1
|
Altamura MM, Piacentini D, Della Rovere F, Fattorini L, Valletta A, Falasca G. Plastid dynamism integrates development and environment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108813. [PMID: 38861821 DOI: 10.1016/j.plaphy.2024.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and environmental control. Plastid dynamism is based on a bilateral communication between plastids and nucleus through anterograde and retrograde signaling. Signaling occurs through the interaction with specific phytohormones (abscisic acid, strigolactones, jasmonates, gibberellins, brassinosteroids, ethylene, salicylic acid, cytokinin and auxin). The review is focused on the modulation of plastid capabilities at both transcriptional and post-translational levels at the crossroad between development and stress, with a particular attention to the chloroplast, because the most studied plastid type. The role of plastid-encoded and nuclear-encoded proteins for plastid development and stress responses, and the changes of plastid fate through the activity of stromules and plastoglobules, are discussed. Examples of plastid dynamism in response to soil stress agents (salinity, lead, cadmium, arsenic, and chromium) are described. Albinism and root greening are described based on the modulation activities of auxin and cytokinin. The physiological and functional responses of the sensory epidermal and vascular plastids to abiotic and biotic stresses along with their specific roles in stress sensing are described together with their potential modulation of retrograde signaling pathways. Future research perspectives include an in-depth study of sensory plastids to explore their potential for establishing a transgenerational memory to stress. Suggestions about anterograde and retrograde pathways acting at interspecific level and on the lipids of plastoglobules as a novel class of plastid morphogenic agents are provided.
Collapse
Affiliation(s)
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | | | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | - Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Italy
| | | |
Collapse
|
2
|
Dechkrong P, Srima S, Sukkhaeng S, Utkhao W, Thanomchat P, de Jong H, Tongyoo P. Mutation mapping of a variegated EMS tomato reveals an FtsH-like protein precursor potentially causing patches of four phenotype classes in the leaves with distinctive internal morphology. BMC PLANT BIOLOGY 2024; 24:265. [PMID: 38600480 PMCID: PMC11005157 DOI: 10.1186/s12870-024-04973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Leaf variegation is an intriguing phenomenon observed in many plant species. However, questions remain on its mechanisms causing patterns of different colours. In this study, we describe a tomato plant detected in an M2 population of EMS mutagenised seeds, showing variegated leaves with sectors of dark green (DG), medium green (MG), light green (LG) hues, and white (WH). Cells and tissues of these classes, along with wild-type tomato plants, were studied by light, fluorescence, and transmission electron microscopy. We also measured chlorophyll a/b and carotene and quantified the variegation patterns with a machine-learning image analysis tool. We compared the genomes of pooled plants with wild-type-like and mutant phenotypes in a segregating F2 population to reveal candidate genes responsible for the variegation. RESULTS A genetic test demonstrated a recessive nuclear mutation caused the variegated phenotype. Cross-sections displayed distinct anatomy of four-leaf phenotypes, suggesting a stepwise mesophyll degradation. DG sectors showed large spongy layers, MG presented intercellular spaces in palisade layers, and LG displayed deformed palisade cells. Electron photomicrographs of those mesophyll cells demonstrated a gradual breakdown of the chloroplasts. Chlorophyll a/b and carotene were proportionally reduced in the sectors with reduced green pigments, whereas white sectors have hardly any of these pigments. The colour segmentation system based on machine-learning image analysis was able to convert leaf variegation patterns into binary images for quantitative measurements. The bulk segregant analysis of pooled wild-type-like and variegated progeny enabled the identification of SNP and InDels via bioinformatic analysis. The mutation mapping bioinformatic pipeline revealed a region with three candidate genes in chromosome 4, of which the FtsH-like protein precursor (LOC100037730) carries an SNP that we consider the causal variegated phenotype mutation. Phylogenetic analysis shows the candidate is evolutionary closest to the Arabidopsis VAR1. The synonymous mutation created by the SNP generated a miRNA binding site, potentially disrupting the photoprotection mechanism and thylakoid development, resulting in leaf variegation. CONCLUSION We described the histology, anatomy, physiology, and image analysis of four classes of cell layers and chloroplast degradation in a tomato plant with a variegated phenotype. The genomics and bioinformatics pipeline revealed a VAR1-related FtsH mutant, the first of its kind in tomato variegation phenotypes. The miRNA binding site of the mutated SNP opens the way to future studies on its epigenetic mechanism underlying the variegation.
Collapse
Affiliation(s)
- Punyavee Dechkrong
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Sornsawan Srima
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Siriphan Sukkhaeng
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Winai Utkhao
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Piyanan Thanomchat
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, 10900, Thailand
| | - Hans de Jong
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Wageningen University, Plant Sciences Group, Laboratory of Genetics, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Pumipat Tongyoo
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand.
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
3
|
Liu Z, Cheng J. C 4 rice engineering, beyond installing a C 4 cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108256. [PMID: 38091938 DOI: 10.1016/j.plaphy.2023.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
C4 photosynthesis in higher plants is carried out by two distinct cell types: mesophyll cells and bundle sheath cells, as a result highly concentrated carbon dioxide is released surrounding RuBisCo in chloroplasts of bundle sheath cells and the photosynthetic efficiency is significantly higher than that of C3 plants. The evolution of the dual-cell C4 cycle involved complex modifications to leaf anatomy and cell ultra-structures. These include an increase in leaf venation, the formation of Kranz anatomy, changes in chloroplast morphology in bundle sheath cells, and increases in the density of plasmodesmata at interfaces between the bundle sheath and mesophyll cells. It is predicted that cereals will be in severe worldwide shortage at the mid-term of this century. Rice is a staple food that feeds more than half of the world's population. If rice can be engineered to perform C4 photosynthesis, it is estimated that rice yield will be increased by at least 50% due to enhanced photosynthesis. Thus, the Second Green Revolution has been launched on this principle by genetically installing C4 photosynthesis into C3 crops. The studies on molecular mechanisms underlying the changes in leaf morphoanatomy involved in C4 photosynthesis have made great progress in recent years. As there are plenty of reviews discussing the installment of the C4 cycle, we focus on the current progress and challenges posed to the research regarding leaf anatomy and cell ultra-structure modifications made towards the development of C4 rice.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Jinjin Cheng
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030801, China
| |
Collapse
|
4
|
Sarmiento-Mañús R, Fontcuberta-Cervera S, González-Bayón R, Hannah MA, Álvarez-Martínez FJ, Barrajón-Catalán E, Micol V, Quesada V, Ponce MR, Micol JL. Analysis of the Arabidopsis venosa4-0 mutant supports the role of VENOSA4 in dNTP metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111819. [PMID: 37562732 DOI: 10.1016/j.plantsci.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.
