expression of inflammation and protein synthesis genes in PCOS may be the key mechanism underlying its onset and progression.
Collapse
Affiliation(s)
- Xilian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Biao Gao
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China.
| | - Bingsi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xian Xia
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
4
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
5
|
Gokyer D, Akinboro S, Zhou LT, Kleinhans A, Laronda MM, Duncan FE, Riley JK, Goldman KN, Babayev E. The oocyte microenvironment is altered in adolescents compared to oocyte donors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588118. [PMID: 38617323 PMCID: PMC11014529 DOI: 10.1101/2024.04.04.588118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Study question Are the molecular signatures of cumulus cells (CCs) and follicular fluid (FF) of adolescents undergoing fertility preservation differ from that of reproductively adult oocyte donors? Summary answer The microenvironment immediately surrounding the oocyte, including the CCs and FF, is altered in adolescents undergoing fertility preservation compared to oocyte donors. What is known already Adolescents experience a period of subfecundity following menarche. Recent evidence suggests that this may be at least partially due to increased oocyte aneuploidy. Reproductive juvenescence in mammals is associated with suboptimal oocyte quality. Study design size duration This was a prospective cohort study. Adolescents (10-19 years old, N=23) and oocyte donors (22-30 years old, N=31) undergoing ovarian stimulation and oocyte retrieval at the Northwestern Fertility and Reproductive Medicine Center between November 1, 2020 and May 1, 2023 were enrolled in this study. Participants/materials setting methods Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were collected for all participants. The transcriptome of CCs associated with mature oocytes was compared between adolescents (10-19 years old, n=19), and oocyte donors (22-30 years old, n=19) using bulk RNA-sequencing. FF cytokine profiles (10-19 years old, n=18 vs. 25-30 years old, n=16) were compared using cytokine arrays. Main results and the role of chance RNA-seq analysis revealed 581 differentially expressed genes (DEGs) in cumulus cells of adolescents relative to oocyte donors, with 361 genes downregulated and 220 upregulated. Genes enriched in pathways involved in cell cycle and cell division (e.g., GO:1903047, p= 3.5 × 10-43; GO:0051983, p= 4.1 × 10-30; GO:0000281, p= 7.7 × 10-15; GO:0044839, p= 5.3 × 10-13) were significantly downregulated, while genes enriched in several pathways involved in cellular and vesicle organization (e.g., GO:0010256, p= 1.2 × 10-8; GO:0051129, p= 6.8 × 10-7; GO:0016050, p= 7.4 × 10-7; GO:0051640, p= 8.1 × 10-7) were upregulated in CCs of adolescents compared to oocyte donors. The levels of 9 cytokines were significantly increased in FF of adolescents compared to oocyte donors: IL-1 alpha (2-fold), IL-1 beta (1.7-fold), I-309 (2-fold), IL-15 (1.6-fold), TARC (1.9-fold), TPO (2.1-fold), IGFBP-4 (2-fold), IL-12-p40 (1.7-fold) and ENA-78 (1.4-fold). Interestingly, 7 of these cytokines have known pro-inflammatory roles. Importantly, neither the CC transcriptomes or FF cytokine profiles were different in adolescents with or without cancer. Large scale data Original high-throughput sequencing data will be deposited in Gene Expression Omnibus (GEO) before publication, and the GEO accession number will be provided here. Limitations reasons for caution This study aims to gain insights into the associated gamete quality by studying the immediate oocyte microenvironment. The direct study of oocytes is more challenging due to sample scarcity, as they are cryopreserved for future use, but will provide a more accurate assessment of oocyte reproductive potential. Wider implications of the findings Understanding the underpinnings of altered immediate oocyte microenvironment of adolescent patients may provide insights into the reproductive potential of the associated gametes in the younger end of the age spectrum. This has implications for the fertility preservation cycles for very young patients. Study funding/competing interests This project was supported by Friends of Prentice organization SP0061324 (M.M.L and E.B.), Gesualdo Family Foundation (Research Scholar: M.M.L.), and NIH/NICHD K12 HD050121 (E.B.). The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Sophia Akinboro
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208
| | - Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, 60611
| | - Monica M. Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, 60611
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Joan K. Riley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, 60611
| | - Kara N. Goldman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, 60611
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, 60611
| |
Collapse
|
6
|
Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y, Guo Y, Wu C, Dai J, Wu M, Wang S. Multiomics insights into the female reproductive aging. Ageing Res Rev 2024; 95:102245. [PMID: 38401570 DOI: 10.1016/j.arr.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput omics methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.
Collapse
Affiliation(s)
- Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
7
|
Orisaka M, Mizutani T, Miyazaki Y, Shirafuji A, Tamamura C, Fujita M, Tsuyoshi H, Yoshida Y. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front Endocrinol (Lausanne) 2023; 14:1324429. [PMID: 38192421 PMCID: PMC10773729 DOI: 10.3389/fendo.2023.1324429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
The ovarian microenvironment is critical for follicular development and oocyte maturation. Maternal conditions, including polycystic ovary syndrome (PCOS), endometriosis, and aging, may compromise the ovarian microenvironment, follicular development, and oocyte quality. Chronic low-grade inflammation can induce oxidative stress and tissue fibrosis in the ovary. In PCOS, endometriosis, and aging, pro-inflammatory cytokine levels are often elevated in follicular fluids. In women with obesity and PCOS, hyperandrogenemia and insulin resistance induce ovarian chronic low-grade inflammation, thereby disrupting follicular development by increasing oxidative stress. In endometriosis, ovarian endometrioma-derived iron overload can induce chronic inflammation and oxidative stress, leading to ovarian ferroptosis and fibrosis. In inflammatory aging (inflammaging), senescent cells may secrete senescence-associated secretory phenotype factors, causing chronic inflammation and oxidative stress in the ovary. Therefore, controlling chronic low-grade inflammation and fibrosis in the ovary would present a novel therapeutic strategy for improving the follicular microenvironment and minimizing ovarian dysfunction.
Collapse
Affiliation(s)
- Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Mizutani
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Fukui, Japan
| | - Yumiko Miyazaki
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Aya Shirafuji
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Chiyo Tamamura
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Fujita
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Obstetrics and Gynecology, Ishikawa Prefectural Central Hospital, Ishikawa, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
8
|
Zhang CH, Liu XY, Wang J. Essential Role of Granulosa Cell Glucose and Lipid Metabolism on Oocytes and the Potential Metabolic Imbalance in Polycystic Ovary Syndrome. Int J Mol Sci 2023; 24:16247. [PMID: 38003436 PMCID: PMC10671516 DOI: 10.3390/ijms242216247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Granulosa cells are crucial for the establishment and maintenance of bidirectional communication among oocytes. Various intercellular material exchange modes, including paracrine and gap junction, are used between them to achieve the efficient delivery of granulosa cell structural components, energy substrates, and signaling molecules to oocytes. Glucose metabolism and lipid metabolism are two basic energy metabolism pathways in granulosa cells; these are involved in the normal development of oocytes. Pyruvate, produced by granulosa cell glycolysis, is an important energy substrate for oocyte development. Granulosa cells regulate changes in intrafollicular hormone levels through the processing of steroid hormones to control the development process of oocytes. This article reviews the material exchange between oocytes and granulosa cells and expounds the significance of granulosa cells in the development of oocytes through both glucose metabolism and lipid metabolism. In addition, we discuss the effects of glucose and lipid metabolism on oocytes under pathological conditions and explore its relationship to polycystic ovary syndrome (PCOS). A series of changes were found in the endogenous molecules and ncRNAs that are related to glucose and lipid metabolism in granulosa cells under PCOS conditions. These findings provide a new therapeutic target for patients with PCOS; additionally, there is potential for improving the fertility of patients with PCOS and the clinical outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Xiang-Yi Liu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Jing Wang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
9
|
Zhang C, Song S, Yang M, Yan L, Qiao J. Diminished ovarian reserve causes adverse ART outcomes attributed to effects on oxygen metabolism function in cumulus cells. BMC Genomics 2023; 24:655. [PMID: 37907878 PMCID: PMC10617226 DOI: 10.1186/s12864-023-09728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Declining oocyte quality in women with advanced age has been a major impediment to assisted reproductive treatments' (ART) success rate. However, aging is often accompanied by a diminished ovarian reserve (DOR). Cumulus cells (CCs) are known to play an important role in the development and maturation of oocytes, and the quality of CCs actually reflects the quality of the oocyte. In this study, CCs were used to investigate the real reasons for the decline in oocyte quality in older women. METHODS Ninety-nine CC samples were subdivided into 4 different groups according to the different age and ovarian reserve status. Other than clinical ART results, transcriptional expression profiles were performed in CCs to detect the differences. RESULTS The results were that DOR, no matter in young or advanced age group, was found to be significantly associated with adverse ART outcomes. Of note, there were no statistically significant changes in ART outcomes in the group at advanced age with normal ovarian reserve (NOR), compared to the young with NOR. DOR induced a series of transcriptional variations in CCs commonly enriched in oxygen metabolism. CONCLUSION Our results revealed that the ART outcomes in advanced patients were attributable to the DOR. The oxygen metabolic changes may interfere with CCs' function of supporting oocytes. This study can provide guidance for ART practice that not age but ovarian reserve status is the main predictor for ART outcomes, and ovarian reserve status should be timely assessed when the clinical manifestations are still mild in elderly women.
