1
|
Park YJ, Nam BE, Park CM. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:865-882. [PMID: 38116738 DOI: 10.1111/jipb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Bo Eun Nam
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
2
|
Kong SG, Yamazaki Y, Shimada A, Kijima ST, Hirose K, Katoh K, Ahn J, Song HG, Han JW, Higa T, Takano A, Nakamura Y, Suetsugu N, Kohda D, Uyeda TQP, Wada M. CHLOROPLAST UNUSUAL POSITIONING 1 is a plant-specific actin polymerization factor regulating chloroplast movement. THE PLANT CELL 2024; 36:1159-1181. [PMID: 38134410 PMCID: PMC10980345 DOI: 10.1093/plcell/koad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Plants have unique responses to fluctuating light conditions. One such response involves chloroplast photorelocation movement, which optimizes photosynthesis under weak light by the accumulation of chloroplasts along the periclinal side of the cell, which prevents photodamage under strong light by avoiding chloroplast positioning toward the anticlinal side of the cell. This light-responsive chloroplast movement relies on the reorganization of chloroplast actin (cp-actin) filaments. Previous studies have suggested that CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1) is essential for chloroplast photorelocation movement as a regulator of cp-actin filaments. In this study, we conducted comprehensive analyses to understand CHUP1 function. Functional, fluorescently tagged CHUP1 colocalized with and was coordinately reorganized with cp-actin filaments on the chloroplast outer envelope during chloroplast movement in Arabidopsis thaliana. CHUP1 distribution was reversibly regulated in a blue light- and phototropin-dependent manner. X-ray crystallography revealed that the CHUP1-C-terminal domain shares structural homology with the formin homology 2 (FH2) domain, despite lacking sequence similarity. Furthermore, the CHUP1-C-terminal domain promoted actin polymerization in the presence of profilin in vitro. Taken together, our findings indicate that CHUP1 is a plant-specific actin polymerization factor that has convergently evolved to assemble cp-actin filaments and enables chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Yosuke Yamazaki
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Saku T Kijima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Keiko Hirose
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Jeongsu Ahn
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
| | - Hyun-Geun Song
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
| | - Jae-Woo Han
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
| | - Takeshi Higa
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Akira Takano
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Nakamura
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Noriyuki Suetsugu
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Taro Q P Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Masamitsu Wada
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Koenig AM, Liu B, Hu J. Visualizing the dynamics of plant energy organelles. Biochem Soc Trans 2023; 51:2029-2040. [PMID: 37975429 PMCID: PMC10754284 DOI: 10.1042/bst20221093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Plant organelles predominantly rely on the actin cytoskeleton and the myosin motors for long-distance trafficking, while using microtubules and the kinesin motors mostly for short-range movement. The distribution and motility of organelles in the plant cell are fundamentally important to robust plant growth and defense. Chloroplasts, mitochondria, and peroxisomes are essential organelles in plants that function independently and coordinately during energy metabolism and other key metabolic processes. In response to developmental and environmental stimuli, these energy organelles modulate their metabolism, morphology, abundance, distribution and motility in the cell to meet the need of the plant. Consistent with their metabolic links in processes like photorespiration and fatty acid mobilization is the frequently observed inter-organellar physical interaction, sometimes through organelle membranous protrusions. The development of various organelle-specific fluorescent protein tags has allowed the simultaneous visualization of organelle movement in living plant cells by confocal microscopy. These energy organelles display an array of morphology and movement patterns and redistribute within the cell in response to changes such as varying light conditions, temperature fluctuations, ROS-inducible treatments, and during pollen tube development and immune response, independently or in association with one another. Although there are more reports on the mechanism of chloroplast movement than that of peroxisomes and mitochondria, our knowledge of how and why these three energy organelles move and distribute in the plant cell is still scarce at the functional and mechanistic level. It is critical to identify factors that control organelle motility coupled with plant growth, development, and stress response.
Collapse
Affiliation(s)
- Amanda M. Koenig
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, U.S.A
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
4
|
Zhang Y, Dong G, Wu L, Wang X, Chen F, Xiong E, Xiong G, Zhou Y, Kong Z, Fu Y, Zeng D, Ma D, Qian Q, Yu Y. Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. PLANT PHYSIOLOGY 2023; 191:280-298. [PMID: 36102807 PMCID: PMC9806613 DOI: 10.1093/plphys/kiac427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Plant height and tiller number are two major factors determining plant architecture and yield. However, in rice (Oryza sativa), the regulatory mechanism of plant architecture remains to be elucidated. Here, we reported a recessive rice mutant presenting dwarf and reduced tillering phenotypes (drt1). Map-based cloning revealed that the phenotypes are caused by a single point mutation in DRT1, which encodes the Class I formin protein O. sativa formin homolog 13 (OsFH13), binds with F-actin, and promotes actin polymerization for microfilament organization. DRT1 protein localized on the plasma membrane (PM) and chloroplast (CP) outer envelope. DRT1 interacted with rice phototropin 2 (OsPHOT2), and the interaction was interrupted in drt1. Upon blue light stimulus, PM localized DRT1 and OsPHOT2 were translocated onto the CP membrane. Moreover, deficiency of DRT1 reduced OsPHOT2 internalization and OsPHOT2-mediated CP relocation. Our study suggests that rice formin protein DRT1/OsFH13 is necessary for plant morphology and CP relocation by modulating the actin-associated cytoskeleton network.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xuewen Wang
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, 30601, USA
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Institute of Agricultural Genomics, Chinese Academy of Agricultural Sciences, Shenzhen, 100018, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| |
Collapse
|
5
|
Xin GY, Li LP, Wang PT, Li XY, Han YJ, Zhao X. The action of enhancing weak light capture via phototropic growth and chloroplast movement in plants. STRESS BIOLOGY 2022; 2:50. [PMID: 37676522 PMCID: PMC10441985 DOI: 10.1007/s44154-022-00066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 09/08/2023]
Abstract
To cope with fluctuating light conditions, terrestrial plants have evolved precise regulation mechanisms to help optimize light capture and increase photosynthetic efficiency. Upon blue light-triggered autophosphorylation, activated phototropin (PHOT1 and PHOT2) photoreceptors function solely or redundantly to regulate diverse responses, including phototropism, chloroplast movement, stomatal opening, and leaf positioning and flattening in plants. These responses enhance light capture under low-light conditions and avoid photodamage under high-light conditions. NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2) are signal transducers that function in the PHOT1- and PHOT2-mediated response. NPH3 is required for phototropism, leaf expansion and positioning. RPT2 regulates chloroplast accumulation as well as NPH3-mediated responses. NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1) was recently identified as a PHOT1-interacting protein that functions redundantly with RPT2 to mediate chloroplast accumulation. The PHYTOCHROME KINASE SUBSTRATE (PKS) proteins (PKS1, PKS2, and PKS4) interact with PHOT1 and NPH3 and mediate hypocotyl phototropic bending. This review summarizes advances in phototropic growth and chloroplast movement induced by light. We also focus on how crosstalk in signaling between phototropism and chloroplast movement enhances weak light capture, providing a basis for future studies aiming to delineate the mechanism of light-trapping plants to improve light-use efficiency.