Collapse
Affiliation(s)
- Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | | | - Rebeca González-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Matthew A Hannah
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Francisco Javier Álvarez-Martínez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
5
|
Chen L, Wen DQ, Shi GL, Sun D, Yin Y, Yu M, An WQ, Tang Q, Ai J, Han LJ, Yan CB, Sun YJ, Wang YP, Wang ZX, Fan DY. Different photoprotective strategies for white leaves between two co-occurring Actinidia species. PHYSIOLOGIA PLANTARUM 2023; 175:e13880. [PMID: 36840627 DOI: 10.1111/ppl.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
At the outer canopy, the white leaves of Actinidia kolomikta can turn pink but they stay white in A. polygama. We hypothesized that the different leaf colors in the two Actinidia species may represent different photoprotection strategies. To test the hypothesis, leaf optical spectra, anatomy, chlorophyll a fluorescence, superoxide (O2 ˙- ) concentration, photosystem II photo-susceptibility, and expression of anthocyanin-related genes were investigated. On the adaxial side, light reflectance was the highest for white leaves of A. kolomikta, followed by its pink leaves and white leaves of A. polygama, and the absorptance for white leaves of A. kolomikta was the lowest. Chlorophyll and carotenoid content of white and pink leaves in A. kolomikta were significantly lower than those of A. polygama, while the relative anthocyanin content of pink leaves was the highest. Chloroplasts of palisade cells of white leaves in A. kolomikta were not well developed with a lower maximum quantum efficiency of PSII than the other types of leaves (pink leaves of A. kolomikta and white leaves of A. Polygama at the inner/outer canopy). After high light treatment from the abaxial surface, Fv /Fm decreased to a larger extent for white leaves of A. kolomikta than pink leaf and white leaves of A. polygama, and its non-photochemical quenching was also the lowest. White leaves of A. kolomikta showed higher O2 ˙- concentration compared to pink leaves under the same strong irradiance. The expression levels of anthocyanin biosynthetic genes in pink leaves were higher than in white leaves. These results indicate that white leaves of A. kolomikta apply a reflection strategy for photoprotection, while pink leaves resist photoinhibition via anthocyanin accumulation.
Collapse
Affiliation(s)
- Li Chen
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - De-Quan Wen
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Guang-Li Shi
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Dan Sun
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Yan Yin
- Plant Science Facility of the Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Miao Yu
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Wen-Qi An
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Qian Tang
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Jun Ai
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Li-Jun Han
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People's Republic of China
| | - Chao-Bin Yan
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Yuan-Jing Sun
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Yun-Peng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Zhen-Xing Wang
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, People's Republic of China
| | - Da-Yong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Mackenzie SA, Mullineaux PM. Plant environmental sensing relies on specialized plastids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7155-7164. [PMID: 35994779 DOI: 10.1093/jxb/erac334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In plants, plastids are thought to interconvert to various forms that are specialized for photosynthesis, starch and oil storage, and diverse pigment accumulation. Post-endosymbiotic evolution has led to adaptations and specializations within plastid populations that align organellar functions with different cellular properties in primary and secondary metabolism, plant growth, organ development, and environmental sensing. Here, we review the plastid biology literature in light of recent reports supporting a class of 'sensory plastids' that are specialized for stress sensing and signaling. Abundant literature indicates that epidermal and vascular parenchyma plastids display shared features of dynamic morphology, proteome composition, and plastid-nuclear interaction that facilitate environmental sensing and signaling. These findings have the potential to reshape our understanding of plastid functional diversification.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
7
|
Three Diverse Granule Preparation Methods for Proteomic Analysis of Mature Rice (Oryza sativa L.) Starch Grain. Molecules 2022; 27:molecules27103307. [PMID: 35630784 PMCID: PMC9144640 DOI: 10.3390/molecules27103307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Starch is the primary form of reserve carbohydrate storage in plants. Rice (Oryza sativa L.) is a monocot whose reserve starch is organized into compounded structures within the amyloplast, rather than a simple starch grain (SG). The mechanism governing the assembly of the compound SG from polyhedral granules in apposition, however, remains unknown. To further characterize the proteome associated with these compounded structures, three distinct methods of starch granule preparation (dispersion, microsieve, and flotation) were performed. Phase separation of peptides (aqueous trypsin-shaving and isopropanol solubilization of residual peptides) isolated starch granule-associated proteins (SGAPs) from the distal proteome of the amyloplast and the proximal ‘amylome’ (the amyloplastic proteome), respectively. The term ‘distal proteome’ refers to SGAPs loosely tethered to the amyloplast, ones that can be rapidly proteolyzed, while proximal SGAPs are those found closer to the remnant amyloplast membrane fragments, perhaps embedded therein—ones that need isopropanol solvent to be removed from the mature organelle surface. These two rice starch-associated peptide samples were analyzed using nano-liquid chromatography–tandem mass spectrometry (Nano-HPLC-MS/MS). Known and novel proteins, as well as septum-like structure (SLS) proteins, in the mature rice SG were found. Data mining and gene ontology software were used to categorize these putative plastoskeletal components as a variety of structural elements, including actins, tubulins, tubulin-like proteins, and cementitious elements such as reticulata related-like (RER) proteins, tegument proteins, and lectins. Delineating the plastoskeletal proteome begins by understanding how each starch granule isolation procedure affects observed cytoplasmic and plastid proteins. The three methods described herein show how the technique used to isolate SGs differentially impacts the subsequent proteomic analysis and results obtained. It can thus be concluded that future investigations must make judicious decisions regarding the methodology used in extracting proteomic information from the compound starch granules being assessed, since different methods are shown to yield contrasting results herein. Data are available via ProteomeXchange with identifier PXD032314.
Collapse
|
8
|
Yu M, Chen L, Liu DH, Sun D, Shi GL, Yin Y, Wen DQ, Wang ZX, Ai J. Enhancement of Photosynthetic Capacity in Spongy Mesophyll Cells in White Leaves of Actinidia kolomikta. FRONTIERS IN PLANT SCIENCE 2022; 13:856732. [PMID: 35646000 PMCID: PMC9131848 DOI: 10.3389/fpls.2022.856732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 06/01/2023]
Abstract
Considering that Actinidia kolomikta bears abundant white leaves on reproductive branches during blossoming, we hypothesized that the white leaves may maintain photosynthetic capacity by adjustments of leaf anatomy and physiological regulation. To test this hypothesis, leaf anatomy, gas exchange, chlorophyll a fluorescence, and the transcriptome were examined in white leaves of A. kolomikta during flowering. The palisade and spongy mesophyll in the white leaves were thicker than those in green ones. Chloroplast development in palisade parenchyma of white leaves was abnormal, whereas spongy parenchyma of white leaves contained functional chloroplasts. The highest photosynthetic rate of white leaves was ~82% of that of green leaves over the course of the day. In addition, the maximum quantum yield of PSII (F v/F m) of the palisade mesophyll in white leaves was significantly lower than those of green ones, whereas F v/F m and quantum yield for electron transport were significantly higher in the spongy mesophyll of white leaves. Photosynthetic capacity regulation of white leaf also was attributed to upregulation or downregulation of some key genes involving in photosynthesis. Particularly, upregulation of sucrose phosphate synthase (SPS), glyeraldehyde-3-phosphate dehydrogenase (GAPDH) and RuBisCO activase (RCA) in white leaf suggested that they might be involved in regulation of sugar synthesis and Rubisco activase in maintaining photosynthetic capacity of white leaf. Conclusions: white leaves contained a thicker mesophyll layer and higher photosynthetic activity in spongy parenchyma cells than those of palisade parenchyma cells. This may compensate for the lowered photosynthetic capacity of the palisade mesophyll. Consequently, white leaves maintain a relatively high photosynthetic capacity in the field.