Collapse
Affiliation(s)
- Cong Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- School of Basic Medicine (Hebei Medical University), Shijiazhuang, 050000, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest (Chinese Academy of Medical Sciences), Beijing, 100191, China
- Savid Medical College (University of Chinese Academy of Sciences), Beijing, 100191, China
| | - Shi Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest (Chinese Academy of Medical Sciences), Beijing, 100191, China
| | - Ming Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest (Chinese Academy of Medical Sciences), Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), No. 49, North Garden Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest (Chinese Academy of Medical Sciences), Beijing, 100191, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), No. 49, North Garden Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest (Chinese Academy of Medical Sciences), Beijing, 100191, China.
- Savid Medical College (University of Chinese Academy of Sciences), Beijing, 100191, China.
| |
Collapse
|
10
|
Chang CL. Facilitation of Ovarian Response by Mechanical Force-Latest Insight on Fertility Improvement in Women with Poor Ovarian Response or Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:14751. [PMID: 37834198 PMCID: PMC10573075 DOI: 10.3390/ijms241914751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The decline in fertility in aging women, especially those with poor ovarian response (POR) or primary ovarian insufficiency (POI), is a major concern for modern IVF centers. Fertility treatments have traditionally relied on gonadotropin- and steroid-hormone-based IVF practices, but these methods have limitations, especially for women with aging ovaries. Researchers have been motivated to explore alternative approaches. Ovarian aging is a complicated process, and the deterioration of oocytes, follicular cells, the extracellular matrix (ECM), and the stromal compartment can all contribute to declining fertility. Adjunct interventions that involve the use of hormones, steroids, and cofactors and gamete engineering are two major research areas aimed to improve fertility in aging women. Additionally, mechanical procedures including the In Vitro Activation (IVA) procedure, which combines pharmacological activators and fragmentation of ovarian strips, and the Whole Ovary Laparoscopic Incision (WOLI) procedure that solely relies on mechanical manipulation in vivo have shown promising results in improving follicle growth and fertility in women with POR and POI. Advances in the use of mechanical procedures have brought exciting opportunities to improve fertility outcomes in aging women with POR or POI. While the lack of a comprehensive understanding of the molecular mechanisms that lead to fertility decline in aging women remains a major challenge for further improvement of mechanical-manipulation-based approaches, recent progress has provided a better view of how these procedures promote folliculogenesis in the fibrotic and avascular aging ovaries. In this review, we first provide a brief overview of the potential mechanisms that contribute to ovarian aging in POI and POR patients, followed by a discussion of measures that aim to improve ovarian folliculogenesis in aging women. At last, we discuss the likely mechanisms that contribute to the outcomes of IVA and WOLI procedures and potential future directions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Guishan, Taoyuan 33305, Taiwan
| |
Collapse
|
11
|
Nicholas C, Darmon S, Patrizio P, Albertini DF, Barad DH, Gleicher N. Changing clinical significance of oocyte maturity grades with advancing female age advances precision medicine in IVF. iScience 2023; 26:107308. [PMID: 37539038 PMCID: PMC10393729 DOI: 10.1016/j.isci.2023.107308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/04/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
In current IVF practice, metaphase-2 (M2) oocytes are considered most efficient in producing good quality embryos. Maximizing their number at all ages is standard clinical practice, while immature germinal vesicle (GV) oocytes are mostly automatically discarded. We present preliminary evidence that oocyte maturity grades with advancing age significantly change in their abilities to produce good quality embryos, with M2 oocytes significantly declining, GV oocytes improving, and M1 oocytes staying the same. These data contradict the over-40-year-old dogma that oocyte grades functionally do not change with advancing age, supporting potential changes to current IVF practice: (1) Stimulation protocols and timing of oocyte retrieval can be adjusted to a patient's age and ovarian function. (2) In older and younger women with prematurely aging ovaries, GV oocytes may no longer be automatically discarded. (3) In some infertile women, rescue in vitro maturation of immature oocytes may delay the need for third-party egg donation.
Collapse
Affiliation(s)
| | - Sarah Darmon
- Center for Human Reproduction, New York, NY, USA
| | - Pasquale Patrizio
- Center for Human Reproduction, New York, NY, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - David F. Albertini
- Center for Human Reproduction, New York, NY, USA
- Bedford Research Foundation, Bedford, MA, USA
| | - David H. Barad
- Center for Human Reproduction, New York, NY, USA
- Foundation for Reproductive Medicine, New York, NY, USA
| | - Norbert Gleicher
- Center for Human Reproduction, New York, NY, USA
- Foundation for Reproductive Medicine, New York, NY, USA
- Stem Cell Biology and Molecular Embryology Laboratory, The Rockefeller University, New York, NY, USA
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Barragán M, Cornet-Bartolomé D, Molina N, Vassena R. The expression levels of NOS2, HMOX1, and VEGFC in cumulus cells are markers of oocyte maturation and fertilization rate. Mol Reprod Dev 2023; 90:369-377. [PMID: 37486100 DOI: 10.1002/mrd.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/30/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Throughout the reproductive life of women, cumulus cells (CC) protect the dormant oocyte from damage, act as sensors of the follicular microenvironment, and act as a gatekeeper for oocyte developmental potential. One such mechanism relies on the hypoxia-tolerance response, which, with age, decreases systematically, including in the ovary. We aimed to evaluate the association between gene expression related to hypoxia and aging in CC and reproductive results in in vitro fertilization cycles. We recruited 94 women undergoing controlled ovarian stimulation. Total RNA was extracted from pooled CCs collected after oocyte pick-up (OPU) and reverse-transcribed to complementary DNA using random hexamers to test 14 genes related to hypoxia response via HIF1α activation, oxidative stress, and angiogenic responses. The expression of CLU, NOS2, and TXNIP had a positive correlation with age (rs = 0.25, rs = 0.24, and rs = 0.35, respectively). Additionally, NOS2 and HMOX1 expression correlated positively with the retrieval of immature oocytes (rs = 0.22 and rs = 0.40, respectively). Moreover, VEGFC levels decreased overall with increasing fertilization rate, independently of age (rs = -0.29). We found that the fertilization potential of a cohort of oocytes is related to the ability of CC to respond to oxidative stress and hypoxia with age, pointing at NOS2, HMOX1, and VEGFC expression as markers for oocyte maturation and fertilization success.
Collapse
Affiliation(s)
- Montserrat Barragán
- EUGIN Group, Research and Development, Parc Científic de Barcelona, Barcelona, Spain
| | - David Cornet-Bartolomé
- EUGIN Group, Research and Development, Parc Científic de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistic, CIBERER, IBUB, IRSJD, Universitat de Barcelona, Barcelona, Spain
| | - Natalia Molina
- EUGIN Group, Research and Development, Parc Científic de Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rita Vassena
- EUGIN Group, Research and Development, Parc Científic de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Wen X, Yang Q, Sun D, Jiang ZY, Wang T, Liu HR, Han Z, Wang L, Liang CG. Cumulus Cells Accelerate Postovulatory Oocyte Aging through IL1-IL1R1 Interaction in Mice. Int J Mol Sci 2023; 24:ijms24043530. [PMID: 36834943 PMCID: PMC9959314 DOI: 10.3390/ijms24043530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The oocytes of female mammals will undergo aging after ovulation, also known as postovulatory oocyte aging (POA). Until now, the mechanisms of POA have not been fully understood. Although studies have shown that cumulus cells accelerate POA over time, the exact relationship between the two is still unclear. In the study, by employing the methods of mouse cumulus cells and oocytes transcriptome sequencing and experimental verification, we revealed the unique characteristics of cumulus cells and oocytes through ligand-receptor interactions. The results indicate that cumulus cells activated NF-κB signaling in oocytes through the IL1-IL1R1 interaction. Furthermore, it promoted mitochondrial dysfunction, excessive ROS accumulation, and increased early apoptosis, ultimately leading to a decline in the oocyte quality and the appearance of POA. Our results indicate that cumulus cells have a role in accelerating POA, and this result lays a foundation for an in-depth understanding of the molecular mechanism of POA. Moreover, it provides clues for exploring the relationship between cumulus cells and oocytes.