Collapse
Affiliation(s)
- Guang-Yuan Xin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu-Ping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Peng-Tao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yue Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan-Ji Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
6
|
Emerging Roles of Motile Epidermal Chloroplasts in Plant Immunity. Int J Mol Sci 2022; 23:ijms23074043. [PMID: 35409402 PMCID: PMC8999904 DOI: 10.3390/ijms23074043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Plant epidermis contains atypical small chloroplasts. However, the physiological role of this organelle is unclear compared to that of large mesophyll chloroplasts, the well-known function of which is photosynthesis. Although knowledge of the involvement of chloroplasts in the plant immunity has been expanded to date, the differences between the epidermal and mesophyll chloroplasts are beyond the scope of this study. Given the role of the plant epidermis as a barrier to environmental stresses, including pathogen attacks, and the immune-related function of chloroplasts, plant defense research on epidermal chloroplasts is an emerging field. Recent studies have revealed the dynamic movements of epidermal chloroplasts in response to fungal and oomycete pathogens. Furthermore, epidermal chloroplast-associated proteins and cellular events that are tightly linked to epidermal resistance against pathogens have been reported. In this review, I have focused on the recent progress in epidermal chloroplast-mediated plant immunity.
Collapse
|
7
|
Breeze E, Mullineaux PM. The Passage of H 2O 2 from Chloroplasts to Their Associated Nucleus during Retrograde Signalling: Reflections on the Role of the Nuclear Envelope. PLANTS (BASEL, SWITZERLAND) 2022; 11:552. [PMID: 35214888 PMCID: PMC8876790 DOI: 10.3390/plants11040552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 05/05/2023]
Abstract
The response of chloroplasts to adverse environmental cues, principally increases in light intensity, stimulates chloroplast-to-nucleus retrograde signalling, which leads to the induction of immediate protective responses and longer-term acclimation. Hydrogen peroxide (H2O2), generated during photosynthesis, is proposed to both initiate and transduce a retrograde signal in response to photoinhibitory light intensities. Signalling specificity achieved by chloroplast-sourced H2O2 for signal transduction may be dependent upon the oft-observed close association of a proportion of these organelles with the nucleus. In this review, we consider more precisely the nature of the close association between a chloroplast appressed to the nucleus and the requirement for H2O2 to cross both the double membranes of the chloroplast and nuclear envelopes. Of particular relevance is that the endoplasmic reticulum (ER) has close physical contact with chloroplasts and is contiguous with the nuclear envelope. Therefore, the perinuclear space, which transducing H2O2 molecules would have to cross, may have an oxidising environment the same as the ER lumen. Based on studies in animal cells, the ER lumen may be a significant source of H2O2 in plant cells arising from the oxidative folding of proteins. If this is the case, then there is potential for the ER lumen/perinuclear space to be an important location to modify chloroplast-to-nucleus H2O2 signal transduction and thereby introduce modulation of it by additional different environmental cues. These would include for example, heat stress and pathogen infection, which induce the unfolded protein response characterised by an increased H2O2 level in the ER lumen.
Collapse
Affiliation(s)
- Emily Breeze
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK;
| | - Philip M. Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
8
|
Landi M, Agati G, Fini A, Guidi L, Sebastiani F, Tattini M. Unveiling the shade nature of cyanic leaves: A view from the "blue absorbing side" of anthocyanins. PLANT, CELL & ENVIRONMENT 2021; 44:1119-1129. [PMID: 32515010 DOI: 10.1111/pce.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/01/2020] [Indexed: 05/02/2023]
Abstract
Anthocyanins have long been suggested as having great potential in offering photoprotection to plants facing high light irradiance. Nonetheless, their effective ability in protecting the photosynthetic apparatus from supernumerary photons has been questioned by some authors, based upon the inexact belief that anthocyanins almost exclusively absorb green photons, which are poorly absorbed by chlorophylls. Here we focus on the blue light absorbing features of anthocyanins, a neglected issue in anthocyanin research. Anthocyanins effectively absorb blue photons: the absorbance of blue relative to green photons increases from tri- to mono-hydroxy B-ring substituted structures, reaching up to 50% of green photons absorption. We offer a comprehensive picture of the molecular events activated by low blue-light availability, extending our previous analysis in purple and green basil, which we suggest to be responsible for the "shade syndrome" displayed by cyanic leaves. While purple leaves display overexpression of genes promoting chlorophyll biosynthesis and light harvesting, in green leaves it is the genes involved in the stability/repair of photosystems that are largely overexpressed. As a corollary, this adds further support to the view of an effective photoprotective role of anthocyanins. We discuss the profound morpho-anatomical adjustments imposed by the epidermal anthocyanin shield, which reflect adjustments in light harvesting capacity under imposed shade and make complex the analysis of the photosynthetic performance of cyanic versus acyanic leaves.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giovanni Agati
- Institute of Applied Physics 'Nello Carrara', Florence, Italy
| | - Alessio Fini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy University of Milan, Milan, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
| |
Collapse