Collapse
Affiliation(s)
- Miao Yu
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Li Chen
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | | | - Dan Sun
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Guang-li Shi
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Yan Yin
- Key Laboratory of Plant Resources, State Key Laboratory of Systematic and Envolutionary Botany, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - De-quan Wen
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Zhen-xing Wang
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Jun Ai
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Single-Cell Transcriptome and Network Analyses Unveil Key Transcription Factors Regulating Mesophyll Cell Development in Maize. Genes (Basel) 2022; 13:genes13020374. [PMID: 35205426 PMCID: PMC8872562 DOI: 10.3390/genes13020374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Maize mesophyll (M) cells play important roles in various biological processes such as photosynthesis II and secondary metabolism. Functional differentiation occurs during M-cell development, but the underlying mechanisms for regulating M-cell development are largely unknown. Results: We conducted single-cell RNA sequencing (scRNA-seq) to profile transcripts in maize leaves. We then identified coregulated modules by analyzing the resulting pseudo-time-series data through gene regulatory network analyses. WRKY, ERF, NAC, MYB and Heat stress transcription factor (HSF) families were highly expressed in the early stage, whereas CONSTANS (CO)-like (COL) and ERF families were highly expressed in the late stage of M-cell development. Construction of regulatory networks revealed that these transcript factor (TF) families, especially HSF and COL, were the major players in the early and later stages of M-cell development, respectively. Integration of scRNA expression matrix with TF ChIP-seq and Hi-C further revealed regulatory interactions between these TFs and their targets. HSF1 and COL8 were primarily expressed in the leaf bases and tips, respectively, and their targets were validated with protoplast-based ChIP-qPCR, with the binding sites of HSF1 being experimentally confirmed. Conclusions: Our study provides evidence that several TF families, with the involvement of epigenetic regulation, play vital roles in the regulation of M-cell development in maize.
Collapse
|
10
|
Riddled with holes: Understanding air space formation in plant leaves. PLoS Biol 2021; 19:e3001475. [PMID: 34871299 PMCID: PMC8675916 DOI: 10.1371/journal.pbio.3001475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Plants use energy from sunlight to transform carbon dioxide from the air into complex organic molecules, ultimately producing much of the food we eat. To make this complex chemistry more efficient, plant leaves are intricately constructed in 3 dimensions: They are flat to maximise light capture and contain extensive internal air spaces to increase gas exchange for photosynthesis. Many years of work has built up an understanding of how leaves form flat blades, but the molecular mechanisms that control air space formation are poorly understood. Here, I review our current understanding of air space formation and outline how recent advances can be harnessed to answer key questions and take the field forward. Increasing our understanding of plant air spaces will not only allow us to understand a fundamental aspect of plant development, but also unlock the potential to engineer the internal structure of crops to make them more efficient at photosynthesis with lower water requirements and more resilient in the face of a changing environment. Leaves are interwoven with large air spaces to increase the efficiency of photosynthesis; however, how these air spaces form and how different patterns have evolved is almost unknown. This Unsolved Mystery article discusses the existing evidence and poses new avenues of research to answer this question.
Collapse
|
11
|
Martínez-Andújar C, Martínez-Pérez A, Albacete A, Martínez-Melgarejo PA, Dodd IC, Thompson AJ, Mohareb F, Estelles-Lopez L, Kevei Z, Ferrández-Ayela A, Pérez-Pérez JM, Gifford ML, Pérez-Alfocea F. Overproduction of ABA in rootstocks alleviates salinity stress in tomato shoots. PLANT, CELL & ENVIRONMENT 2021; 44:2966-2986. [PMID: 34053093 DOI: 10.1111/pce.14121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 05/20/2023]
Abstract
To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.
Collapse
Affiliation(s)
| | | | | | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | - Fady Mohareb
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | | | - Miriam L Gifford
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | | |
Collapse
|
12
|
Dopp IJ, Yang X, Mackenzie SA. A new take on organelle-mediated stress sensing in plants. THE NEW PHYTOLOGIST 2021; 230:2148-2153. [PMID: 33704791 PMCID: PMC8214450 DOI: 10.1111/nph.17333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/10/2021] [Indexed: 05/25/2023]
Abstract
Plants are able to adjust phenotype in response to changes in the environment. This system depends on an internal capacity to sense environmental conditions and to process this information to plant response. Recent studies have pointed to mitochondria and plastids as important environmental sensors, capable of perceiving stressful conditions and triggering gene expression, epigenomic, metabolic and phytohormone changes in the plant. These processes involve integrated gene networks that ultimately modulate the energy balance between growth and plant defense. This review attempts to link several unusual recent findings into a comprehensive hypothesis for the regulation of plant phenotypic plasticity.
Collapse
Affiliation(s)
- Isaac J. Dopp
- Departments of Biology and Plant Science, University Park, PA 16802, USA
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaodong Yang
- Departments of Biology and Plant Science, University Park, PA 16802, USA
| | - Sally A. Mackenzie
- Departments of Biology and Plant Science, University Park, PA 16802, USA
| |
Collapse
|
13
|
Silva LAS, Sampaio VF, Barbosa LCS, Machado M, Flores-Borges DNA, Sales JF, de Oliveira DC, Mayer JLS, Kuster VC, Rocha DI. Albinism in plants - far beyond the loss of chlorophyll: Structural and physiological aspects of wild-type and albino royal poinciana (Delonix regia) seedlings. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:761-768. [PMID: 32544284 DOI: 10.1111/plb.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The partial or complete loss of chlorophylls, or albinism, is a rare phenomenon in plants. In the present study, we provide the first report of the occurrence in albino Delonix regia seedlings and describe the morpho-physiological changes associated with albinism. Wild-type (WT) and albino seedlings were characterized. Leaflets samples were processed following common procedures for analysis with light, scanning and transmission electron microscopy. The chlorophyll a fluorescence parameters and the carbohydrate, lipid and soluble protein content were also determined in leaf and cotyledon samples of both albino and WT seedlings. Albino seedlings showed reduced growth. They also had lower chlorophyll and protein content in foliar tissues than WT seedlings, in addition to lower concentrations of lipids and carbohydrates stored in cotyledons. The chloroplasts of albino seedlings were poorly developed, with an undefined internal membrane system and the presence of plastoglobules. Wild-type seedlings had a uniseriate and hypoestomatic epidermis. The mesophyll was dorsiventral, consisting of a layer of palisade parenchyma and two to four layers of spongy parenchyma. In albino seedlings, the spongy parenchyma was compact, with few intercellular spaces, and the thickness of the mesophyll was larger, resulting in increased thickness of the leaf blade. Albino seedlings had higher stomatal density and number of pavement cells, although the stomata had smaller dimensions. In addition to the partial loss of chlorophylls, albino D. regia showed changes at physiological and structural levels, demonstrating the crucial nature of photosynthetic pigments during the development and differentiation of plant leaf tissues/cells.