Collapse
|
14
|
Martino NA, Picardi E, Ciani E, D’Erchia AM, Bogliolo L, Ariu F, Mastrorocco A, Temerario L, Mansi L, Palumbo V, Pesole G, Dell’Aquila ME. Cumulus Cell Transcriptome after Cumulus-Oocyte Complex Exposure to Nanomolar Cadmium in an In Vitro Animal Model of Prepubertal and Adult Age. BIOLOGY 2023; 12:biology12020249. [PMID: 36829526 PMCID: PMC9953098 DOI: 10.3390/biology12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd), a highly toxic pollutant, impairs oocyte fertilization, through oxidative damage on cumulus cells (CCs). This study analysed the transcriptomic profile of CCs of cumulus-oocyte complexes (COCs) from adult and prepubertal sheep, exposed to Cd nanomolar concentration during in vitro maturation. In both age-groups, CCs of matured oocytes underwent RNA-seq, data analysis and validation. Differentially expressed genes (DEGs) were identified in adult (n = 99 DEGs) and prepubertal (n = 18 DEGs) CCs upon Cd exposure. Transcriptomes of adult CCs clustered separately between Cd-exposed and control samples, whereas prepubertal ones did not as observed by Principal Component Analysis. The transcriptomic signature of Cd-induced CC toxicity was identified by gene annotation and literature search. Genes associated with previous studies on ovarian functions and/or Cd effects were confirmed and new genes were identified, thus implementing the knowledge on their involvement in such processes. Enrichment and validation analysis showed that, in adult CCs, Cd acted as endocrine disruptor on DEGs involved in hormone biosynthesis, cumulus expansion, regulation of cell signalling, growth and differentiation and oocyte maturation, whereas in prepubertal CCs, Cd affected DEGs involved in CC development and viability and CC-oocyte communications. In conclusion, these DEGs could be used as valuable non-invasive biomarkers for oocyte competence.
Collapse
Affiliation(s)
- Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-0805443888
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Valeria Palumbo
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| |
Collapse
|
15
|
Chen L, Zhu L, Fang J, Zhang N, Li D, Sheng X, Zhou J, Wang S, Wang J. Circular RNA circFoxo3 Promotes Granulosa Cell Apoptosis Under Oxidative Stress Through Regulation of FOXO3 Protein. DNA Cell Biol 2022; 41:1026-1037. [DOI: 10.1089/dna.2022.0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Linjun Chen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lihua Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Ningyuan Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Dong Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jie Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Hong W, Wang B, Zhu Y, Wu J, Qiu L, Ling S, Zhou Z, Dai Y, Zhong Z, Zheng Y. Female germline stem cells: aging and anti-aging. J Ovarian Res 2022; 15:79. [PMID: 35787298 PMCID: PMC9251950 DOI: 10.1186/s13048-022-01011-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
The delay of ovarian aging and the fertility preservation of cancer patients are the eternal themes in the field of reproductive medicine. Acting as the pacemaker of female physiological aging, ovary is also considered as the principle player of cancer, cardiovascular diseases, cerebrovascular diseases, neurodegenerative diseases and etc. However, its aging mechanism and preventive measures are still unclear. Some researchers attempt to activate endogenous ovarian female germline stem cells (FGSCs) to restore ovarian function, as the most promising approach. FGSCs are stem cells in the adult ovaries that can be infinitely self-renewing and have the potential of committed differention. This review aims to elucidate FGSCs aging mechanism from multiple perspectives such as niches, immune disorder, chronic inflammation and oxidative stress. Therefore, the rebuilding nichs of FGSCs, regulation of immune dysfunction, anti-inflammation and oxidative stress remission are expected to restore or replenish FGSCs, ultimately to delay ovarian aging.
Collapse
Affiliation(s)
- Wenli Hong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China.,Shenzhen University Health Science Center, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Baofeng Wang
- ARTcenter, Shenzhen Hengsheng Hospital, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Yasha Zhu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Jun'e Wu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Li Qiu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Shuyi Ling
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Ziqiong Zhou
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Yuqing Dai
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China.
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China.
| |
Collapse
|
17
|
Cumulus cell antioxidant system is modulated by patients' clinical characteristics and correlates with embryo development. J Assist Reprod Genet 2022; 39:1277-1295. [PMID: 35469374 DOI: 10.1007/s10815-022-02496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/13/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To study whether the cumulus cell antioxidant system varies accordingly to patients clinical characteristics' as age, infertility diagnosis, BMI, and stimulation protocol applied and if the antioxidant profile of cumulus cells could be used as a predictor of embryo development. METHODS A prospective study including 383 human cumulus samples provided by 191 female patients undergoing intracytoplasmic sperm injection during in vitro fertilization treatments from a local in vitro fertilization center and processed in university laboratories. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) enzyme activity levels and reduced glutathione (GSH) levels were measured in cumulus oophorus cells individually collected from each aspirated cumulus-oocyte complex, and the results of each sample were compared considering the oocytes outcome after ICSI and patients clinical characteristics. A total of 223 other human cumulus samples from previous studies were submitted to a gene expression meta-analysis. RESULTS The antioxidant system changes dramatically depending on patients' age, infertility diagnosis, stimulation protocol applied, and oocyte quality. SOD activity in cumulus cells revealed to be predictive of top-quality blastocysts for young patients with male factor infertility (P < 0.05), while GST levels were shown to be extremely influenced by infertility cause (P < 0.0001) and stimulation protocol applied (P < 0.05), but nonetheless, it can be used as a complementary tool for top-quality blastocyst prediction in patients submitted to intracytoplasmic sperm injection technique (ICSI) by male factor infertility (P < 0.05). CONCLUSION Through a simple and non-invasive analysis, the evaluation of redox enzymes in cumulus cells could be used to predict embryo development, in a personalized matter in specific patient groups, indicating top-quality oocytes and improving success rates in in vitro fertilization treatments. TRIAL REGISTRATION The trial was registered at UFRGS Research Ethics Committee and Plataforma Brasil under approval number 68081017.2.0000.5347 in June 6, 2019.
Collapse
|
18
|
Chitosan Oligosaccharides Alleviate H2O2-stimulated Granulosa Cell Damage via HIF-1α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4247042. [PMID: 35401926 PMCID: PMC8993563 DOI: 10.1155/2022/4247042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022]
Abstract
Oocyte maturation disorder and decreased quality are the main causes of infertility in women, and granulosa cells (GCs) provide the only microenvironment for oocyte maturation through autocrine and paracrine signaling by steroid hormones and growth factors. However, chronic inflammation and oxidative stress caused by ovarian hypoxia are the largest contributors to ovarian aging and GC dysfunction. Therefore, the amelioration of chronic inflammation and oxidative stress is expected to be a pivotal method to improve GC function and oocyte quality. In this study, we detected the protective effect of chitosan oligosaccharides (COS), on hydrogen peroxide- (H2O2-) stimulated oxidative damage in a human ovarian granulosa cell line (KGN). COS significantly increased cell viability, mitochondrial function, and the cellular glutathione (GSH) content and reduced apoptosis, reactive oxygen species (ROS) content, and the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial-derived growth factor (VEGF) in H2O2-stimulated KGN cells. COS treatment significantly increased levels of the TGF-β1 and IL-10 proteins and decreased levels of the IL-6 protein. Compared with H2O2-stimulated KGN cells, COS significantly increased the levels of E2 and P4 and decreased SA-β-gal protein expression. Furthermore, COS caused significant inactivation of the HIF-1α-VEGF pathway in H2O2-stimulated KGN cells. Moreover, inhibition of this pathway enhanced the inhibitory effects of COS on H2O2-stimulated oxidative injury and apoptosis in GCs. Thus, COS protected GCs from H2O2-stimulated oxidative damage and apoptosis by inactivating the HIF-1α-VEGF signaling pathway. In the future, COS might represent a therapeutic approach for ameliorating disrupted follicle development.
Collapse
|
19
|
Babayev E, Duncan FE. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod 2022; 106:351-365. [PMID: 34982142 PMCID: PMC8862720 DOI: 10.1093/biolre/ioab241] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023] Open
Abstract
The ovary is the first organ to age in humans with functional decline evident already in women in their early 30s. Reproductive aging is characterized by a decrease in oocyte quantity and quality, which is associated with an increase in infertility, spontaneous abortions, and birth defects. Reproductive aging also has implications for overall health due to decreased endocrinological output. Understanding the mechanisms underlying reproductive aging has significant societal implications as women globally are delaying childbearing and medical interventions have greatly increased the interval between menopause and total lifespan. Age-related changes inherent to the female gamete are well-characterized and include defects in chromosome and mitochondria structure, function, and regulation. More recently, it has been appreciated that the extra-follicular ovarian environment may have important direct or indirect impacts on the developing gamete, and age-dependent changes include increased fibrosis, inflammation, stiffness, and oxidative damage. The cumulus cells and follicular fluid that directly surround the oocyte during its final growth phase within the antral follicle represent additional critical local microenvironments. Here we systematically review the literature and evaluate the studies that investigated the age-related changes in cumulus cells and follicular fluid. Our findings demonstrate unique genetic, epigenetic, transcriptomic, and proteomic changes with associated metabolomic alterations, redox status imbalance, and increased apoptosis in the local oocyte microenvironment. We propose a model of how these changes interact, which may explain the rapid decline in gamete quality with age. We also review the limitations of published studies and highlight future research frontiers.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
20
|
Kępczyński Ł, Wcisło S, Korzeniewska-Dyl I, Połatyńska K, Gach A, Moczulski D. No evidence for change in expression of TBC1D1 and TBC1D4 genes in cultured human adipocytes stimulated by myokines and adipokines. Adipocyte 2021; 10:153-159. [PMID: 33769190 PMCID: PMC8007147 DOI: 10.1080/21623945.2021.1900497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TBC1D1 and TBC1D4 proteins play analogous, but not identical role in governing insulin-signalling pathway. Little is known about changes in expression levels of TBC1D1 and TBC1D4 genes in mammals, including humans. Number of factors were studied, but data remain controversial. The aim of this study was to evaluate the effect of selected cytokines, adipokines and myokines with known or putative insulin sensitivity regulation activity (adiponectin, irisin, omentin, interleukin 6, leptin, resistin, and tumour necrosis factor) on TBC1D1 and TBC1D4 expression levels in cultured differentiated human adipocytes. No significant differences were found between the adipocytes treated with different stimuli and this effect was determined not dose dependent. It is reasonable to conclude that relative shortage of data showing no change in TBC1D1 and TBC1D4 from literature results from publication bias; therefore, our finding provides additional insight into the role of both genes.