|
9
|
Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N, Park E. Spatial chloroplast-to-nucleus signalling involving plastid-nuclear complexes and stromules. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190405. [PMID: 32362250 PMCID: PMC7209948 DOI: 10.1098/rstb.2019.0405] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Communication between chloroplasts and the nucleus in response to various environmental cues may be mediated by various small molecules. Signalling specificity could be enhanced if the physical contact between these organelles facilitates direct transfer and prevents interference from other subcellular sources of the same molecules. Plant cells have plastid-nuclear complexes, which provide close physical contact between these organelles. Plastid-nuclear complexes have been proposed to facilitate transfer of photosynthesis-derived H2O2 to the nucleus in high light. Stromules (stroma filled tubular plastid extensions) may provide an additional conduit for transfer of a wider range of signalling molecules, including proteins. However, plastid-nuclear complexes and stromules have been hitherto treated as distinct phenomena. We suggest that plastid-nuclear complexes and stromules work in a coordinated manner so that, according to environmental conditions or developmental state, the two modes of connection contribute to varying extents. We hypothesize that this association is dynamic and that there may be a link between plastid-nuclear complexes and the development of stromules. Furthermore, the changes in contact could alter signalling specificity by allowing an extended or different range of signalling molecules to be delivered to the nucleus. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | | | - Nicholas Smirnoff
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Eunsook Park
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie WY 82071, USA
| |
Collapse
|
10
|
Majumdar A, Kar RK. Chloroplast avoidance movement: a novel paradigm of ROS signalling. PHOTOSYNTHESIS RESEARCH 2020; 144:109-121. [PMID: 32222888 DOI: 10.1007/s11120-020-00736-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
The damaging effects of supra-optimal irradiance on plants, often turning to be lethal, may be circumvented by chloroplast avoidance movement which realigns chloroplasts to the anticlinal surfaces of cells (parallel to the incident light), essentially minimizing photon absorption. In angiosperms and many other groups of plants, chloroplast avoidance movement has been identified to be a strong blue light (BL)-dependent process being mediated by actin filaments wherein phototropins are identified as the photoreceptor involved. Studies through the last few decades have identified key molecular mechanisms involving Chloroplast Unusual Positioning 1 (CHUP1) protein and specific chloroplast-actin (cp-actin) filaments. However, the signal transduction pathway from strong BL absorption down to directional re-localization of chloroplasts by actin filaments is complex and ambiguous. Being the immediate cellular products of high irradiance absorption and having properties of remodelling actin as well as phototropin, reactive oxygen species (ROS) deemed to be more able and prompt than any other signalling agent in mediating chloroplast avoidance movement. Although ROS are presently being identified as fundamental component for regulating different plant processes ranging from growth, development and immunity, its role in avoidance movement have hardly been explored in depth. However, few recent reports have demonstrated the direct stimulatory involvement of ROS, especially H2O2, in chloroplast avoidance movement with Ca2+ playing a pivotal role. With this perspective, the present review discusses the mechanisms of ROS-mediated chloroplast avoidance movement involving ROS-Ca2+-actin communication system and NADPH oxidase (NOX)-plasma membrane (PM) H+-ATPase positive feed-forward loop. A possible working model is proposed.
Collapse
Affiliation(s)
- Arkajo Majumdar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
- Department of Botany, City College, 102/1 Raja Rammohan Sarani, Kolkata, West Bengal, 700009, India
| | - Rup Kumar Kar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
11
|
Sheahan MB, Collings DA, Rose RJ, McCurdy DW. ACTIN7 Is Required for Perinuclear Clustering of Chloroplasts during Arabidopsis Protoplast Culture. PLANTS 2020; 9:plants9020225. [PMID: 32050601 PMCID: PMC7076399 DOI: 10.3390/plants9020225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
Abstract
In Arabidopsis, the actin gene family comprises eight expressed and two non-expressed ACTIN (ACT) genes. Of the eight expressed isoforms, ACT2, ACT7, and ACT8 are differentially expressed in vegetative tissues and may perform specific roles in development. Using tobacco mesophyll protoplasts, we previously demonstrated that actin-dependent clustering of chloroplasts around the nucleus prior to cell division ensures unbiased chloroplast inheritance. Here, we report that actin-dependent chloroplast clustering in Arabidopsis mesophyll protoplasts is defective in act7 mutants, but not act2-1 or act8-2. ACT7 expression was upregulated during protoplast culture whereas ACT2 and ACT8 expression did not substantially change. In act2-1, ACT7 expression increased in response to loss of ACT2, whereas in act7-1, neither ACT2 nor ACT8 expression changed appreciably in response to the absence of ACT7. Semi-quantitative immunoblotting revealed increased actin concentrations during culture, although total actin in act7-1 was only two-thirds that of wild-type or act2-1 after 96 h culture. Over-expression of ACT2 and ACT8 under control of ACT7 regulatory sequences restored normal levels of chloroplast clustering. These results are consistent with a requirement for ACT7 in actin-dependent chloroplast clustering due to reduced levels of actin protein and gene induction in act7 mutants, rather than strong functional specialization of the ACT7 isoform.