Collapse
Affiliation(s)
- L A S Silva
- Instituto de Ciências Biológicas, Universidade Federal de Jataí, Jataí, Brazil
| | - V F Sampaio
- Instituto de Ciências Biológicas, Universidade Federal de Jataí, Jataí, Brazil
| | - L C S Barbosa
- Instituto de Ciências Biológicas, Universidade Federal de Jataí, Jataí, Brazil
| | - M Machado
- Instituto de Ciências Biológicas, Universidade Federal de Jataí, Jataí, Brazil
| | - D N A Flores-Borges
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - J F Sales
- Instituto Federal Goiano de Educação, Ciência e Tecnologia, Rio Verde, Brazil
| | - D C de Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - J L S Mayer
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - V C Kuster
- Instituto de Ciências Biológicas, Universidade Federal de Jataí, Jataí, Brazil
| | - D I Rocha
- Instituto de Ciências Biológicas, Universidade Federal de Jataí, Jataí, Brazil
| |
Collapse
|
14
|
Ruibal C, Castro A, Fleitas AL, Quezada J, Quero G, Vidal S. A Chloroplast COR413 Protein From Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:845. [PMID: 32636864 PMCID: PMC7317016 DOI: 10.3389/fpls.2020.00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
COR413 genes belong to a poorly characterized group of plant-specific cold-regulated genes initially identified as part of the transcriptional activation machinery of plants during cold acclimation. They encode multispanning transmembrane proteins predicted to target the plasma membrane or the chloroplast inner membrane. Despite being ubiquitous throughout the plant kingdom, little is known about their biological function. In this study, we used reverse genetics to investigate the relevance of a predicted chloroplast localized COR413 protein (PpCOR413im) from the moss Physcomitrella patens in developmental and abiotic stress responses. Expression of PpCOR413im was strongly induced by abscisic acid (ABA) and by various environmental stimuli, including low temperature, hyperosmosis, salinity and high light. In vivo subcellular localization of PpCOR413im-GFP fusion protein revealed that this protein is localized in chloroplasts, confirming the in silico predictions. Loss-of-function mutants of PpCOR413im exhibited growth and developmental alterations such as growth retardation, reduced caulonema formation and hypersensitivity to ABA. Mutants also displayed altered photochemistry under various abiotic stresses, including dehydration and low temperature, and exhibited a dramatic growth inhibition upon exposure to high light. Disruption of PpCOR413im also caused altered chloroplast ultrastructure, increased ROS accumulation, and enhanced starch and sucrose levels under high light or after ABA treatment. In addition, loss of PpCOR413im affected both nuclear and chloroplast gene expression in response to ABA and high light, suggesting a role for this gene downstream of ABA in the regulation of growth and environmental stress responses. Developmental alterations exhibited by PpCOR413im knockout mutants had remarkable similarities to those exhibited by hxk1, a mutant lacking a major chloroplastic hexokinase, an enzyme involved in energy homeostasis. Based on these findings, we propose that PpCOR413im is involved in coordinating energy metabolism with ABA-mediated growth and developmental responses.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrea L. Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jorge Quezada
- Unidad de Biotecnología Vegetal, Instituto de Biología Molecular y Biotecnología, Carrera de Biología – Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Gastón Quero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Lächler K, Clauss K, Imhof J, Crocoll C, Schulz A, Halkier BA, Binder S. In Arabidopsis thaliana Substrate Recognition and Tissue- as Well as Plastid Type-Specific Expression Define the Roles of Distinct Small Subunits of Isopropylmalate Isomerase. FRONTIERS IN PLANT SCIENCE 2020; 11:808. [PMID: 32612621 PMCID: PMC7308503 DOI: 10.3389/fpls.2020.00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In Arabidopsis thaliana, the heterodimeric isopropylmalate isomerase (IPMI) is composed of a single large (IPMI LSU1) and one of three different small subunits (IPMI SSU1 to 3). The function of IPMI is defined by the small subunits. IPMI SSU1 is required for Leu biosynthesis and has previously also been proposed to be involved in the first cycle of Met chain elongation, the first phase of the synthesis of Met-derived glucosinolates. IPMI SSU2 and IPMI SSU3 participate in the Met chain elongation pathway. Here, we investigate the role of the three IPMI SSUs through the analysis of the role of the substrate recognition region spanning five amino acids on the substrate specificity of IPMI SSU1. Furthermore, we analyze in detail the expression pattern of fluorophore-tagged IPMI SSUs throughout plant development. Our study shows that the substrate recognition region that differs between IPMI SSU1 and the other two IMPI SSUs determines the substrate preference of IPMI. Expression of IPMI SSU1 is spatially separated from the expression of IPMI SSU2 and IPMI SSU3, and IPMI SSU1 is found in small plastids, whereas IMPI SSU2 and SSU3 are found in chloroplasts. Our data show a distinct role for IMPI SSU1 in Leu biosynthesis and for IMPI SSU2 and SSU3 in the Met chain elongation pathway.
Collapse
Affiliation(s)
- Kurt Lächler
- Institut für Molekulare Botanik, Fakultät für Naturwissenschaften, Universität Ulm, Ulm, Germany
| | - Karen Clauss
- Institut für Molekulare Botanik, Fakultät für Naturwissenschaften, Universität Ulm, Ulm, Germany
| | - Janet Imhof
- Institut für Molekulare Botanik, Fakultät für Naturwissenschaften, Universität Ulm, Ulm, Germany
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Stefan Binder
- Institut für Molekulare Botanik, Fakultät für Naturwissenschaften, Universität Ulm, Ulm, Germany
| |
Collapse
|
16
|
Zou M, Mu Y, Chai X, Ouyang M, Yu LJ, Zhang L, Meurer J, Chi W. The critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis and plant development. Nucleic Acids Res 2020; 48:3195-3210. [PMID: 32095829 PMCID: PMC7102989 DOI: 10.1093/nar/gkaa129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. The formation of methylated nucleotides is performed by a variety of RNA-methyltransferases. Chloroplasts of plant cells result from an endosymbiotic event and possess their own genome and ribosomes. However, enzymes responsible for rRNA methylation and the function of modified nucleotides in chloroplasts remain to be determined. Here, we identified an rRNA methyltransferase, CMAL (Chloroplast MraW-Like), in the Arabidopsis chloroplast and investigated its function. CMAL is the Arabidopsis ortholog of bacterial MraW/ RsmH proteins and accounts to the N4-methylation of C1352 in chloroplast 16S rRNA, indicating that CMAL orthologs and this methyl-modification nucleotide is conserved between bacteria and the endosymbiont-derived eukaryotic organelle. The knockout of CMAL in Arabidopsis impairs the chloroplast ribosome accumulation and accordingly reduced the efficiency of mRNA translation. Interestingly, the loss of CMAL leads not only to defects in chloroplast function, but also to abnormal leaf and root development and overall plant morphology. Further investigation showed that CMAL is involved in the plant development probably by modulating auxin derived signaling pathways. This study uncovered the important role of 16S rRNA methylation mediated by CMAL in chloroplast ribosome biogenesis and plant development.
