1
|
Mierek-Adamska A, Kulasek M, Dąbrowska GB, Blindauer CA. Type 4 plant metallothioneins - players in zinc biofortification? Biol Rev Camb Philos Soc 2025. [PMID: 39901667 DOI: 10.1111/brv.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025]
Abstract
Food security is defined as uninterrupted access to food that meets people's dietary needs. One essential trace element of a complete diet is zinc, which is vital for various processes, including growth, development, and the immune response. The estimated global prevalence of zinc deficiency is around 30%. Meat and meat products provide an abundant and also bioavailable source of zinc. However, in developing countries, access to meat is restricted, and in developed countries, meat consumption has declined for ethical and environmental reasons. The potential for zinc deficiency arises from (i) low concentrations of this element in plant-based diets, (ii) poor zinc absorption from plant-based food in the human intestine, and (iii) the risk of uptake of toxic metals together with essential ones. This review summarises the current knowledge concerning type 4 metallothioneins, which represent promising targets for zinc biofortification. We describe their place in the zinc route from soil to seed, their expression patterns, their role in plants, and their three-dimensional protein structure and how this affects their selectivity towards zinc. This review aims to provide a comprehensive theoretical basis for the potential use of type 4 plant metallothioneins to create zinc-biofortified crops.
Collapse
Affiliation(s)
- Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Milena Kulasek
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | - Grażyna B Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | | |
Collapse
|
2
|
Blixhavn CH, Haug FMŠ, Kleven H, Puchades MA, Bjaalie JG, Leergaard TB. A Timm-Nissl multiplane microscopic atlas of rat brain zincergic terminal fields and metal-containing glia. Sci Data 2023; 10:150. [PMID: 36944675 PMCID: PMC10030855 DOI: 10.1038/s41597-023-02012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
The ability of Timm's sulphide silver method to stain zincergic terminal fields has made it a useful neuromorphological marker. Beyond its roles in zinc-signalling and neuromodulation, zinc is involved in the pathophysiology of ischemic stroke, epilepsy, degenerative diseases and neuropsychiatric conditions. In addition to visualising zincergic terminal fields, the method also labels transition metals in neuronal perikarya and glial cells. To provide a benchmark reference for planning and interpretation of experimental investigations of zinc-related phenomena in rat brains, we have established a comprehensive repository of serial microscopic images from a historical collection of coronally, horizontally and sagittally oriented rat brain sections stained with Timm's method. Adjacent Nissl-stained sections showing cytoarchitecture, and customised atlas overlays from a three-dimensional rat brain reference atlas registered to each section image are included for spatial reference and guiding identification of anatomical boundaries. The Timm-Nissl atlas, available from EBRAINS, enables experimental researchers to navigate normal rat brain material in three planes and investigate the spatial distribution and density of zincergic terminal fields across the entire brain.
Collapse
Affiliation(s)
- Camilla H Blixhavn
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Finn-Mogens Š Haug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Płonka D, Wiśniewska MD, Peris-Díaz MD, Krężel A, Bonna AM, Bal W. An Overlooked Hepcidin-Cadmium Connection. Int J Mol Sci 2022; 23:ijms232415483. [PMID: 36555126 PMCID: PMC9779829 DOI: 10.3390/ijms232415483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Hepcidin (DTHFPICIFCCGCCHRSKCGMCCKT), an iron-regulatory hormone, is a 25-amino-acid peptide with four intramolecular disulfide bonds circulating in blood. Its hormonal activity is indirect and consists of marking ferroportin-1 (an iron exporter) for degradation. Hepcidin biosynthesis involves the N-terminally extended precursors prepro-hepcidin and pro-hepcidin, processed by peptidases to the final 25-peptide form. A sequence-specific formation of disulfide bonds and export of the oxidized peptide to the bloodstream follows. In this study we considered the fact that prior to export, reduced hepcidin may function as an octathiol ligand bearing some resemblance to the N-terminal part of the α-domain of metallothioneins. Consequently, we studied its ability to bind Zn(II) and Cd(II) ions using the original peptide and a model for prohepcidin extended N-terminally with a stretch of five arginine residues (5R-hepcidin). We found that both form equivalent mononuclear complexes with two Zn(II) or Cd(II) ions saturating all eight Cys residues. The average affinity at pH 7.4, determined from pH-metric spectroscopic titrations, is 1010.1 M-1 for Zn(II) ions; Cd(II) ions bind with affinities of 1015.2 M-1 and 1014.1 M-1. Using mass spectrometry and 5R-hepcidin we demonstrated that hepcidin can compete for Cd(II) ions with metallothionein-2, a cellular cadmium target. This study enabled us to conclude that hepcidin binds Zn(II) and Cd(II) sufficiently strongly to participate in zinc physiology and cadmium toxicity under intracellular conditions.