Collapse
|
12
|
Wang X, Mao T. Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:86-96. [PMID: 31542697 DOI: 10.1016/j.pbi.2019.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/12/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Plants perceive multiple physiological and environmental signals in order to fine-tune their growth and development. The highly dynamic plant cytoskeleton, including actin and microtubule networks, can rapidly alter their organization, stability and dynamics in response to internal and external stimuli, which is considered vital for plant growth and adaptation to the environment. The cytoskeleton-associated proteins have been shown to be key regulatory molecules in mediating cytoskeleton reorganization in response to multiple environmental signals, such as light, salt, drought and biotic stimuli. Recent findings, including our studies, have expanded knowledge about the functions and underlying mechanisms of the plant cytoskeleton in environmental adaptation.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Abstract
ABSTRACT
Plants are sessile and require diverse strategies to adapt to fluctuations in the surrounding light conditions. Consequently, the photorelocation movement of chloroplasts is essential to prevent damages that are induced by intense light (avoidance response) and to ensure efficient photosynthetic activities under weak light conditions (accumulation response). The mechanisms that underlie chloroplast movements have been revealed through analysis of the behavior of individual chloroplasts and it has been found that these organelles can move in any direction without turning. This implies that any part of the chloroplast periphery can function as the leading or trailing edge during movement. This ability is mediated by a special structure, which consists of short actin filaments that are polymerized at the leading edge of moving chloroplasts and are specifically localized in the space between the chloroplast and the plasma membrane, and is called chloroplast-actin. In addition, several of the genes that encode proteins that are involved in chloroplast-actin polymerization or maintenance have been identified. In this Review, we discuss the mechanisms that regulate chloroplast movements through polymerization of the chloroplast-actin and propose a model for actin-driven chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Sam-Geun Kong
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudaehak-ro Gongju-si, Chungcheongnam-do 32588, Republic of Korea
| |
Collapse
|
14
|
Majumdar A, Kar RK. Integrated role of ROS and Ca +2 in blue light-induced chloroplast avoidance movement in leaves of Hydrilla verticillata (L.f.) Royle. PROTOPLASMA 2016; 253:1529-1539. [PMID: 26573536 DOI: 10.1007/s00709-015-0911-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Directional chloroplast photorelocation is a major physio-biochemical mechanism that allows these organelles to realign themselves intracellularly in response to the intensity of the incident light as an adaptive response. Signaling processes involved in blue light (BL)-dependent chloroplast movements were investigated in Hydrilla verticillata (L.f.) Royle leaves. Treatments with antagonists of actin filaments [2,3,5-triiodobenzoic acid (TIBA)] and microtubules (oryzalin) revealed that actin filaments, but not microtubules, play a pivotal role in chloroplast movement. Involvement of reactive oxygen species (ROS) in controlling chloroplast avoidance movement has been demonstrated, as exogenous H2O2 not only accelerated chloroplast avoidance but also could induce chloroplast avoidance even in weak blue light (WBL). Further support came from experiments with different ROS scavengers, i.e., dimethylthiourea (DMTU), KI, and CuCl2, which inhibited chloroplast avoidance, and from ROS localization using specific stains. Such avoidance was also partially inhibited by ZnCl2, an inhibitor of NADPH oxidase (NOX) as well as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthetic electron transport chain (ETC) inhibitor at PS II. However, methyl viologen (MV), a PS I ETC inhibitor, rather accelerated avoidance response. Exogenous calcium (Ca+2) induced avoidance even in WBL while inhibited chloroplast accumulation partially. On the other hand, chloroplast movements (both accumulation and avoidance) were blocked by Ca+2 antagonists, La3+ (inhibitor of plasma membrane Ca+2 channel) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, Ca+2 chelator) while LiCl that affects Ca+2 release from endosomal compartments did not show any effect. A model on integrated role of ROS and Ca+2 (influx from apolastic space) in actin-mediated chloroplast avoidance has been proposed.
Collapse
Affiliation(s)
- Arkajo Majumdar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, West Bengal, India
| | - Rup Kumar Kar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
15
|
Kimura S, Kodama Y. Actin-dependence of the chloroplast cold positioning response in the liverwort Marchantia polymorpha L. PeerJ 2016; 4:e2513. [PMID: 27703856 PMCID: PMC5045877 DOI: 10.7717/peerj.2513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
The subcellular positioning of chloroplasts can be changed by alterations in the environment such as light and temperature. For example, in leaf mesophyll cells, chloroplasts localize along anticlinal cell walls under high-intensity light, and along periclinal cell walls under low-intensity light. These types of positioning responses are involved in photosynthetic optimization. In light-mediated chloroplast positioning responses, chloroplasts move to the appropriate positions in an actin-dependent manner, although some exceptions also depend on microtubule. Even under low-intensity light, at low temperature (e.g., 5°C), chloroplasts localize along anticlinal cell walls; this phenomenon is termed chloroplast cold positioning. In this study, we analyzed whether chloroplast cold positioning is dependent on actin filaments and/or microtubules in the liverwort Marchantia polymorpha L. When liverwort cells were treated with drugs for the de-polymerization of actin filaments, chloroplast cold positioning was completely inhibited. In contrast, chloroplast cold positioning was not affected by treatment with a drug for the de-polymerization of microtubules. These observations indicate the actin-dependence of chloroplast cold positioning in M. polymorpha. Actin filaments during the chloroplast cold positioning response were visualized by using fluorescent probes based on fluorescent proteins in living liverwort cells, and thus, their behavior during the chloroplast cold positioning response was documented.
Collapse
Affiliation(s)
- Shun Kimura
- Center for Bioscience Research and Education, Utsunomiya University , Utsunomiya , Tochigi , Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University , Utsunomiya , Tochigi , Japan
| |
Collapse
|
16
|
Nauš J, Šmecko S, Špundová M. Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark. PHOTOSYNTHESIS RESEARCH 2016; 129:217-25. [PMID: 27372712 DOI: 10.1007/s11120-016-0291-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.
Collapse
Affiliation(s)
- Jan Nauš
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Slavomír Šmecko
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Martina Špundová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
17
|
Kong SG, Wada M. Molecular basis of chloroplast photorelocation movement. JOURNAL OF PLANT RESEARCH 2016; 129:159-66. [PMID: 26794773 DOI: 10.1007/s10265-016-0788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/03/2016] [Indexed: 05/05/2023]
Abstract
Chloroplast photorelocation movement is an essential physiological response for sessile plant survival and the optimization of photosynthetic ability. Simple but effective experiments on the physiological, cell biological and molecular genetic aspects have been widely used to investigate the signaling components of chloroplast photorelocation movement in Arabidopsis for the past few decades. Although recent knowledge on chloroplast photorelocation movement has led us to a deeper understanding of its physiological and molecular basis, the biochemical roles of the downstream factors remain largely unknown. In this review, we briefly summarize recent advances regarding chloroplast photorelocation movement and propose that a new high-resolution approach is necessary to investigate the molecular mechanism underlying actin-based chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
- Research Center for Live-Protein Dynamics, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
18
|
WADA M. Chloroplast and nuclear photorelocation movements. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:387-411. [PMID: 27840388 PMCID: PMC5328789 DOI: 10.2183/pjab.92.387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/24/2016] [Indexed: 05/18/2023]
Abstract
Chloroplasts move toward weak light to increase photosynthetic efficiency, and migrate away from strong light to protect chloroplasts from photodamage and eventual cell death. These chloroplast behaviors were first observed more than 100 years ago, but the underlying mechanism has only recently been identified. Ideal plant materials, such as fern gametophytes for photobiological and cell biological approaches, and Arabidopsis thaliana for genetic analyses, have been used along with sophisticated methods, such as partial cell irradiation and time-lapse video recording under infrared light to study chloroplast movement. These studies have revealed precise chloroplast behavior, and identified photoreceptors, other relevant protein components, and novel actin filament structures required for chloroplast movement. In this review, our findings regarding chloroplast and nuclear movements are described.