Collapse
Affiliation(s)
- Meijuan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Mu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Zhang C, Zhu X, Zhang F, Yang X, Ni L, Zhang W, Liu Z, Zhang Y. Improving viscosity and gelling properties of leaf pectin by comparing five pectin extraction methods using green tea leaf as a model material. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105246] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Mackenzie SA, Kundariya H. Organellar protein multi-functionality and phenotypic plasticity in plants. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190182. [PMID: 31787051 PMCID: PMC6939364 DOI: 10.1098/rstb.2019.0182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the increasing impact of climate instability on agricultural and ecological systems has come a heightened sense of urgency to understand plant adaptation mechanisms in more detail. Plant species have a remarkable ability to disperse their progeny to a wide range of environments, demonstrating extraordinary resiliency mechanisms that incorporate epigenetics and transgenerational stability. Surprisingly, some of the underlying versatility of plants to adapt to abiotic and biotic stress emerges from the neofunctionalization of organelles and organellar proteins. We describe evidence of possible plastid specialization and multi-functional organellar protein features that serve to enhance plant phenotypic plasticity. These features appear to rely on, for example, spatio-temporal regulation of plastid composition, and unusual interorganellar protein targeting and retrograde signalling features that facilitate multi-functionalization. Although we report in detail on three such specializations, involving MSH1, WHIRLY1 and CUE1 proteins in Arabidopsis, there is ample reason to believe that these represent only a fraction of what is yet to be discovered as we begin to elaborate cross-species diversity. Recent observations suggest that plant proteins previously defined in one context may soon be rediscovered in new roles and that much more detailed investigation of proteins that show subcellular multi-targeting may be warranted. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, 362 Frear North Building, University Park, PA 16802, USA
| | - Hardik Kundariya
- Departments of Biology and Plant Science, The Pennsylvania State University, 362 Frear North Building, University Park, PA 16802, USA
| |
Collapse
|
19
|
Fabiańska I, Bucher M, Häusler RE. Intracellular phosphate homeostasis - A short way from metabolism to signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:57-67. [PMID: 31300142 DOI: 10.1016/j.plantsci.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus in plant cells occurs in inorganic form as both ortho- and pyrophosphate or bound to organic compounds, like e.g., nucleotides, phosphorylated metabolites, phospholipids, phosphorylated proteins, or phytate as P storage in the vacuoles of seeds. Individual compartments of the cell are surrounded by membranes that are selective barriers to avoid uncontrolled solute exchange. A controlled exchange of phosphate or phosphorylated metabolites is accomplished by specific phosphate transporters (PHTs) and the plastidial phosphate translocator family (PTs) of the inner envelope membrane. Plastids, in particular chloroplasts, are the site of various anabolic sequences of enzyme-catalyzed reactions. Apart from their role in metabolism PHTs and PTs are presumed to be also involved in communication between organelles and plant organs. Here we will focus on the integration of phosphate transport and homeostasis in signaling processes. Recent developments in this field will be critically assessed and potential future developments discussed. In particular, the occurrence of various plastid types in one organ (i.e. the leaf) with different functions with respect to metabolism or sensing, as has been documented recently following a tissue-specific proteomics approach (Beltran et al., 2018), will shed new light on functional aspects of phosphate homeostasis.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Rainer E Häusler
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
20
|
de Oliveira MVV, Jin X, Chen X, Griffith D, Batchu S, Maeda HA. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:901-922. [PMID: 30457178 DOI: 10.1111/tpj.14169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
l-Tyrosine is an essential aromatic amino acid required for the synthesis of proteins and a diverse array of plant natural products; however, little is known on how the levels of tyrosine are controlled in planta and linked to overall growth and development. Most plants synthesize tyrosine by TyrA arogenate dehydrogenases, which are strongly feedback-inhibited by tyrosine and encoded by TyrA1 and TyrA2 genes in Arabidopsis thaliana. While TyrA enzymes have been extensively characterized at biochemical levels, their in planta functions remain uncertain. Here we found that TyrA1 suppression reduces seed yield due to impaired anther dehiscence, whereas TyrA2 knockout leads to slow growth with reticulate leaves. The tyra2 mutant phenotypes were exacerbated by TyrA1 suppression and rescued by the expression of TyrA2, TyrA1 or tyrosine feeding. Low-light conditions synchronized the tyra2 and wild-type growth, and ameliorated the tyra2 leaf reticulation. After shifting to normal light, tyra2 transiently decreased tyrosine and subsequently increased aspartate before the appearance of the leaf phenotypes. Overexpression of the deregulated TyrA enzymes led to hyper-accumulation of tyrosine, which was also accompanied by elevated aspartate and reticulate leaves. These results revealed that TyrA1 and TyrA2 have distinct and overlapping functions in flower and leaf development, respectively, and that imbalance of tyrosine, caused by altered TyrA activity and regulation, impacts growth and development of Arabidopsis. The findings provide critical bases for improving the production of tyrosine and its derived natural products, and further elucidating the coordinated metabolic and physiological processes to maintain tyrosine levels in plants.
Collapse
Affiliation(s)
- Marcos V V de Oliveira
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xing Jin
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xuan Chen
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Daniel Griffith
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Sai Batchu
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
- Department of Biology, The College of New Jersey, Biology Building, 2000 Pennington Road, Ewing, NJ, 08628, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
21
|
Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 154:134-142. [PMID: 30283160 PMCID: PMC6105748 DOI: 10.1016/j.envexpbot.2018.05.003] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 05/18/2023]
Abstract
Reduction-oxidation (redox) reactions, in which electrons move from a donor to an acceptor, are the functional heart of photosynthesis. It is not surprising therefore that reactive oxygen species (ROS) are generated in abundance by photosynthesis, providing a plethora of redox signals as well as functioning as essential regulators of energy and metabolic fluxes. Chloroplasts are equipped with an elaborate and multifaceted protective network that allows photosynthesis to function with high productivity even in resource-limited natural environments. This includes numerous antioxidants with overlapping functions that provide enormous flexibility in redox control. ROS are an integral part of the repertoire of chloroplast signals that are transferred to the nucleus to convey essential information concerning redox pressure within the electron transport chain. Current evidence suggests that there is specificity in the gene-expression profiles triggered by the different ROS signals, so that singlet oxygen triggers programs related to over excitation of photosystem (PS) II while superoxide and hydrogen peroxide promote the expression of other suites of genes that may serve to alleviate electron pressure on the reducing side of PSI. Not all chloroplasts are equal in their signaling functions, with some sub-populations appearing to have better contacts/access to the nucleus than others to promote genetic and epigenetic responses. While the concept that light-induced increases in ROS result in damage to PSII and photoinhibition is embedded in the photosynthesis literature, there is little consensus concerning the extent to which such oxidative damage happens in nature. Slowly reversible decreases in photosynthetic capacity are not necessarily the result of light-induced damage to PSII reaction centers.
Collapse
|
22
|
Sedelnikova OV, Hughes TE, Langdale JA. Understanding the Genetic Basis of C 4 Kranz Anatomy with a View to Engineering C 3 Crops. Annu Rev Genet 2018; 52:249-270. [PMID: 30208293 DOI: 10.1146/annurev-genet-120417-031217] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most remarkable examples of convergent evolution is the transition from C3 to C4 photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C4 is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz. C4 Kranz anatomy differs from ancestral C3 anatomy with respect to vein spacing patterns across the leaf, cell-type specification around veins, and cell-specific organelle function. Here we review our current understanding of how Kranz anatomy evolved and how it develops, with a focus on studies that are dissecting the underlying genetic mechanisms. This research field has gained prominence in recent years because understanding the genetic regulation of Kranz may enable the C3-to-C4 transition to be engineered, an endeavor that would significantly enhance crop productivity.