Collapse
Affiliation(s)
- Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Marta D. Wiśniewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Manuel D. Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Arkadiusz M. Bonna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Correspondence:
| |
Collapse
|
4
|
Mahim A, Petering DH. Zinc trafficking to apo-Zn-proteins 2. Cellular interplay of proteome, metallothionein, and glutathione. Metallomics 2022; 14:mfac081. [PMID: 36214409 PMCID: PMC9646480 DOI: 10.1093/mtomcs/mfac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
Abstract
A recent study investigated the impact of glutathione (GSH) on the transfer of zinc (Zn) from proteome to apo-carbonic anhydrase. Here, we probed the requirement of glutathione for zinc trafficking in LLC-PK1 pig kidney epithelial cells. Depletion of GSH by at least 95% left cells viable and able to divide and synthesize Zn-proteins at the control rate over a 48-h period. Loss of GSH stimulated the accumulation of 2.5x the normal concentration of cellular Zn. According to gel filtration chromatography, differential centrifugal filtration, and spectrofluorimetry with TSQ, the extra Zn was distributed between the proteome and metallothionein (MT). To test the functionality of proteome and/or MT as sources of Zn for the constitution of Zn-proteins, GSH-deficient cells were incubated with CaEDTA to isolate them from their normal source of nutrient Zn. Control cells plus CaEDTA stopped dividing; GSH-depleted cells plus CaEDTA continued to divide at ∼40% the rate of GSH deficient cells. Evidently, proteome and/or MT served as a functional source of Zn for generating Zn-proteins. In vitro insertion of Zn bound to proteome into apo-carbonic anhydrase occurred faster at larger concentrations of Zn bound to proteome. These results support the hypothesis that enhanced transport of Zn into cells drives the conversion of apo-Zn-proteins to Zn-proteins by mass action. Similar results were also obtained with human Jurkat T lymphocyte epithelial cells. This study reveals a powerful new model for studying the chemistry of Zn trafficking, including transport processes, involvement of intermediate binding sites, and constitution of Zn-proteins.
Collapse
Affiliation(s)
- Afsana Mahim
- PPD, Biopharmaceutical Department, Middleton WI, USA
| | - David H Petering
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
5
|
Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Gudkov A, Buzdin A, Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022; 10:biomedicines10051072. [PMID: 35625809 PMCID: PMC9139143 DOI: 10.3390/biomedicines10051072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, manganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation defense, transcriptional regulation and the immune response. The misregulation of expression or mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion carriers have been detected, suggesting that particular mechanisms influenced by both ions might be required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials. We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement current therapeutic strategies.
Collapse
Affiliation(s)
- Julian Markovich Rozenberg
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Correspondence:
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| | - Elena Koroleva
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Kristina Kremenchutckaya
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Alexander Gudkov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
- OmicsWay Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Oncobox Ltd., 121205 Moscow, Russia
| | - Nicolas Borisov
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| |
Collapse
|
6
|
Patil MM, Park SJ, Yeom GS, Bendre RS, Kuwar A, Nimse SB. Fluorescence 'turn-on' probe for nanomolar Zn (II) detection in living cells and environmental samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj02012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a Schiff base ligand FHE was synthesized by condensing 5-allyl-2-hydroxy-3-methoxybenzaldehyde, a eugenol derivative with a derivative furan-2-carbohydrazide. FHE alone showed low fluorescence signals due to the intramolecular charge transfer...
Collapse
|