Collapse
Affiliation(s)
- Masamitsu WADA
- Department Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa, Tokyo, Japan
| |
Collapse
|
19
|
Dutta S, Cruz JA, Jiao Y, Chen J, Kramer DM, Osteryoung KW. Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:428-42. [PMID: 26332826 DOI: 10.1111/tpj.13009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/20/2015] [Indexed: 05/23/2023]
Abstract
Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high-sensitivity, non-invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image-based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less-mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1-5 phot2-1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual-imaging platform also allowed us to develop a straightforward approach to correct non-photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy-dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the overall photosynthetic performance of higher plants.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - Jeffrey A Cruz
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1312, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - Yuhua Jiao
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - Jin Chen
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1312, USA
- Department of Computer Sciences and Engineering, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - David M Kramer
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824-1312, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824-1312, USA
| | - Katherine W Osteryoung
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-1312, USA
| |
Collapse
|
20
|
Litthauer S, Battle MW, Lawson T, Jones MA. Phototropins maintain robust circadian oscillation of PSII operating efficiency under blue light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015. [PMID: 26215041 DOI: 10.1111/tpj.12947] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The circadian system allows plants to coordinate metabolic and physiological functions with predictable environmental variables such as dusk and dawn. This endogenous oscillator is comprised of biochemical and transcriptional rhythms that are synchronized with a plant's surroundings via environmental signals, including light and temperature. We have used chlorophyll fluorescence techniques to describe circadian rhythms of PSII operating efficiency (Fq'/Fm') in the chloroplasts of Arabidopsis thaliana. These Fq'/Fm' oscillations appear to be influenced by transcriptional feedback loops previously described in the nucleus, and are induced by rhythmic changes in photochemical quenching over circadian time. Our work reveals that a family of blue photoreceptors, phototropins, maintain robust rhythms of Fq'/Fm' under constant blue light. As phototropins do not influence circadian gene expression in the nucleus our imaging methodology highlights differences between the modulation of circadian outputs in distinct subcellular compartments.
Collapse
Affiliation(s)
- Suzanne Litthauer
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Martin W Battle
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Matthew A Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
21
|
Tikhonov AN. Induction events and short-term regulation of electron transport in chloroplasts: an overview. PHOTOSYNTHESIS RESEARCH 2015; 125:65-94. [PMID: 25680580 DOI: 10.1007/s11120-015-0094-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/26/2015] [Indexed: 05/03/2023]
Abstract
Regulation of photosynthetic electron transport at different levels of structural and functional organization of photosynthetic apparatus provides efficient performance of oxygenic photosynthesis in plants. This review begins with a brief overview of the chloroplast electron transport chain. Then two noninvasive biophysical methods (measurements of slow induction of chlorophyll a fluorescence and EPR signals of oxidized P700 centers) are exemplified to illustrate the possibility of monitoring induction events in chloroplasts in vivo and in situ. Induction events in chloroplasts are considered and briefly discussed in the context of short-term mechanisms of the following regulatory processes: (i) pH-dependent control of the intersystem electron transport; (ii) the light-induced activation of the Calvin-Benson cycle; (iii) optimization of electron transport due to fitting alternative pathways of electron flow and partitioning light energy between photosystems I and II; and (iv) the light-induced remodeling of photosynthetic apparatus and thylakoid membranes.
Collapse
|
22
|
Samardakiewicz S, Krzeszowiec-Jeleń W, Bednarski W, Jankowski A, Suski S, Gabryś H, Woźny A. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L. PLoS One 2015; 10:e0116757. [PMID: 25646776 PMCID: PMC4315572 DOI: 10.1371/journal.pone.0116757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 12/12/2014] [Indexed: 11/18/2022] Open
Abstract
Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern.
Collapse
Affiliation(s)
- Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Weronika Krzeszowiec-Jeleń
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
| | - Artur Jankowski
- Laboratory of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Adam Woźny
- Laboratory of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
23
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
24
|
Higa T, Wada M. Clues to the signals for chloroplast photo-relocation from the lifetimes of accumulation and avoidance responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:120-126. [PMID: 25376644 DOI: 10.1111/jipb.12310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Chloroplast photo-relocation movement is crucial for plant survival; however, the mechanism of this phenomenon is still poorly understood. Especially, the signal that goes from photoreceptor to chloroplast is unknown, although the photoreceptors (phototropin 1 and 2) have been identified and an actin structure (chloroplast actin filaments) has been characterized that is specific for chloroplast movement. Here, in gametophytes of the fern Adiantum capillus-veneris, gametophores of the moss Physcomiterella patens, and leaves of the seed plant Arabidopsis thaliana, we sought to characterize the signaling system by measuring the lifetime of the induced response. Chloroplast movements were induced by microbeam irradiation with high-intensity blue light and recorded. The lifetime of the avoidance state was measured as a lag time between switching off the beam and the loss of avoidance behavior, and that of the accumulation state was measured as the duration of accumulation behavior following the extinction of the beam. The lifetime for the avoidance response state is approximately 3-4 min and that for the accumulation response is 19-28 min. These data suggest that the two responses are based on distinct signals.