Collapse
Affiliation(s)
- Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Thomas E Hughes
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| |
Collapse
|
23
|
Hashida SN, Miyagi A, Nishiyama M, Yoshida K, Hisabori T, Kawai-Yamada M. Ferredoxin/thioredoxin system plays an important role in the chloroplastic NADP status of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:947-960. [PMID: 29920827 DOI: 10.1111/tpj.14000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 05/09/2023]
Abstract
NADP is a key electron carrier for a broad spectrum of redox reactions, including photosynthesis. Hence, chloroplastic NADP status, as represented by redox status (ratio of NADPH to NADP+ ) and pool size (sum of NADPH and NADP+ ), is critical for homeostasis in photosynthetic cells. However, the mechanisms and molecules that regulate NADP status in chloroplasts remain largely unknown. We have now characterized an Arabidopsis mutant with imbalanced NADP status (inap1), which exhibits a high NADPH/NADP+ ratio and large NADP pool size. inap1 is a point mutation in At2g04700, which encodes the catalytic subunit of ferredoxin/thioredoxin reductase. Upon illumination, inap1 demonstrated earlier increases in NADP pool size than the wild type did. The mutated enzyme was also found in vitro to inefficiently reduce m-type thioredoxin, which activates Calvin cycle enzymes, and NADP-dependent malate dehydrogenase to export reducing power to the cytosol. Accordingly, Calvin cycle metabolites and amino acids diminished in inap1 plants. In addition, inap1 plants barely activate NADP-malate dehydrogenase, and have an altered redox balance between the chloroplast and cytosol, resulting in inefficient nitrate reduction. Finally, mutants deficient in m-type thioredoxin exhibited similar light-dependent NADP dynamics as inap1. Collectively, the data suggest that defects in ferredoxin/thioredoxin reductase and m-type thioredoxin decrease the consumption of NADPH, leading to a high NADPH/NADP+ ratio and large NADP pool size. The data also suggest that the fate of NADPH is an important influence on NADP pool size.
Collapse
Affiliation(s)
- Shin-Nosuke Hashida
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646, Abiko, Chiba, 270-1194, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Maho Nishiyama
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
24
|
Gao Z, Shen W, Chen G. Uncovering C4-like photosynthesis in C3 vascular cells. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3531-3540. [PMID: 29684188 DOI: 10.1093/jxb/ery155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
In C4 plants, the vascularization of the leaf is extended to include a ring of photosynthetic bundle sheath cells, which have essential and specific functions. In contrast to the substantial knowledge of photosynthesis in C4 plants, relatively little is known about photosynthesis in C3 plant veins, which differs substantially from that in C3 mesophyll cells. In this review we highlight the specific photosynthetic machinery present in C3 vascular cells, which likely evolved prior to the divergence between C3 and C4 plants. The associated primary processes of carbon recapture, nitrogen transport, and antioxidant metabolism are discussed. This review of the basal C4 photosynthesis in C3 plants is significant in the context of promoting the potential for biotechnological development of C4-transgenic rice crops.
Collapse
Affiliation(s)
- Zhiping Gao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Weijun Shen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
25
|
Pinard D, Mizrachi E. Unsung and understudied: plastids involved in secondary growth. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:30-36. [PMID: 29459221 DOI: 10.1016/j.pbi.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 05/17/2023]
Abstract
Plastids represent the only subcellular compartment where aromatic amino acid precursors for lignin can be synthesized during secondary growth in vascular plants. Despite this, aside from a general shared understanding that plastid-localized metabolism occurs during secondary growth, virtually no research has been performed on understanding their biology. Of particular importance will be insight into their ontogeny, morphology and ultrastructure, and (given the complex cytonuclear communication required) their nuclear-encoded and organellar-encoded regulation. Updating and integrating this knowledge will contribute to our fundamental understanding of a ubiquitous developmental process in vascular plants, and a major terrestrial carbon sink, as well as carbon-related plant biotechnology. Given available evidence, we propose a new name for a distinct plastid derivative-the 'xyloplast', is required.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| |
Collapse
|
26
|
Cho SH, Lee CH, Gi E, Yim Y, Koh HJ, Kang K, Paek NC. The Rice Rolled Fine Striped (RFS) CHD3/Mi-2 Chromatin Remodeling Factor Epigenetically Regulates Genes Involved in Oxidative Stress Responses During Leaf Development. FRONTIERS IN PLANT SCIENCE 2018; 9:364. [PMID: 29616070 PMCID: PMC5870552 DOI: 10.3389/fpls.2018.00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
In rice (Oryza sativa), moderate leaf rolling increases photosynthetic competence and raises grain yield; therefore, this important agronomic trait has attracted much attention from plant biologists and breeders. However, the relevant molecular mechanism remains unclear. Here, we isolated and characterized Rolled Fine Striped (RFS), a key gene affecting rice leaf rolling, chloroplast development, and reactive oxygen species (ROS) scavenging. The rfs-1 gamma-ray allele and the rfs-2 T-DNA insertion allele of RFS failed to complement each other and their mutants had similar phenotypes, producing extremely incurved leaves due to defective development of vascular cells on the adaxial side. Map-based cloning showed that the rfs-1 mutant harbors a 9-bp deletion in a gene encoding a predicted CHD3/Mi-2 chromatin remodeling factor belonging to the SNF2-ATP-dependent chromatin remodeling family. RFS was expressed in various tissues and accumulated mainly in the vascular cells throughout leaf development. Furthermore, RFS deficiency resulted in a cell death phenotype that was caused by ROS accumulation in developing leaves. We found that expression of five ROS-scavenging genes [encoding catalase C, ascorbate peroxidase 8, a putative copper/zinc superoxide dismutase (SOD), a putative SOD, and peroxiredoxin IIE2] decreased in rfs-2 mutants. Western-blot and chromatin immunoprecipitation (ChIP) assays demonstrated that rfs-2 mutants have reduced H3K4me3 levels in ROS-related genes. Loss-of-function in RFS also led to multiple developmental defects, affecting pollen development, grain filling, and root development. Our results suggest that RFS is required for many aspects of plant development and its function is closely associated with epigenetic regulation of genes that modulate ROS homeostasis.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chung-Hee Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Eunji Gi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yehyun Yim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Crop Biotechnology Institute, Institutes of Green Bio Science & Technology, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| |
Collapse
|
27
|
Lundquist PK, Mantegazza O, Stefanski A, Stühler K, Weber APM. Surveying the Oligomeric State of Arabidopsis thaliana Chloroplasts. MOLECULAR PLANT 2017; 10:197-211. [PMID: 27794502 DOI: 10.1016/j.molp.2016.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 05/08/2023]
Abstract
Blue native-PAGE (BN-PAGE) resolves protein complexes in their native state. When combined with immunoblotting, it can be used to identify the presence of high molecular weight complexes at high resolution for any protein, given a suitable antibody. To identify proteins in high molecular weight complexes on a large scale and to bypass the requirement for specific antibodies, we applied a tandem mass spectrometry (MS/MS) approach to BN-PAGE-resolved chloroplasts. Fractionation of the gel into six bands allowed identification and label-free quantification of 1000 chloroplast proteins with native molecular weight separation. Significantly, this approach achieves a depth of identification comparable with traditional shotgun proteomic analyses of chloroplasts, indicating much of the known chloroplast proteome is amenable to MS/MS identification under our fractionation scheme. By limiting the number of fractionation bands to six, we facilitate scaled-up comparative analyses, as we demonstrate with the reticulata chloroplast mutant displaying a reticulated leaf phenotype. Our comparative proteomics approach identified a candidate interacting protein of RETICULATA as well as effects on lipid remodeling proteins, amino acid metabolic enzymes, and plastid division machinery. We additionally highlight selected proteins from each sub-compartment of the chloroplast that provide novel insight on known or hypothesized protein complexes to further illustrate the utility of this approach. Our results demonstrate the high sensitivity and reproducibility of this technique, which is anticipated to be widely adaptable to other sub-cellular compartments.