Collapse
Affiliation(s)
- Łukasz Kępczyński
- Department of Genetics, Polish Mothers’ Memorial Institute Research Hospital, Łódź, Poland
- Department of Internal Medicine and Nephrodiabetology, Medical University of Łódź and Military Medical Academy Memorial Teaching Hospital of the Medical University of Łódź - Central Veteran Hospital, Łódź, Poland
| | - Szymon Wcisło
- Department of Thoracic, General and Oncological Surgery, Medical University of Łódź and Military Medical Academy Memorial Teaching Hospital of the Medical University of Łódź - Central Veteran Hospital, Łódź, Poland
| | - Irmina Korzeniewska-Dyl
- Department of Internal Medicine and Nephrodiabetology, Medical University of Łódź and Military Medical Academy Memorial Teaching Hospital of the Medical University of Łódź - Central Veteran Hospital, Łódź, Poland
| | - Katarzyna Połatyńska
- Department of Neurology, Polish Mothers’ Memorial Institute Research Hospital, Łódź, Poland
| | - Agnieszka Gach
- Department of Genetics, Polish Mothers’ Memorial Institute Research Hospital, Łódź, Poland
| | - Dariusz Moczulski
- Department of Internal Medicine and Nephrodiabetology, Medical University of Łódź and Military Medical Academy Memorial Teaching Hospital of the Medical University of Łódź - Central Veteran Hospital, Łódź, Poland
| |
Collapse
|
21
|
Kim MJ, Kim YS, Kim YJ, Lee HR, Choi KH, Park EA, Kang KY, Yoon TK, Hwang S, Ko JJ, Kim YS, Lee JH. Upregulation of Low-Density Lipoprotein Receptor of the Steroidogenesis Pathway in the Cumulus Cells Is Associated with the Maturation of Oocytes and Achievement of Pregnancy. Cells 2021; 10:cells10092389. [PMID: 34572039 PMCID: PMC8465166 DOI: 10.3390/cells10092389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/29/2023] Open
Abstract
The maturation of the oocyte is influenced by cumulus cells (CCs) and associated with pregnancy rate, whereas the influencing factors have not been completely elucidated in the CCs. In this study, we identified new regulators of CCs for high-quality oocytes and successful pregnancies during assisted reproductive techniques. CCs were collected from cumulus–oocyte complexes (COCs) in young (≤33 years old) and old (≥40 years old) women undergoing intracytoplasmic sperm injection (ICSI) procedures. We screened for factors differentially expressed between young vs. old CCs and pregnancy vs. non-pregnancy using whole mRNA-seq-next-generation sequencing (NGS). We characterized the transcriptome of the CCs to identify factors critical for achieving pregnancy in IVF cycles. Women in the young and old pregnancy groups exhibited the up- and downregulation of multiple genes compared with the non-pregnancy groups, revealing the differential regulation of several specific genes involved in ovarian steroidogenesis in CCs. It was shown that the low-density lipoprotein (LDL) receptor to the steroidogenesis pathway was upregulated in CCs with higher maturity rates of oocytes in the pregnancy group. In conclusion, a higher pregnancy rate is related to the signaling pathway of steroidogenesis by the LDL receptor in infertile women undergoing IVF procedures.
Collapse
Affiliation(s)
- Myung Joo Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Department of Obstetrics and Gynecology, CHA University School of Medicine, Seoul 04637, Korea
| | - Young Sang Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Department of Obstetrics and Gynecology, CHA University School of Medicine, Seoul 04637, Korea
| | - Yu Jin Kim
- Laboratory of Reproductive and Molecular Medicine, CHA Fertility Center Seoul Station, Seoul 04637, Korea;
| | - Hye Ran Lee
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
| | - Kyoung Hee Choi
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
| | - Eun A Park
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
| | - Ki Ye Kang
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
| | - Tae Ki Yoon
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Department of Obstetrics and Gynecology, CHA University School of Medicine, Seoul 04637, Korea
| | - Sohyun Hwang
- CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea;
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea
| | - Jung Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea
- Correspondence: (J.J.K.); (Y.S.K.); (J.H.L.); Tel.: +82-31-881-7133 (J.J.K.); +82-2-2002-0300 (Y.S.K); +82-2-2002-0406 (J.H.L.)
| | - You Shin Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Department of Obstetrics and Gynecology, CHA University School of Medicine, Seoul 04637, Korea
- Correspondence: (J.J.K.); (Y.S.K.); (J.H.L.); Tel.: +82-31-881-7133 (J.J.K.); +82-2-2002-0300 (Y.S.K); +82-2-2002-0406 (J.H.L.)
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (M.J.K.); (Y.S.K.); (H.R.L.); (K.H.C.); (E.A.P.); (K.Y.K.); (T.K.Y.)
- Laboratory of Reproductive and Molecular Medicine, CHA Fertility Center Seoul Station, Seoul 04637, Korea;
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea
- Correspondence: (J.J.K.); (Y.S.K.); (J.H.L.); Tel.: +82-31-881-7133 (J.J.K.); +82-2-2002-0300 (Y.S.K); +82-2-2002-0406 (J.H.L.)
| |
Collapse
|
22
|
Li S, Wang J, Zhang H, Ma D, Zhao M, Li N, Men Y, Zhang Y, Chu H, Lei C, Shen W, Othman OEM, Zhao Y, Min L. Transcriptome profile of goat folliculogenesis reveals the interaction of oocyte and granulosa cell in correlation with different fertility population. Sci Rep 2021; 11:15698. [PMID: 34344973 PMCID: PMC8333342 DOI: 10.1038/s41598-021-95215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022] Open
Abstract
To understand the molecular and genetic mechanisms related to the litter size in one species of two different populations (high litter size and low litter size), we performed RNA-seq for the oocytes and granulosa cells (GCs) at different developmental stages of follicle, and identified the interaction of genes from both sides of follicle (oocyte and GCs) and the ligand-receptor pairs from these two sides. Our data were very comprehensive to uncover the difference between these two populations regarding the folliculogenesis. First, we identified a set of potential genes in oocyte and GCs as the marker genes which can be used to determine the goat fertility capability and ovarian reserve ability. The data showed that GRHPR, GPR84, CYB5A and ERAL1 were highly expressed in oocyte while JUNB, SCN2A, MEGE8, ZEB2, EGR1and PRRC2A were highly expressed in GCs. We found more functional genes were expressed in oocytes and GCs in high fertility group (HL) than that in low fertility group (LL). We uncovered that ligand-receptor pairs in Notch signaling pathway and transforming growth factor-β (TGF-β) superfamily pathways played important roles in goat folliculogenesis for the different fertility population. Moreover, we discovered that the correlations of the gene expression in oocytes and GCs at different stages in the two populations HL and LL were different, too. All the data reflected the gene expression landscape in oocytes and GCs which was correlated well with the fertility capability.