Collapse
Affiliation(s)
- Takeshi Higa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | | |
Collapse
|
25
|
Dyachok J, Sparks JA, Liao F, Wang YS, Blancaflor EB. Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: Fluorophore variant, actin binding domain, and promoter considerations. Cytoskeleton (Hoboken) 2014; 71:311-27. [DOI: 10.1002/cm.21174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Julia Dyachok
- Plant Biology Division; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - J. Alan Sparks
- Plant Biology Division; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - Fuqi Liao
- Department of Computing Services; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - Yuh-Shuh Wang
- Plant Signal Research Group; Institute of Technology, University of Tartu; Nooruse 1 Tartu 50411 Estonia
| | | |
Collapse
|
26
|
Abstract
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Collapse
|
27
|
Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:522-30. [PMID: 24333784 DOI: 10.1016/j.bbabio.2013.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
Abstract
Plants are photosynthetic organisms that have evolved unique systems to adapt fluctuating environmental light conditions. In addition to well-known movement responses such as phototropism, stomatal opening, and nastic leaf movements, chloroplast photorelocation movement is one of the essential cellular responses to optimize photosynthetic ability and avoid photodamage. For these adaptations, chloroplasts accumulate at the areas of cells illuminated with low light (called accumulation response), while they scatter from the area illuminated with strong light (called avoidance response). Plant-specific photoreceptors (phototropin, phytochrome, and/or neochrome) mediate these dynamic directional movements in response to incident light position and intensity. Several factors involved in the mechanisms underlying the processes from light perception to actin-based movements have also been identified through molecular genetic approach. This review aims to discuss recent findings in the field relating to how chloroplasts move at molecular levels. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
|
28
|
Sunil B, Talla SK, Aswani V, Raghavendra AS. Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases. PHOTOSYNTHESIS RESEARCH 2013; 117:61-71. [PMID: 23881384 DOI: 10.1007/s11120-013-9889-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/08/2013] [Indexed: 05/21/2023]
Abstract
The bioenergetic processes of photosynthesis and respiration are mutually beneficial. Their interaction extends to photorespiration, which is linked to optimize photosynthesis. The interplay of these three pathways is facilitated by two major phenomena: sharing of energy/metabolite resources and maintenance of optimal levels of reactive oxygen species (ROS). The resource sharing among different compartments of plant cells is based on the production/utilization of reducing equivalents (NADPH, NADH) and ATP as well as on the metabolite exchange. The responsibility of generating the cellular requirements of ATP and NAD(P)H is mostly by the chloroplasts and mitochondria. In turn, besides the chloroplasts, the mitochondria, cytosol and peroxisomes are common sinks for reduced equivalents. Transporters located in membranes ensure the coordinated movement of metabolites across the cellular compartments. The present review emphasizes the beneficial interactions among photosynthesis, dark respiration and photorespiration, in relation to metabolism of C, N and S. Since the bioenergetic reactions tend to generate ROS, the cells modulate chloroplast and mitochondrial reactions, so as to ensure that the ROS levels do not rise to toxic levels. The patterns of minimization of ROS production and scavenging of excess ROS in intracellular compartments are highlighted. Some of the emerging developments are pointed out, such as model plants, orientation/movement of organelles and metabolomics.
Collapse
Affiliation(s)
- Bobba Sunil
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | |
Collapse
|
29
|
Cazzaniga S, Dall' Osto L, Kong SG, Wada M, Bassi R. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:568-79. [PMID: 24033721 DOI: 10.1111/tpj.12314] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 05/22/2023]
Abstract
Plants evolved photoprotective mechanisms in order to counteract the damaging effects of excess light in oxygenic environments. Among them, chloroplast avoidance and non-photochemical quenching concur in reducing the concentration of chlorophyll excited states in the photosynthetic apparatus to avoid photooxidation. We evaluated their relative importance in regulating excitation pressure on photosystem II. To this aim, genotypes were constructed carrying mutations impairing the chloroplast avoidance response (phot2) as well as mutations affecting the biosynthesis of the photoprotective xanthophyll zeaxanthin (npq1) or the activation of non-photochemical quenching (npq4), followed by evaluation of their photosensitivity in vivo. Suppression of avoidance response resulted in oxidative stress under excess light at low temperature, while removing either zeaxanthin or PsbS had a milder effect. The double mutants phot2 npq1 and phot2 npq4 showed the highest sensitivity to photooxidative stress, indicating that xanthophyll cycle and qE have additive effects over the avoidance response. The interactions between non-photochemical quenching and avoidance responses were studied by analyzing the kinetics of fluorescence decay and recovery at different light intensities. phot2 fluorescence decay lacked a component, here named as qM. This kinetic component linearly correlated with the leaf transmittance changes due to chloroplast relocation induced by white light and was absent when red light was used as actinic source. On these basis we conclude that a decrease in leaf optical density affects the apparent non-photochemical quenching (NPQ) rise kinetic. Thus, excess light-induced fluorescence decrease is in part due to avoidance of photon absorption rather than to a genuine quenching process.
Collapse
|
30
|
Wei T, Zhang C, Hou X, Sanfaçon H, Wang A. The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog 2013; 9:e1003378. [PMID: 23696741 PMCID: PMC3656112 DOI: 10.1371/journal.ppat.1003378] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
All positive-strand RNA viruses induce the biogenesis of cytoplasmic membrane-bound virus factories for viral genome multiplication. We have previously demonstrated that upon plant potyvirus infection, the potyviral 6K2 integral membrane protein induces the formation of ER-derived replication vesicles that subsequently target chloroplasts for robust genome replication. Here, we report that following the trafficking of the Turnip mosaic potyvirus (TuMV) 6K2 vesicles to chloroplasts, 6K2 vesicles accumulate at the chloroplasts to form chloroplast-bound elongated tubular structures followed by chloroplast aggregation. A functional actomyosin motility system is required for this process. As vesicle trafficking and fusion in planta are facilitated by a superfamily of proteins known as SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors), we screened ER-localized SNARES or SNARE-like proteins for their possible involvement in TuMV infection. We identified Syp71 and Vap27-1 that colocalize with the chloroplast-bound 6K2 complex. Knockdown of their expression using a Tobacco rattle virus (TRV)-based virus-induced gene silencing vector showed that Syp71 but not Vap27-1 is essential for TuMV infection. In Syp71-downregulated plant cells, the formation of 6K2-induced chloroplast-bound elongated tubular structures and chloroplast aggregates is inhibited and virus accumulation is significantly reduced, but the trafficking of the 6K2 vesicles from the ER to chloroplast is not affected. Taken together, these data suggest that Syp71 is a host factor essential for successful virus infection by mediating the fusion of the virus-induced vesicles with chloroplasts during TuMV infection.