Collapse
Affiliation(s)
- Peter K Lundquist
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Otho Mantegazza
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, BMFZ, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Liang S, Qi Y, Zhao J, Li Y, Wang R, Shao J, Liu X, An L, Yu F. Mutations in the Arabidopsis AtMRS2-11/ AtMGT10/ VAR5 Gene Cause Leaf Reticulation. FRONTIERS IN PLANT SCIENCE 2017; 8:2007. [PMID: 29234332 PMCID: PMC5712471 DOI: 10.3389/fpls.2017.02007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/10/2017] [Indexed: 05/20/2023]
Abstract
In higher plants, the development of functional chloroplasts is essential for photosynthesis and many other physiological processes. With a long-term goal of elucidating the genetic regulation of chloroplast development, we identified two allelic leaf variegation mutants, variegated5-1 (var5-1) and var5-2. Both mutants showed a distinct leaf reticulation phenotype of yellow paraveinal regions and green interveinal regions, and the leaf reticulation phenotype correlated with photosynthetic defects. Through the identification of mutation sites in the two mutant alleles and the molecular complementation, we confirmed that VAR5 encodes a CorA family of Mg2+ transporters also known as AtMRS2-11/AtMGT10. Using protoplast transient expression and biochemical fractionation assays, we demonstrated that AtMRS2-11/AtMGT10/VAR5 likely localizes to the chloroplast envelope. Moreover, we established that AtMRS2-11/AtMGT10/VAR5 forms large molecular weight complexes in the chloroplast and the sizes of these complexes clearly exceed those of their bacterial counterparts, suggesting the compositions of CorA Mg2+ transporter complex is different between the chloroplast and bacteria. Our findings indicate that AtMRS2-11/AtMGT10/VAR5 plays an important role in the tissue specific regulation of chloroplast development.
Collapse
|
29
|
Denton AK, Maß J, Külahoglu C, Lercher MJ, Bräutigam A, Weber APM. Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:147-160. [PMID: 28043950 PMCID: PMC5853576 DOI: 10.1093/jxb/erw463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/18/2016] [Indexed: 05/18/2023]
Abstract
The high efficiency of C4 photosynthesis relies on spatial division of labor, classically with initial carbon fixation in the mesophyll and carbon reduction in the bundle sheath. By employing grinding and serial filtration over liquid nitrogen, we enriched C4 tissues along a developing leaf gradient. This method treats both C4 tissues in an integrity-preserving and consistent manner, while allowing complementary measurements of metabolite abundance and enzyme activity, thus providing a comprehensive data set. Meta-analysis of this and the previous studies highlights the strengths and weaknesses of different C4 tissue separation techniques. While the method reported here achieves the least enrichment, it is the only one that shows neither strong 3' (degradation) bias, nor different severity of 3' bias between samples. The meta-analysis highlighted previously unappreciated observations, such as an accumulation of evidence that aspartate aminotransferase is more mesophyll specific than expected from the current NADP-ME C4 cycle model, and a shift in enrichment of protein synthesis genes from bundle sheath to mesophyll during development. The full comparative dataset is available for download, and a web visualization tool (available at http://www.plant-biochemistry.hhu.de/resources.html) facilitates comparison of the the Z. mays bundle sheath and mesophyll studies, their consistencies and their conflicts.
Collapse
Affiliation(s)
- Alisandra K Denton
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Janina Maß
- Institute of Informatics, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Canan Külahoglu
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Martin J Lercher
- Institute of Informatics, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- Network Analysis and Modeling Group, IPK Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
31
|
Wilson ME, Mixdorf M, Berg RH, Haswell ES. Plastid osmotic stress influences cell differentiation at the plant shoot apex. Development 2016; 143:3382-93. [PMID: 27510974 DOI: 10.1242/dev.136234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023]
Abstract
The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot apex. Callus production in this mutant requires the cytokinin receptor AHK2 and is characterized by increased cytokinin levels, downregulation of cytokinin signaling inhibitors ARR7 and ARR15, and induction of the stem cell identity gene WUSCHEL Furthermore, plastid stress-induced apical callus production requires elevated plastidic reactive oxygen species, ABA biosynthesis, the retrograde signaling protein GUN1, and ABI4. These results are consistent with a model wherein the cytokinin/WUS pathway and retrograde signaling control cell differentiation at the shoot apex.
Collapse
Affiliation(s)
- Margaret E Wilson
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Matthew Mixdorf
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - R Howard Berg
- Integrated Microscopy Facility, Donald Danforth Plant Science Center, 975 North Warson Rd., Saint Louis, MO 63132 USA
| | - Elizabeth S Haswell
- Department of Biology, Mailbox 1137, One Brookings Drive, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| |
Collapse
|
32
|
Virdi KS, Wamboldt Y, Kundariya H, Laurie JD, Keren I, Kumar KRS, Block A, Basset G, Luebker S, Elowsky C, Day PM, Roose JL, Bricker TM, Elthon T, Mackenzie SA. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. MOLECULAR PLANT 2016; 9:245-260. [PMID: 26584715 DOI: 10.1016/j.molp.2015.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 05/20/2023]
Abstract
As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein-protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%-10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.
Collapse
Affiliation(s)
- Kamaldeep S Virdi
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Yashitola Wamboldt
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Hardik Kundariya
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - John D Laurie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Ido Keren
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - K R Sunil Kumar
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Anna Block
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Gilles Basset
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Steve Luebker
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Christian Elowsky
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Philip M Day
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Johnna L Roose
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas Elthon
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Sally A Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
33
|
Adwy W, Laxa M, Peterhansel C. A simple mechanism for the establishment of C₂-specific gene expression in Brassicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1231-1238. [PMID: 26603271 DOI: 10.1111/tpj.13084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The transition of C3 , via C2 towards C4 photosynthesis is an important example of stepwise evolution of a complex genetic trait. A common feature that was gradually emphasized during this trajectory is the evolution of a CO2 concentration mechanism around Rubisco. In C2 plants, this mechanism is based on tissue-specific accumulation of glycine decarboxylase (GDC) in bundle sheath (BS) cells, relative to global expression in the cells of C3 leaves. This limits photorespiratory CO2 release to BS cells. Because BS cells are surrounded by photosynthetically active mesophyll cells, this arrangement enhances the probability of re-fixation of CO2 . The restriction of GDC to BS cells was mainly achieved by confinement of its P-subunit (GLDP). Here, we provide a mechanism for the establishment of C2 -type gene expression by studying the upstream sequences of C3 Gldp genes in Arabidopsis thaliana. Deletion of 59 bp in the upstream region of AtGldp1 restricted expression of a reporter gene to BS cells and the vasculature without affecting diurnal variation. This region was named the 'M box'. Similar results were obtained for the AtGldp2 gene. Fusion of the M box to endogenous or exogenous promoters supported mesophyll expression. Nucleosome densities at the M box were low, suggesting an open chromatin structure facilitating transcription factor binding. In silico analysis defined a possible consensus for the element that was conserved across the Brassicaceae, but not in Moricandia nitens, a C2 plant. Collective results provide evidence that a simple mutation is sufficient for establishment of C2 -specific gene expression in a C3 plant.