Collapse
Affiliation(s)
- Shen Li
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Dongxue Ma
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Minghui Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Na Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yuhao Men
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yuan Zhang
- Jining Animal Husbandry Development Center, Jining, People's Republic of China
| | - Huimin Chu
- Jining Agricultural Science Institute, Jining, People's Republic of China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | | | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China. .,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Lingjiang Min
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
23
|
Zheng J, Dai Y, Lin X, Huang Q, Shi L, Jin X, Liu N, Zhou F, Zhang S. Hypoxia‑induced lactate dehydrogenase A protects cells from apoptosis in endometriosis. Mol Med Rep 2021; 24:637. [PMID: 34278456 PMCID: PMC8281285 DOI: 10.3892/mmr.2021.12276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The pathological expression and function of lactate dehydrogenase A (LDHA), a key enzyme that converts pyruvate into lactic acid during glycolysis, remains unknown in endometriosis. In the present study, LDHA expression in tissue samples was determined by immunohistochemistry. To examine whether LDHA was induced by hypoxia, primary cultured endometrial stromal cells (ESCs) and glandular epithelial Ishikawa cells were exposed to 1% O2 (hypoxia) or 21% O2 (normoxia). Cellular functions were assessed by flow cytometry, Transwell and Cell Counting Kit-8 assays in LDHA-silenced ESCs and Ishikawa cells. Mitochondrial functions were evaluated using mitochondrial membrane potential JC-1 staining, reactive oxygen species flow cytometric analysis and ATP detection. Additionally, lactic acid production was examined and western blotting was used to evaluate the expression levels of proteins associated with apoptosis, cell cycle and glycolysis, as well as regulatory proteins involved in epithelial-mesenchymal transformation and glycolytic pathways. LDHA was localized to endometrial glandular cells and stromal cells. However, LDHA protein expression was higher in endometriotic lesions compared with that in normal and eutopic endometria. LDHA expression levels in ectopic glandular cells were higher during the proliferative stage compared with during the secretory stage. Hypoxia treatment of Ishikawa cells and ESCs markedly induced the mRNA and protein expression of LDHA. Silencing of LDHA expression in Ishikawa cells and THESC cells significantly promoted impaired mitochondrial function and apoptosis while inhibiting migration and glycolysis. However, it had no obvious effect on proliferation. In conclusion, the present study revealed that LDHA was highly expressed in endometriotic tissues, where it may serve a notable role in the occurrence and development of endometriosis.
Collapse
Affiliation(s)
- Jinyan Zheng
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiang Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Qianmeng Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Na Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
24
|
Li CJ, Lin LT, Tsai HW, Chern CU, Wen ZH, Wang PH, Tsui KH. The Molecular Regulation in the Pathophysiology in Ovarian Aging. Aging Dis 2021; 12:934-949. [PMID: 34094652 PMCID: PMC8139203 DOI: 10.14336/ad.2020.1113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
The female reproductive system is of great significance to women’s health. Aging of the female reproductive system occurs approximately 10 years prior to the natural age-associated functional decline of other organ systems. With an increase in life expectancy worldwide, reproductive aging has gradually become a key health issue among women. Therefore, an adequate understanding of the causes and molecular mechanisms of ovarian aging is essential towards the inhibition of age-related diseases and the promotion of health and longevity in women. In general, women begin to experience a decline in ovarian function around the age of 35 years, which is mainly manifested as a decrease in the number of ovarian follicles and the quality of oocytes. Studies have revealed the occurrence of mitochondrial dysfunction, reduced DNA repair, epigenetic changes, and metabolic alterations in the cells within the ovaries as age increases. In the present work, we reviewed the possible factors of aging-induced ovarian insufficiency based on its clinical diagnosis and performed an in-depth investigation of the relevant molecular mechanisms and potential targets to provide novel approaches for the effective improvement of ovarian function in older women.
Collapse
Affiliation(s)
- Chia-Jung Li
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Te Lin
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hsiao-Wen Tsai
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chyi-Uei Chern
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- 4Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Peng-Hui Wang
- 3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,5Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,6Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,7Female Cancer Foundation, Taipei, Taiwan
| | - Kuan-Hao Tsui
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,8Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
25
|
Cerván-Martín M, Bossini-Castillo L, Rivera-Egea R, Garrido N, Luján S, Romeu G, Santos-Ribeiro S, Castilla JA, Gonzalvo MDC, Clavero A, Vicente FJ, Guzmán-Jiménez A, Burgos M, Barrionuevo FJ, Jiménez R, Sánchez-Curbelo J, López-Rodrigo O, Peraza MF, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Carmona FD, Palomino-Morales RJ. Effect and in silico characterization of genetic variants associated with severe spermatogenic disorders in a large Iberian cohort. Andrology 2021; 9:1151-1165. [PMID: 33784440 DOI: 10.1111/andr.13009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe spermatogenic failure (SpF) represents the most extreme manifestation of male infertility, as it decreases drastically the semen quality leading to either severe oligospermia (SO, <5 million spermatozoa/mL semen) or non-obstructive azoospermia (NOA, complete lack of spermatozoa in the ejaculate without obstructive causes). OBJECTIVES The main objective of the present study is to analyze in the Iberian population the effect of 6 single-nucleotide polymorphisms (SNPs) previously associated with NOA in Han Chinese through genome-wide association studies (GWAS) and to establish their possible functional relevance in the development of specific SpF patterns. MATERIALS AND METHODS We genotyped 674 Iberian infertile men (including 480 NOA and 194 SO patients) and 1058 matched unaffected controls for the GWAS-associated variants PRMT6-rs12097821, PEX10-rs2477686, CDC42BPA-rs3000811, IL17A-rs13206743, ABLIM1-rs7099208, and SOX5-rs10842262. Their association with SpF, SO, NOA, and different NOA phenotypes was evaluated by logistic regression models, and their functional relevance was defined by comprehensive interrogation of public resources. RESULTS ABLIM1-rs7099208 was associated with SpF under both additive (OR = 0.86, p = 0.036) and dominant models (OR = 0.78, p = 0.026). The CDC42BPA-rs3000811 minor allele frequency was significantly increased in the subgroup of NOA patients showing maturation arrest (MA) of germ cells compared to the remaining NOA cases under the recessive model (OR = 4.45, p = 0.044). The PEX10-rs2477686 SNP was associated with a negative testicular sperm extraction (TESE) outcome under the additive model (OR = 1.32, p = 0.034). The analysis of functional annotations suggested that these variants affect the testis-specific expression of nearby genes and that lincRNA may play a role in SpF. CONCLUSIONS Our data support the association of three previously reported NOA risk variants in Asians (ABLIM1-rs7099208, CDC42BPA-rs3000811, and PEX10-rs2477686) with different manifestations of SpF in Iberians of European descent, likely by influencing gene expression and lincRNA deregulation.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain.,IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain.,Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain.,CEIFER Biobanco - NextClinics, Granada, Spain
| | - María Del Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain
| | - Francisco Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - María Fernanda Peraza
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patrícia Isabel Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal.,Nova Medical School, ToxOmics - Centro de Toxicogenómica e Saúde Humana, Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alexandra Manuel Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Francisco David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rogelio Jesús Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| |
Collapse
|
26
|
Imanaka S, Shigetomi H, Kobayashi H. Reprogramming of glucose metabolism of cumulus cells and oocytes and its therapeutic significance. Reprod Sci 2021; 29:653-667. [PMID: 33675030 DOI: 10.1007/s43032-021-00505-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The aim of this review is to summarize our current understanding of the molecular mechanism for the glucose metabolism, especially pyruvate dehydrogenase (PDH), during oocyte maturation, as well as future perspectives of therapeutic strategies for aging focusing on metabolic regulation between aerobic glycolysis and the tricarboxylic acid (TCA) cycle/oxidative phosphorylation (OXPHOS). Each keyword alone or in combination was used to search from PubMed. Glucose metabolism is a dynamic process involving "On" and "Off" switches by the pyruvate dehydrogenase kinase (PDK)-PDH axis, which is crucial for energy metabolism and mitochondrial efficiency in cumulus cell differentiation and oocyte maturation. Activation of PDK suppresses the conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA) through the inactivation of PDH, which allows the cumulus cells to supply sufficient amounts of pyruvate, lactate, and nicotinamide adenine dinucleotide phosphate (NADPH) to the oocytes. On the other hand, inactivation of PDK in oocytes can produce adenosine triphosphate (ATP) through a metabolic shift from aerobic glycolysis to the TCA cycle/OXPHOS. The metabolic balance between aerobic glycolysis and TCA cycle/OXPHOS presents us with a number of enzymes, ligands, receptors, and antioxidants that are potential therapeutic targets, some of which have already been successfully pursued to improve fertility outcomes. However, there are also many reports that question their efficacy. In conclusion, understanding the molecular mechanisms involved in the PDK-PDH axis is a crucial step to advance in novel therapeutic strategies to improve oocyte quality.
Collapse
Affiliation(s)
- Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Aska Ladies Clinic, Nara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan. .,Ms.Clinic MayOne, Kashihara, Japan.
| |
Collapse
|
27
|
Hughes CHK, Murphy BD. Nuclear receptors: Key regulators of somatic cell functions in the ovulatory process. Mol Aspects Med 2020; 78:100937. [PMID: 33288229 DOI: 10.1016/j.mam.2020.100937] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022]
Abstract
The development of the ovarian follicle to its culmination by ovulation is an essential element of fertility. The final stages of ovarian follicular growth are characterized by granulosa cell proliferation and differentiation, and steroid synthesis under the influence of follicle-stimulating hormone (FSH). The result is a population of granulosa cells poised to respond to the ovulatory surge of luteinizing hormone (LH). Members of the nuclear receptor superfamily of transcription factors play indispensable roles in the regulation of these events. The key regulators of the final stages of follicular growth that precede ovulation from this family include the estrogen receptor beta (ESR2) and the androgen receptor (AR), with additional roles for others, including steroidogenic factor-1 (SF-1) and liver receptor homolog-1 (LRH-1). Following the LH surge, the mural and cumulus granulosa cells undergo rapid changes that result in expansion of the cumulus layer, and a shift in ovarian steroid hormone biosynthesis from estradiol to progesterone production. The nuclear receptor best associated with these events is LRH-1. Inadequate cumulus expansion is also observed in the absence of AR and ESR2, but not the progesterone receptor (PGR). The terminal stages of ovulation are regulated by PGR, which increases the abundance of the proteases that are directly responsible for rupture. It further regulates the prostaglandins and cytokines associated with the inflammatory-like characteristics of ovulation. LRH-1 regulates PGR, and is also a key regulator of steroidogenesis, cellular proliferation, and cellular migration, and cytoskeletal remodeling. In summary, nuclear receptors are among the panoply of transcriptional regulators with roles in ovulation, and several are necessary for normal ovarian function.