Collapse
Affiliation(s)
- Taiyun Wei
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Changwei Zhang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing , People's Republic of China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing , People's Republic of China
| | - Hélène Sanfaçon
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Abstract
Extensive studies in both lower and higher plants indicate that plant phytochrome photoreceptors signal not only by regulating transcription in the nucleus but also by acting within the cytoplasm, the latter signaling routes acting within minutes or even seconds and also providing directional information. Directional signals seem to arise from phytochromes attached anisotropically to the plasma membrane. Neochromes-phytochrome-phototropin hybrid photoreceptors probably attached to the plasma membrane-provide this signal in various ferns and perhaps certain algae but are absent from other groups. In mosses and probably higher plants too, a subpopulation of canonical phytochromes interact with phototropins at the plasma membrane and thereby steer directional responses. Phytochromes also seem able to regulate translation in the cytoplasm. This review discusses putative phytochrome functions in these contexts.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, D35390 Giessen, Germany.
| |
Collapse
|
32
|
Cui X. Cellular dynamics: seeing is believing. MOLECULAR PLANT 2013; 6:239-241. [PMID: 23345611 DOI: 10.1093/mp/sst016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
33
|
Kong SG, Arai Y, Suetsugu N, Yanagida T, Wada M. Rapid severing and motility of chloroplast-actin filaments are required for the chloroplast avoidance response in Arabidopsis. THE PLANT CELL 2013; 25:572-90. [PMID: 23404888 PMCID: PMC3608779 DOI: 10.1105/tpc.113.109694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 01/16/2013] [Accepted: 01/20/2013] [Indexed: 05/20/2023]
Abstract
Phototropins (phot1 and phot2 in Arabidopsis thaliana) relay blue light intensity information to the chloroplasts, which move toward weak light (the accumulation response) and away from strong light (the avoidance response). Chloroplast-actin (cp-actin) filaments are vital for mediating these chloroplast photorelocation movements. In this report, we examine in detail the cp-actin filament dynamics by which the chloroplast avoidance response is regulated. Although stochastic dynamics of cortical actin fragments are observed on the chloroplasts, the basic mechanisms underlying the disappearance (including severing and turnover) of the cp-actin filaments are regulated differently from those of cortical actin filaments. phot2 plays a pivotal role in the strong blue light-induced severing and random motility of cp-actin filaments, processes that are therefore essential for asymmetric cp-actin formation for the avoidance response. In addition, phot2 functions in the bundling of cp-actin filaments that is induced by dark incubation. By contrast, the function of phot1 is dispensable for these responses. Our findings suggest that phot2 is the primary photoreceptor involved in the rapid reorganization of cp-actin filaments that allows chloroplasts to change direction rapidly and control the velocity of the avoidance movement according to the light's intensity and position.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshiyuki Arai
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Noriyuki Suetsugu
- Department of Biology, Graduate School of Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshio Yanagida
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamitsu Wada
- Department of Biology, Graduate School of Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
- Address correspondence to
| |
Collapse
|
34
|
Blanco NE, Ceccoli RD, Vía MVD, Voss I, Segretin ME, Bravo-Almonacid FF, Melzer M, Hajirezaei MR, Scheibe R, Hanke GT. Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow. PLANT PHYSIOLOGY 2013; 161:866-79. [PMID: 23370717 PMCID: PMC3561025 DOI: 10.1104/pp.112.211078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/04/2012] [Indexed: 05/07/2023]
Abstract
Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least partial division of duties between these isoforms. To evaluate the contribution of different kinds of Fds to the control of electron fluxes along the photosynthetic electron transport chain, we overexpressed a minor pea (Pisum sativum) Fd isoform (PsFd1) in tobacco (Nicotiana tabacum) plants. The transplastomic OeFd1 plants exhibited variegated leaves and retarded growth and developmental rates. Photosynthetic studies of these plants indicated a reduction in carbon dioxide assimilation rates, photosystem II photochemistry, and linear electron flow. However, the plants showed an increase in nonphotochemical quenching, better control of excitation pressure at photosystem II, and no evidence of photoinhibition, implying a better dynamic regulation to remove excess energy from the photosynthetic electron transport chain. Finally, analysis of P700 redox status during illumination confirmed that the minor pea Fd isoform promotes enhanced cyclic flow around photosystem I. The two novel features of this work are: (1) that Fd levels achieved in transplastomic plants promote an alternative electron partitioning even under greenhouse light growth conditions, a situation that is exacerbated at higher light intensity measurements; and (2) that an alternative, minor Fd isoform has been overexpressed in plants, giving new evidence of labor division among Fd isoforms.