Collapse
Affiliation(s)
- Waly Adwy
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuserstrasse 2, 30419, Hannover, Germany
- Department of Genetics, Cairo University, 13 Gamaa Street, 12619, Giza, Egypt
| | - Miriam Laxa
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuserstrasse 2, 30419, Hannover, Germany
| | - Christoph Peterhansel
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuserstrasse 2, 30419, Hannover, Germany
| |
Collapse
|
34
|
Pogson BJ, Ganguly D, Albrecht-Borth V. Insights into chloroplast biogenesis and development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1017-24. [PMID: 25667967 DOI: 10.1016/j.bbabio.2015.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/29/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
Abstract
In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
| | - Diep Ganguly
- Australian National University, Canberra, Australia
| | | |
Collapse
|
35
|
Külahoglu C, Denton AK, Sommer M, Maß J, Schliesky S, Wrobel TJ, Berckmans B, Gongora-Castillo E, Buell CR, Simon R, De Veylder L, Bräutigam A, Weber APM. Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C3 and C4 plant species. THE PLANT CELL 2014; 26:3243-60. [PMID: 25122153 PMCID: PMC4371828 DOI: 10.1105/tpc.114.123752] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/20/2014] [Accepted: 07/06/2014] [Indexed: 05/04/2023]
Abstract
C(4) photosynthesis outperforms the ancestral C(3) state in a wide range of natural and agro-ecosystems by affording higher water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by introducing the trait into C(3) backgrounds. However, the genetic architecture of C(4) photosynthesis remains largely unknown. To define the divergence in gene expression modules between C(3) and C(4) photosynthesis during leaf ontogeny, we generated comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C(4)) and Tarenaya hassleriana (C(3)), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C(3) and C(4) species. We found that known C(4) genes were recruited to photosynthesis from different expression domains in C(3), including typical housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we identified a structure-related module recruited from the C(3) root. Comparison of gene expression patterns with anatomy during leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell cycle genes is associated with a higher degree of endoreduplication in enlarged C(4) bundle sheath cells. A delay in mesophyll differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C(4) leaf.
Collapse
Affiliation(s)
- Canan Külahoglu
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Alisandra K Denton
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Manuel Sommer
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Janina Maß
- Institute of Informatics, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Simon Schliesky
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Thomas J Wrobel
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Barbara Berckmans
- Institute of Developmental Genetics, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Elsa Gongora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Rüdiger Simon
- Institute of Developmental Genetics, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
36
|
Lundgren MR, Osborne CP, Christin PA. Deconstructing Kranz anatomy to understand C4 evolution. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3357-69. [PMID: 24799561 DOI: 10.1093/jxb/eru186] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
C4 photosynthesis is a complex physiological adaptation that confers greater productivity than the ancestral C3 photosynthetic type in environments where photorespiration is high. It evolved in multiple lineages through the coordination of anatomical and biochemical components, which concentrate CO2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most C4 plants, the CO2-concentrating mechanism is achieved via the confinement of Rubisco to bundle-sheath cells, into which CO2 is biochemically pumped from surrounding mesophyll cells. The C4 biochemical pathway relies on a specific suite of leaf functional properties, often referred to as Kranz anatomy. These include the existence of discrete compartments differentially connected to the atmosphere, a close contact between these compartments, and a relatively large compartment to host the Calvin cycle. In this review, we use a quantitative dataset for grasses (Poaceae) and examples from other groups to isolate the changes in anatomical characteristics that generate these functional properties, including changes in the size, number, and distribution of different cell types. These underlying anatomical characteristics vary among C4 origins, as similar functions emerged via different modifications of anatomical characteristics. In addition, the quantitative characteristics of leaves all vary continuously across C3 and C4 taxa, resulting in C4-like values in some C3 taxa. These observations suggest that the evolution of C4-suitable anatomy might require relatively few changes in plant lineages with anatomical predispositions. Furthermore, the distribution of anatomical traits across C3 and C4 taxa has important implications for the functional diversity observed among C4 lineages and for the approaches used to identify genetic determinants of C4 anatomy.
Collapse
Affiliation(s)
- Marjorie R Lundgren
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
37
|
Girke C, Daumann M, Niopek-Witz S, Möhlmann T. Nucleobase and nucleoside transport and integration into plant metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:443. [PMID: 25250038 PMCID: PMC4158802 DOI: 10.3389/fpls.2014.00443] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/18/2014] [Indexed: 05/18/2023]
Abstract
Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level.
Collapse
Affiliation(s)
| | | | | | - Torsten Möhlmann
- *Correspondence: Torsten Möhlmann, Pflanzenphysiologie, Universität Kaiserslautern, Erwin-Schrödinger-Str., Postfach 3049, D-67653 Kaiserslautern, Germany e-mail:
| |
Collapse
|
38
|
Staehr P, Löttgert T, Christmann A, Krueger S, Rosar C, Rolčík J, Novák O, Strnad M, Bell K, Weber APM, Flügge UI, Häusler RE. Reticulate leaves and stunted roots are independent phenotypes pointing at opposite roles of the phosphoenolpyruvate/phosphate translocator defective in cue1 in the plastids of both organs. FRONTIERS IN PLANT SCIENCE 2014; 5:126. [PMID: 24782872 PMCID: PMC3986533 DOI: 10.3389/fpls.2014.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/17/2014] [Indexed: 05/17/2023]
Abstract
Phosphoenolpyruvate (PEP) serves not only as a high energy carbon compound in glycolysis, but it acts also as precursor for plastidial anabolic sequences like the shikimate pathway, which produces aromatic amino acids (AAA) and subsequently secondary plant products. After conversion to pyruvate, PEP can also enter de novo fatty acid biosynthesis, the synthesis of branched-chain amino acids, and the non-mevalonate way of isoprenoid production. As PEP cannot be generated by glycolysis in chloroplasts and a variety of non-green plastids, it has to be imported from the cytosol by a phosphate translocator (PT) specific for PEP (PPT). A loss of function of PPT1 in Arabidopsis thaliana results in the chlorophyll a/b binding protein underexpressed1 (cue1) mutant, which is characterized by reticulate leaves and stunted roots. Here we dissect the shoot- and root phenotypes, and also address the question whether or not long distance signaling by metabolites is involved in the perturbed mesophyll development of cue1. Reverse grafting experiments showed that the shoot- and root phenotypes develop independently from each other, ruling out long distance metabolite signaling. The leaf phenotype could be transiently modified even in mature leaves, e.g. by an inducible PPT1RNAi approach or by feeding AAA, the cytokinin trans-zeatin (tZ), or the putative signaling molecule dehydrodiconiferyl alcohol glucoside (DCG). Hormones, such as auxins, abscisic acid, gibberellic acid, ethylene, methyl jasmonate, and salicylic acid did not rescue the cue1 leaf phenotype. The low cell density1 (lcd1) mutant shares the reticulate leaf-, but not the stunted root phenotype with cue1. It could neither be rescued by AAA nor by tZ. In contrast, tZ and AAA further inhibited root growth both in cue1 and wild-type plants. Based on our results, we propose a model that PPT1 acts as a net importer of PEP into chloroplast, but as an overflow valve and hence exporter in root plastids.
Collapse
Affiliation(s)
- Pia Staehr
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Lophius BiosciencesRegensburg, Germany
| | - Tanja Löttgert
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Quintiles GmbHNeu-Isenburg, Germany
| | - Alexander Christmann
- Lehrstuhl für Botanik, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenMunich, Germany
| | - Stephan Krueger
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Christian Rosar
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Jakub Rolčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Palacký UniversityOlumouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Palacký UniversityOlumouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Palacký UniversityOlumouc, Czech Republic
| | - Kirsten Bell
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Andreas P. M. Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
- Cluster of Excellence on Plant SciencesDüsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Cluster of Excellence on Plant SciencesDüsseldorf, Germany
| | - Rainer E. Häusler
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- *Correspondence: Rainer E. Häusler, Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany e-mail:
| |
Collapse
|