Collapse
Affiliation(s)
- Camilla H K Hughes
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Qc, J2S 2M2, Canada
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Qc, J2S 2M2, Canada.
| |
Collapse
|
28
|
Wyse BA, Fuchs Weizman N, Kadish S, Balakier H, Sangaralingam M, Librach CL. Transcriptomics of cumulus cells - a window into oocyte maturation in humans. J Ovarian Res 2020; 13:93. [PMID: 32787963 PMCID: PMC7425158 DOI: 10.1186/s13048-020-00696-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cumulus cells (CC) encapsulate growing oocytes and support their growth and development. Transcriptomic signatures of CC have the potential to serve as valuable non-invasive biomarkers for oocyte competency and potential. The present sibling cumulus-oocyte-complex (COC) cohort study aimed at defining functional variations between oocytes of different maturity exposed to the same stimulation conditions, by assessing the transcriptomic signatures of their corresponding CC. CC were collected from 18 patients with both germinal vesicle and metaphase II oocytes from the same cycle to keep the biological variability between samples to a minimum. RNA sequencing, differential expression, pathway analysis, and leading-edge were performed to highlight functional differences between CC encapsulating oocytes of different maturity. RESULTS Transcriptomic signatures representing CC encapsulating oocytes of different maturity clustered separately on principal component analysis with 1818 genes differentially expressed. CCs encapsulating mature oocytes were more transcriptionally synchronized when compared with CCs encapsulating immature oocytes. Moreover, the transcriptional activity was lower, albeit not absent, in CC encapsulating mature oocytes, with 2407 fewer transcripts detected than in CC encapsulating immature (germinal vesicle - GV) oocytes. Hallmark pathways and ovarian processes that were affected by oocyte maturity included cell cycle regulation, steroid metabolism, apoptosis, extracellular matrix remodeling, and inflammation. CONCLUSIONS Herein we review our findings and discuss how they align with previous literature addressing transcriptomic signatures of oocyte maturation. Our findings support the available literature and enhance it with several genes and pathways, which have not been previously implicated in promoting human oocyte maturation. This study lays the ground for future functional studies that can enhance our understanding of human oocyte maturation.
Collapse
Affiliation(s)
- Brandon A Wyse
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada.
| | - Noga Fuchs Weizman
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
| | - Seth Kadish
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
| | - Hanna Balakier
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, 790 Bay St. Suite 420, Toronto, ON, M5G 1N8, Canada
- Department of Obstetrics and Gynecology; Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Physiology; Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Canada
| |
Collapse
|
29
|
Kastora SL, Triantafyllidou O, Kolovos G, Kastoras A, Sigalos G, Vlahos N. Combinational approach of retrospective clinical evidence and transcriptomics highlight AMH superiority to FSH, as successful ICSI outcome predictor. J Assist Reprod Genet 2020; 37:1623-1635. [PMID: 32430730 PMCID: PMC7376803 DOI: 10.1007/s10815-020-01802-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
Objective Combination of transcriptomic and retrospective clinical data, to assess anti-Mullerian hormone (AMH) functionality at a cumulus cell level and evaluate AMH potential as a suitable marker for IVF outcomes (oocytes retrieved, number of day 3 embryos, gestation outcomes). Design Raw RNA-sequencing data of cumulus cells sourced from younger (n = 10) patient group (group A) (age 29 (1 year of age), baseline FSH 7.4 (0.5 mIU/ml), AMH 4.67 (1.56 ng/ml)) and older (n = 10) patient group (group B) (age 43 (± 0.55 years of age), baseline FSH 8 (0.8 mIU/ml), AMH 1.07 (0.44 ng/ml)) were employed to derive transcriptomic differences among high vs. low AMH groups. We collected retrospectively patient data from 80 infertile patients selected according to pre-specified inclusion criteria. Setting Publicly available raw RNA-sequencing data were retrieved from the SRA database of NCBI resource GEO Accession (GSM21575/35-44; GEO Accession: GSM21575/45-55). Retrospective data were collected from referrals to the Institute of Reproductive Medicine, Lito Hospital of Athens and the Institute of Life, Iaso Hospital of Athens, between the periods of March 2015 and April 2018. Intervention(s) A fixed human menopausal gonadotropin (hMG) antagonist protocol was used for all patients. All patients had serum AMH levels measured within a 3-month period prior to stimulation and serum levels of FSH and estradiol (day 2 of menstrual cycle; E2) (Clinical Trial code NV24042014). Main outcome measure(s) The primary outcomes were identification of transcriptomic variations among high (group A) vs. low (group B) AMH patients. Retrospective data primary outcomes were number of oocytes retrieved, fertilized successfully (grades A and B, day 2 embryos), and total number of day 3 embryos. Secondary outcome was live birth rate. Finally, we compared primary outcomes with AMH and FSH level as well as their genetic pathways (interacting genes) to demonstrate the predictive accuracy. Results Essential players of the AMH signaling cascade, namely, SMAD1, SMAD4, SMAD5, ALK1, and LEF1, were significantly upregulated in group A (n 10) transcriptome. This biological clue was further supported by retrospective clinical data (n 80 participants), where AMH was positively correlated with both oocytes retrieved and fertilized as well as number of day 3 (grades A and B) embryos from patients undergoing IVF, in a statistically significant manner. AMH was further positive trend of association with successful pregnancy outcomes. Conclusion Overall, this study offers new insight on AMH effects upon cumulus cells and new aspects on how AMH might promote oocyte integrity and embryo viability at a biochemical level as well as add to the current body of evidence supporting AMH clinical potential as a more sensitive marker of IVF outcomes in comparison with FSH, regarding numbers of oocytes received and high-quality day 2 and day 3 embryos. Electronic supplementary material The online version of this article (10.1007/s10815-020-01802-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Olga Triantafyllidou
- Reproductive Medicine Unit, "Leto" Maternity Hospital, Mouson str. 7-13, 11524, Athens, Greece
| | - Georgios Kolovos
- 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, University of Athens, Vas. Sofias str. 7, 11528, Athens,, Greece
| | - Athanasios Kastoras
- Reproductive Medicine Unit, "Leto" Maternity Hospital, Mouson str. 7-13, 11524, Athens, Greece
| | - Georgios Sigalos
- Reproductive Medicine Unit, "Leto" Maternity Hospital, Mouson str. 7-13, 11524, Athens, Greece
| | - Nikos Vlahos
- Assisted Conception Unit "IAKENTRO", Fragokklisias Str, 15125, Athens, Greece
| |
Collapse
|
30
|
Yang Y, Cheung HH, Zhang C, Wu J, Chan WY. Melatonin as Potential Targets for Delaying Ovarian Aging. Curr Drug Targets 2020; 20:16-28. [PMID: 30156157 DOI: 10.2174/1389450119666180828144843] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
In previous studies, oxidative stress damage has been solely considered to be the mechanism of ovarian aging, and several antioxidants have been used to delay ovarian aging. But recently, more reports have found that endoplasmic reticulum stress, autophagy, sirtuins, mitochondrial dysfunction, telomeres, gene mutation, premature ovarian failure, and polycystic ovary syndrome are all closely related to ovarian aging, and these factors all interact with oxidative stress. These novel insights on ovarian aging are summarized in this review. Furthermore, as a pleiotropic molecule, melatonin is an important antioxidant and used as drugs for several diseases treatment. Melatonin regulates not only oxidative stress, but also the various molecules, and normal and pathological processes interact with ovarian functions and aging. Hence, the mechanism of ovarian aging and the extensive role of melatonin in the ovarian aging process are described herein. This systematic review supply new insights into ovarian aging and the use of melatonin to delay its onset, further supply a novel drug of melatonin for ovarian aging treatment.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China
| | - Hoi-Hung Cheung
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China.,Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wai-Yee Chan
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| |
Collapse
|
31
|
Zhao X, Liu X, Zhang A, Chen H, Huo Q, Li W, Ye R, Chen Z, Liang L, Liu QA, Shen J, Jin X, Li W, Nygaard M, Liu X, Hou Y, Ni T, Bolund L, Gottschalk W, Tao W, Gu J, Tian XL, Yang H, Wang J, Xu X, Lutz MW, Min J, Zeng Y, Nie C. The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. Aging (Albany NY) 2019; 10:1206-1222. [PMID: 29883365 PMCID: PMC6046244 DOI: 10.18632/aging.101461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
Copy number variations (CNVs) have been shown to cause numerous diseases, however, their roles in human lifespan remain elusive. In this study, we investigate the association of CNVs with longevity by comparing the Han Chinese genomes of long-lived individuals from 90 to 117 years of age and the middle-aged from 30 to 65. Our data demonstrate that the numbers of CNVs, especially deletions, increase significantly in a direct correlation with longevity. We identify eleven CNVs that strongly associate with longevity; four of them locate in the chromosome bands, 7p11.2, 20q13.33, 19p12 and 8p23.3 and overlap partially with the CNVs identified in long-lived Danish or U.S. populations, while the other seven have not been reported previously. These CNV regions encode nineteen known genes, and some of which have been shown to affect aging-related phenotypes such as the shortening of telomere length (ZNF208), the risk of cancer (FOXA1, LAMA5, ZNF716), and vascular and immune-related diseases (ARHGEF10, TOR2A, SH2D3C). In addition, we found several pathways enriched in long-lived genomes, including FOXA1 and FOXA transcription factor networks involved in regulating aging or age-dependent diseases such as cancer. Thus, our study has identified longevity-associated CNV regions and their affected genes and pathways. Our results suggest that the human genome structures such as CNVs might play an important role in determining a long life in human.