Collapse
Affiliation(s)
- Nicolás E Blanco
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umea, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kong SG, Suetsugu N, Kikuchi S, Nakai M, Nagatani A, Wada M. Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. PLANT & CELL PHYSIOLOGY 2013; 54:80-92. [PMID: 23161859 DOI: 10.1093/pcp/pcs151] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplasts change their position to adapt cellular activities to fluctuating environmental light conditions. Phototropins (phot1 and phot2 in Arabidopsis) are plant-specific blue light photoreceptors that perceive changes in light intensity and direction, and mediate actin-based chloroplast photorelocation movements. Both phot1 and phot2 regulate the chloroplast accumulation response, while phot2 is mostly responsible for the regulation of the avoidance response. Although it has been widely accepted that distinct intracellular localizations of phototropins are implicated in the specificity, the mechanism underlying the phot2-specific avoidance response has remained elusive. In this study, we examined the relationship of the phot2 localization pattern to the chloroplast photorelocation movement. First, the fusion of a nuclear localization signal with phot2, which effectively reduced the amount of phot2 in the cytoplasm, retained the activity for both the accumulation and avoidance responses, indicating that membrane-localized phot2 but not cytoplasmic phot2 is functional to mediate the responses. Importantly, some fractions of phot2, and of phot1 to a lesser extent, were localized on the chloroplast outer membrane. Moreover, the deletion of the C-terminal region of phot2, which was previously shown to be defective in blue light-induced Golgi localization and avoidance response, affected the localization pattern on the chloroplast outer membrane. Taken together, these results suggest that dynamic phot2 trafficking from the plasma membrane to the Golgi apparatus and the chloroplast outer membrane might be involved in the avoidance response.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, 812-8581 Japan
| | | | | | | | | | | |
Collapse
|
36
|
Kong SG, Kagawa T, Wada M, Nagatani A. A C-terminal membrane association domain of phototropin 2 is necessary for chloroplast movement. PLANT & CELL PHYSIOLOGY 2013; 54:57-68. [PMID: 23012349 DOI: 10.1093/pcp/pcs132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phototropins (phot1 and phot2), plant-specific blue light receptor kinases, mediate a range of physiological responses in Arabidopsis, including phototropism, chloroplast photorelocation movement, stomatal opening and leaf flattening. Phototropins consist of two photoreceptive domains at their N-terminus, LOV1 (light, oxygen or voltage 1) and LOV2, and a serine/threonine kinase domain at their C-terminus. Here, we determined the molecular moiety for the membrane association of phototropins using the yeast CytoTrap and Arabidopsis protoplast systems. We then examined the physiological significance of the membrane association of phototropins. This detailed study with serial deletions narrowed down the association domain to a relatively small part of the C-terminal domain of phototropin. The functional analysis of phot2 deletion mutants in the phot2-deficient Adiantum and Arabidopsis mutants revealed that the ability to mediate the chloroplast avoidance response correlated well with phot2's membrane association, especially with the Golgi apparatus. Taken together, our data suggest that a small part of the C-terminal domain of phototropins is necessary not only for membrane association but also for the physiological activities that elicit phototropin-specific responses.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan.
| | | | | | | |
Collapse
|
37
|
Morita MT, Nakamura M. Dynamic behavior of plastids related to environmental response. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:722-8. [PMID: 22939249 DOI: 10.1016/j.pbi.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 05/06/2023]
Abstract
In contrast to the sessile life style of plants, organelles within plant cells exhibit dynamic behavior. Plastid movements largely depend on actin cytoskeleton and are thought to be closely linked to adaptive responses to environmental changes. Advances in live-cell imaging technology combined with molecular genetics have demonstrated the underlying mechanism and the causal relationship between plastid motility and physiological significance in environmental response. Here, recent studies on the regulatory mechanisms of two types of chloroplast movement are reviewed. Studies on regulatory mechanisms of plastid behaviors related to environmental adaptation both in short-term (acute responses) and in long-term (developmental) processes would provide new insight into diversity in role(s) of plastids in a particular cell that do not only involve photosynthesis.
Collapse
Affiliation(s)
- Miyo Terao Morita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | |
Collapse
|
38
|
Wen F, Wang J, Xing D. A protein phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1366-1379. [PMID: 22642987 DOI: 10.1093/pcp/pcs081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chloroplast avoidance movements mediated by phototropin 2 (phot2) are one of most important physiological events in the response to high-fluence blue light (BL), which reduces damage to the photosynthetic machinery under excess light. Protein phosphatase 2A-2 (PP2A-2) is an isoform of the catalytic subunit of PP2A, which regulates a number of developmental processes. To investigate whether PP2A-2 was involved in high-fluence BL-induced chloroplast avoidance movements, we first analyzed chloroplast migration in the leaves of the pp2a-2 mutant in response to BL. The data showed that PP2A-2 might act as a positive regulator in phot2-mediated chloroplast avoidance movements, but not in phot1-mediated chloroplast accumulation movements. Then, the effect of okadaic acid (OA) and cantharidin (selective PP2A inhibitors) on high-fluence BL response was further investigated in Arabidopsis thaliana mesophyll cells. Within a certain concentration range, exogenously applied OA or cantharidin inhibited the high-fluence BL-induced chloroplast movements in a concentration-dependent manner. Actin depolymerizing factor (ADF)/cofilin phosphorylation assays demonstrated that PP2A-2 can activate/dephosphorylate ADF/cofilin, an actin-binding protein, in Arabidopsis mesophyll cells. Consistent with this observation, the experiments showed that OA could inhibit ADF1 binding to the actin and suppress the reorganization of the actin cytoskeleton after high-fluence BL irradiation. The adf1 and adf3 mutants also exhibited reduced high-fluence BL-induced chloroplast avoidance movements. In conclusion, we identified that PP2A-2 regulated the activation of ADF/cofilin, which, in turn, regulated actin cytoskeleton remodeling and was involved in phot2-mediated chloroplast avoidance movements.
Collapse
Affiliation(s)
- Feng Wen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
39
|
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1525-42. [PMID: 22200666 PMCID: PMC3966264 DOI: 10.1093/jxb/err394] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
40
|
Sparkes I. Recent advances in understanding plant myosin function: life in the fast lane. MOLECULAR PLANT 2011; 4:805-812. [PMID: 21772028 DOI: 10.1093/mp/ssr063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant myosins are required for organelle movement, and a role in actin organization has recently come to light. Myosin mutants display several gross morphological phenotypes, the most severe being dwarfism and reduced fecundity, and there is a correlation between reduced organelle movement and morphological defects. This review aims to discuss recent findings in plants relating to the role of myosins in actin dynamics, development, and organelle movement, more specifically the endoplasmic reticulum (ER). One overarching theme is that there still appear to be more questions than answers relating to plant myosin function and regulation.
Collapse
Affiliation(s)
- Imogen Sparkes
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|