Collapse
Affiliation(s)
- Xin Zhao
- BGI Shenzhen, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.,College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Liu
- BGI Shenzhen, Shenzhen 518083, China.,School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | | | - Huashuai Chen
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham NC 27710, USA.,Center for Healthy Aging and Development Studies, Raissun Institute for Advanced Studies, National School of Development, Peking University, Beijing 10080, China.,Business School of Xiangtan University, Xiangtan 411105, China
| | - Qing Huo
- BGI Shenzhen, Shenzhen 518083, China
| | | | - Rui Ye
- BGI Shenzhen, Shenzhen 518083, China
| | | | | | | | - Juan Shen
- BGI Shenzhen, Shenzhen 518083, China
| | - Xin Jin
- BGI Shenzhen, Shenzhen 518083, China
| | - Wenwen Li
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Marianne Nygaard
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C 5000, Denmark
| | - Xiao Liu
- BGI Shenzhen, Shenzhen 518083, China
| | - Yong Hou
- BGI Shenzhen, Shenzhen 518083, China
| | - Ting Ni
- State Key Laboratory of Genetics Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lars Bolund
- BGI Shenzhen, Shenzhen 518083, China.,Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - William Gottschalk
- Department of Neurology, Medical Center, Duke University, Durham, NC 27704, USA
| | - Wei Tao
- School of Life Sciences, Peking University, Beijing 100080, China
| | - Jun Gu
- School of Life Sciences, Peking University, Beijing 100080, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Human Aging Research Institute and School of Life Science Nanchang University, Nanchang 330000, China
| | | | - Jian Wang
- BGI Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI Shenzhen, Shenzhen 518083, China
| | - Michael W Lutz
- Department of Neurology, Medical Center, Duke University, Durham, NC 27704, USA
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Zeng
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham NC 27710, USA.,Center for Healthy Aging and Development Studies, Raissun Institute for Advanced Studies, National School of Development, Peking University, Beijing 10080, China
| | - Chao Nie
- BGI Shenzhen, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| |
Collapse
|
32
|
Yadav AK, Yadav PK, Chaudhary GR, Tiwari M, Gupta A, Sharma A, Pandey AN, Pandey AK, Chaube SK. Autophagy in hypoxic ovary. Cell Mol Life Sci 2019; 76:3311-3322. [PMID: 31062072 PMCID: PMC11105528 DOI: 10.1007/s00018-019-03122-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/30/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
Oxygen deprivation affects human health by modulating system as well as cellular physiology. Hypoxia generates reactive oxygen species (ROS), causes oxidative stress and affects female reproductive health by altering ovarian as well as oocyte physiology in mammals. Hypoxic conditions lead to several degenerative changes by inducing various cell death pathways like autophagy, apoptosis and necrosis in the follicle of mammalian ovary. The encircling somatic cell death interrupts supply of nutrients to the oocyte and nutrient deprivation may result in the generation of ROS. Increased level of ROS could induce granulosa cells as well as oocyte autophagy. Although autophagy removes damaged proteins and subcellular organelles to maintain the cell survival, irreparable damages could induce cell death within intra-follicular microenvironment. Hypoxia-induced autophagy is operated through 5' AMP activated protein kinase-mammalian target of rapamycin, endoplasmic reticulum stress/unfolded protein response and protein kinase C delta-c-junN terminal kinase 1 pathways in a wide variety of somatic cell types. Similar to somatic cells, we propose that hypoxia may induce granulosa cell as well as oocyte autophagy and it could be responsible at least in part for germ cell elimination from mammalian ovary. Hypoxia-mediated germ cell depletion may cause several reproductive impairments including early menopause in mammals.
Collapse
Affiliation(s)
- Anil Kumar Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Govind R Chaudhary
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
33
|
Transcriptome analysis of porcine immature oocytes and surrounding cumulus cells after vitrification and in vitro maturation. Theriogenology 2019; 134:90-97. [PMID: 31158735 DOI: 10.1016/j.theriogenology.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/19/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
Abstract
Cryopreservation impairs oocyte quality, which may be associated with abnormal gene expression. Currently, alteration of mRNA levels in vitrified porcine oocytes has not been well characterized. The aim of this study was to analyze transcriptome profiles with RNA sequencing (RNA-seq) in porcine immature oocytes and their surrounding cumulus cells (CCs) after vitrification and in vitro maturation (IVM). There were 19 upregulated and 18 downregulated genes differentially expressed in vitrified oocytes, with no significant GO enrichment or KEGG pathway identified for these genes. In addition, CCs derived from vitrified oocytes had 40 significantly upregulated and 100 significantly downregulated genes. In total, 7 GO terms were significantly enriched in molecular function and biological process, and only MAPK signaling pathway reached significant enrichment based on KEGG analysis. Moreover, selected differentially expressed genes had similar expression patterns through comparison between results from qRT-PCR and RNA-Seq. In conclusion, our data provided detailed information on mRNA transcriptomes in porcine immature oocytes and CCs after vitrification and IVM, which offered now insights regarding reduced developmental potential of the vitrified oocytes.
Collapse
|
34
|
Biase FH, Kimble KM. Functional signaling and gene regulatory networks between the oocyte and the surrounding cumulus cells. BMC Genomics 2018; 19:351. [PMID: 29747587 PMCID: PMC5946446 DOI: 10.1186/s12864-018-4738-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Background The maturation and successful acquisition of developmental competence by an oocyte, the female gamete, during folliculogenesis is highly dependent on molecular interactions with somatic cells. Most of the cellular interactions identified, thus far, are modulated by growth factors, ions or metabolites. We hypothesized that this interaction is also modulated at the transcriptional level, which leads to the formation of gene regulatory networks between the oocyte and cumulus cells. We tested this hypothesis by analyzing transcriptome data from single oocytes and the surrounding cumulus cells collected from antral follicles employing an analytical framework to determine interdependencies at the transcript level. Results We overlapped our transcriptome data with putative protein-protein interactions and identified hundreds of ligand-receptor pairs that can transduce paracrine signaling between an oocyte and cumulus cells. We determined that 499 ligand-encoding genes expressed in oocytes and cumulus cells are functionally associated with transcription regulation (FDR < 0.05). Ligand-encoding genes with specific expression in oocytes or cumulus cells were enriched for biological functions that are likely associated with the coordinated formation of transzonal projections from cumulus cells that reach the oocyte’s membrane. Thousands of gene pairs exhibit significant linear co-expression (absolute correlation > 0.85, FDR < 1.8 × 10− 5) patterns between oocytes and cumulus cells. Hundreds of co-expressing genes showed clustering patterns associated with biological functions (FDR < 0.5) necessary for a coordinated function between the oocyte and cumulus cells during folliculogenesis (i.e. regulation of transcription, translation, apoptosis, cell differentiation and transport). Conclusion Our analyses revealed a complex and functional gene regulatory circuit between the oocyte and surrounding cumulus cells. The regulatory profile of each cumulus-oocyte complex is likely associated with the oocytes’ developmental potential to derive an embryo. Electronic supplementary material The online version of this article (10.1186/s12864-018-4738-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando H Biase
- Department of Animal Sciences, Auburn University, 559 Devall Dr, Auburn, AL, 36849, USA.
| | - Katelyn M Kimble
- Department of Animal Sciences, Auburn University, 559 Devall Dr, Auburn, AL, 36849, USA
| |
Collapse
|
35
|
Da Broi MG, Giorgi VSI, Wang F, Keefe DL, Albertini D, Navarro PA. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. J Assist Reprod Genet 2018; 35:735-751. [PMID: 29497954 PMCID: PMC5984887 DOI: 10.1007/s10815-018-1143-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/19/2018] [Indexed: 01/03/2023] Open
Abstract
An equilibrium needs to be established by the cellular and acellular components of the ovarian follicle if developmental competence is to be acquired by the oocyte. Both cumulus cells (CCs) and follicular fluid (FF) are critical determinants for oocyte quality. Understanding how CCs and FF influence oocyte quality in the presence of deleterious systemic or pelvic conditions may impact clinical decisions in the course of managing infertility. Given that the functional integrities of FF and CCs are susceptible to concurrent pathological conditions, it is important to understand how pathophysiological factors influence natural fertility and the outcomes of pregnancy arising from the use of assisted reproduction technologies (ARTs). Accordingly, this review discusses the roles of CCs and FF in ensuring oocyte competence and present new insights on pathological conditions that may interfere with oocyte quality by altering the intrafollicular environment.
Collapse
Affiliation(s)
- M. G. Da Broi
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, SP CEP: 14049-900 Brazil
| | - V. S. I. Giorgi
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, SP CEP: 14049-900 Brazil
| | - F. Wang
- Department of Obstetrics and Gynecology, Laboratory of Reproductive Medicine, NYU School of Medicine, 180 Varick Street, New York, NY 10014 USA
| | - D. L. Keefe
- Department of Obstetrics and Gynecology, Laboratory of Reproductive Medicine, NYU School of Medicine, 180 Varick Street, New York, NY 10014 USA
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY 10016 USA
| | - D. Albertini
- The Center for Human Reproduction, New York, NY USA
| | - P. A. Navarro
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, SP CEP: 14049-900 Brazil
| |
Collapse
|
36
|
El-Hayek S, Yang Q, Abbassi L, FitzHarris G, Clarke HJ. Mammalian Oocytes Locally Remodel Follicular Architecture to Provide the Foundation for Germline-Soma Communication. Curr Biol 2018; 28:1124-1131.e3. [PMID: 29576478 DOI: 10.1016/j.cub.2018.02.039] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/02/2018] [Accepted: 02/15/2018] [Indexed: 01/11/2023]
Abstract
Germ cells develop in a microenvironment created by the somatic cells of the gonad [1-3]. Although in males, the germ and somatic support cells lie in direct contact, in females, a thick extracellular coat surrounds the oocyte, physically separating it from the somatic follicle cells [4]. To bypass this barrier to communication, narrow cytoplasmic extensions of the follicle cells traverse the extracellular coat to reach the oocyte plasma membrane [5-9]. These delicate structures provide the sole platform for the contact-mediated communication between the oocyte and its follicular environment that is indispensable for production of a fertilizable egg [8, 10-15]. Identifying the mechanisms underlying their formation should uncover conserved regulators of fertility. We show here in mice that these structures, termed transzonal projections (TZPs), are specialized filopodia whose number amplifies enormously as oocytes grow, enabling increased germ-soma communication. By creating chimeric complexes of genetically tagged oocytes and follicle cells, we demonstrate that follicle cells elaborate new TZPs that push through the extracellular coat to reach the oocyte surface. We further show that growth-differentiation factor 9, produced by the oocyte, drives the formation of new TZPs, uncovering a key yet unanticipated role for the germ cell in building these essential bridges of communication. Moreover, TZP number and germline-soma communication are strikingly reduced in reproductively aged females. Thus, the growing oocyte locally remodels follicular architecture to ensure that its developmental needs are met, and an inability of somatic follicle cells to respond appropriately to oocyte-derived cues may contribute to human infertility.
Collapse
Affiliation(s)
- Stephany El-Hayek
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Department of Biology, McGill University, Montreal, QC, Canada; Research Institute, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC H4A 3J1, Canada
| | - Qin Yang
- Research Institute, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC H4A 3J1, Canada
| | - Laleh Abbassi
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Research Institute, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC H4A 3J1, Canada
| | - Greg FitzHarris
- Centre Recherche CHUM and Département d'Obstétrique et de Gynécologie, Université de Montréal, 900 rue St-Denis, Montreal, QC H2X 0A9, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Department of Biology, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Research Institute, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
37
|
Wu YG, Barad DH, Kushnir VA, Wang Q, Zhang L, Darmon SK, Albertini DF, Gleicher N. With low ovarian reserve, Highly Individualized Egg Retrieval (HIER) improves IVF results by avoiding premature luteinization. J Ovarian Res 2018; 11:23. [PMID: 29548330 PMCID: PMC5857093 DOI: 10.1186/s13048-018-0398-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
Background Highly Individualized Egg Retrieval (HIER), defined as age-specific early oocyte retrieval (ER), has been demonstrated to avoid premature luteinization in women ≥43. We here investigated whether HIER also applies to younger women with premature ovarian aging (POA), and what best lead follicle size should be for administration of ovulation-triggers. Methods Fifty-six women ≥43, and 37 POA patients underwent IVF cycles. Granulosa cells (GCs) were isolated, cultures were established, RNA was extracted and real-time PCR analyses performed, with gene expressions at mRNA level investigated for FSH receptor (FSHR), luteinizing hormone receptor (LHCPR), P450 aromatase (CYP19a1) and progesterone receptor (PGR). POA was defined by age < 40, FSH above 95%CI and/or AMH below 95%CI for age. Women ≥43 years were divided into very early retrieval (VER), with human chorionic gonadotropin (hCG) trigger at 13.5–15.5 mm, ER at 16.0–18.0 mm or standard retrievel (SR) at 18.5–20.5 mm; POA patients were divided into ER and SR. Pregnancy rates and and molecular markers of premature luteinization (PL) were main outcome measures. Results ER resulted in a significantly higher clinical pregnancy rate (16.7%) than VER (5.9%) or SR (6.7%; both P < 0.05). Molecular markers of PL were highest with SR and lowest with VER. In POA, ER improved pregnancy chances even more than in women ≥43 (7.7% with SR vs. 41.7% with ER), while also reducing molecular markers of PL. With low ovarian reserve (LOR), by avoiding PL, ER with hCG trigger at 16.0–18.0 mm, thus, improves clinical pregnancy rates at all ages. As VER demonstrated lowest molecular PL marker but equally poor pregnancy rates as SR, too early ovulation triggers, likely, result in cytoplasmatic immaturity. Conclusions HIER is even more effective in POA patients than women above age 43, demonstrating that HIER should be further investigated going into even more advanced ages.
Collapse
Affiliation(s)
- Yan-Guang Wu
- The Center for Human Reproduction, New York, NY, 10021, USA
| | - David H Barad
- The Center for Human Reproduction, New York, NY, 10021, USA.,The Foundation for Reproductive Medicine, New York, NY, 10021, USA
| | - Vitaly A Kushnir
- The Center for Human Reproduction, New York, NY, 10021, USA.,Department of Obstetrics and Gynecology, Wake Forest University, Winston Salem, NC, 27106, USA
| | - Qi Wang
- The Center for Human Reproduction, New York, NY, 10021, USA
| | - Lin Zhang
- The Center for Human Reproduction, New York, NY, 10021, USA
| | - Sarah K Darmon
- The Center for Human Reproduction, New York, NY, 10021, USA
| | - David F Albertini
- The Center for Human Reproduction, New York, NY, 10021, USA.,Stem Cell Biology and Molecular Embryology Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Norbert Gleicher
- The Center for Human Reproduction, New York, NY, 10021, USA. .,The Foundation for Reproductive Medicine, New York, NY, 10021, USA. .,Stem Cell Biology and Molecular Embryology Laboratory, The Rockefeller University, New York, NY, 10065, USA. .,Department of Obstetics and Gynecology, University of Vienna School of Medicine, 1090, Vienna, Austria.
| |
Collapse
|
38
|
Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep 2018; 8:2202. [PMID: 29396444 PMCID: PMC5797088 DOI: 10.1038/s41598-018-20727-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Progress in assisted reproductive technologies strongly relies on understanding the regulation of the dialogue between oocyte and cumulus cells (CCs). Little is known about the role of long non-coding RNAs (lncRNAs) in the human cumulus-oocyte complex (COC). To this aim, publicly available RNA-sequencing data were analyzed to identify lncRNAs that were abundant in metaphase II (MII) oocytes (BCAR4, C3orf56, TUNAR, OOEP-AS1, CASC18, and LINC01118) and CCs (NEAT1, MALAT1, ANXA2P2, MEG3, IL6STP1, and VIM-AS1). These data were validated by RT-qPCR analysis using independent oocytes and CC samples. The functions of the identified lncRNAs were then predicted by constructing lncRNA-mRNA co-expression networks. This analysis suggested that MII oocyte lncRNAs could be involved in chromatin remodeling, cell pluripotency and in driving early embryonic development. CC lncRNAs were co-expressed with genes involved in apoptosis and extracellular matrix-related functions. A bioinformatic analysis of RNA-sequencing data to identify CC lncRNAs that are affected by maternal age showed that lncRNAs with age-related altered expression in CCs are essential for oocyte growth. This comprehensive analysis of lncRNAs expressed in human MII oocytes and CCs could provide biomarkers of oocyte quality for the development of non-invasive tests to identify embryos with high developmental potential.
Collapse
|