1
|
Thompson CM, Gentry R, Fitch S, Lu K, Clewell HJ. An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Crit Rev Toxicol 2021; 50:919-952. [PMID: 33599198 DOI: 10.1080/10408444.2020.1854679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formaldehyde is a reactive aldehyde naturally present in all plant and animal tissues and a critical component of the one-carbon metabolism pathway. It is also a high production volume chemical used in the manufacture of numerous products. Formaldehyde is also one of the most well-studied chemicals with respect to environmental fate, biology, and toxicology-including carcinogenic potential, and mode of action (MOA). In 2006, a published MOA for formaldehyde-induced nasal tumors in rats concluded that nasal tumors were most likely driven by cytotoxicity and regenerative cell proliferation, with possible contributions from direct genotoxicity. In the past 15 years, new research has better informed the MOA with the publication of in vivo genotoxicity assays, toxicogenomic analyses, and development of ultra-sensitive methods to measure endogenous and exogenous formaldehyde-induced DNA adducts. Herein, we review and update the MOA for nasal tumors, with particular emphasis on the numerous studies published since 2006. These new studies further underscore the involvement of cytotoxicity and regenerative cell proliferation, and further inform the genotoxic potential of inhaled formaldehyde. The data lend additional support for the use of mechanistic data for the derivation of toxicity criteria and/or scientifically supported approaches for low-dose extrapolation for the risk assessment of formaldehyde.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
2
|
Was H, Borkowska A, Olszewska A, Klemba A, Marciniak M, Synowiec A, Kieda C. Polyploidy formation in cancer cells: How a Trojan horse is born. Semin Cancer Biol 2021; 81:24-36. [PMID: 33727077 DOI: 10.1016/j.semcancer.2021.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023]
Abstract
Ploidy increase has been shown to occur in different type of tumors and participate in tumor initiation and resistance to the treatment. Polyploid giant cancer cells (PGCCs) are cells with multiple nuclei or a single giant nucleus containing multiple complete sets of chromosomes. The mechanism leading to formation of PGCCs may depend on: endoreplication, mitotic slippage, cytokinesis failure, cell fusion or cell cannibalism. Polyploidy formation might be triggered in response to various genotoxic stresses including: chemotherapeutics, radiation, hypoxia, oxidative stress or environmental factors like: air pollution, UV light or hyperthermia. A fundamental feature of polyploid cancer cells is the generation of progeny during the reversal of the polyploid state (depolyploidization) that may show high aggressiveness resulting in the formation of resistant disease and tumor recurrence. Therefore, we propose that modern anti-cancer therapies should be designed taking under consideration polyploidization/ depolyploidization processes, which confer the polyploidization a hidden potential similar to a Trojan horse delayed aggressiveness. Various mechanisms and stress factors leading to polyploidy formation in cancer cells are discussed in this review.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland.
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; Postgraduate School of Molecular Medicine, Zwirki i Wigury 61 Street, Warsaw, Poland
| | - Aleksandra Olszewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; Postgraduate School of Molecular Medicine, Zwirki i Wigury 61 Street, Warsaw, Poland
| | - Aleksandra Klemba
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c Street, Warsaw, Poland
| | - Marta Marciniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| | - Agnieszka Synowiec
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, Warsaw, Poland
| |
Collapse
|
3
|
Gentry R, Thompson CM, Franzen A, Salley J, Albertini R, Lu K, Greene T. Using mechanistic information to support evidence integration and synthesis: a case study with inhaled formaldehyde and leukemia. Crit Rev Toxicol 2021; 50:885-918. [PMID: 33538218 DOI: 10.1080/10408444.2020.1854678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Formaldehyde is one of the most comprehensively studied chemicals, with over 30 years of research focused on understanding the development of cancer following inhalation. The causal conclusions regarding the potential for leukemia are largely based on the epidemiological literature, with little consideration of cancer bioassays, dosimetry studies, and mechanistic research, which challenge the biological plausibility of the disease. Recent reanalyzes of the epidemiological literature have also raised significant questions related to the purported associations between formaldehyde and leukemia. Because of this, considerable scientific debate and uncertainty remain on whether there is a causal association between formaldehyde inhalation exposure and leukemia. Further complexity in evaluating this association is related to the endogenous production of formaldehyde. Multiple modes of action (MOA) have been postulated for the development of leukemia following formaldehyde inhalation that includes unsupported hypotheses of direct or indirect toxicity to the target cell population. Herein, the available evidence relevant to evaluating the postulated MOAs for leukemia following formaldehyde inhalation exposure is organized in the IPCS MOA Framework. The integration of all the available evidence clearly highlights the limited amount of data that support any of the postulated MOAs and demonstrates a significant amount of research supporting the null hypothesis that there is no causal association between formaldehyde inhalation exposure and leukemia. These analyses result in a lack of confidence in any of the postulated MOAs, increasing confidence in the conclusion that there is a lack of biological plausibility for a causal association between formaldehyde inhalation exposure and leukemia.
Collapse
Affiliation(s)
| | | | | | | | - Richard Albertini
- Independent Consultant, Emeritus Professor, University of Vermont, Burlington, Vermont, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
4
|
Andersen ME, Gentry PR, Swenberg JA, Mundt KA, White KW, Thompson C, Bus J, Sherman JH, Greim H, Bolt H, Marsh GM, Checkoway H, Coggon D, Clewell HJ. Considerations for refining the risk assessment process for formaldehyde: Results from an interdisciplinary workshop. Regul Toxicol Pharmacol 2019; 106:210-223. [PMID: 31059732 DOI: 10.1016/j.yrtph.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/06/2023]
Abstract
Anticipating the need to evaluate and integrate scientific evidence to inform new risk assessments or to update existing risk assessments, the Formaldehyde Panel of the American Chemistry Council (ACC), in collaboration with the University of North Carolina, convened a workshop: "Understanding Potential Human Health Cancer Risk - From Data Integration to Risk Evaluation" in October 2017. Twenty-four (24) invited-experts participated with expertise in epidemiology, toxicology, science integration and risk evaluation. Including members of the organizing committee, there were 29 participants. The meeting included eleven presentations encompassing an introduction and three sessions: (1) "integrating the formaldehyde science on nasal/nasopharyngeal carcinogenicity and potential for causality"; (2) "integrating the formaldehyde science on lymphohematopoietic cancer and potential for causality; and, (3) "formaldehyde research-data suitable for risk assessment". Here we describe key points from the presentations on epidemiology, toxicology and mechanistic studies that should inform decisions about the potential carcinogenicity of formaldehyde in humans and the discussions about approaches for structuring an integrated, comprehensive risk assessment for formaldehyde. We also note challenges expected when attempting to reconcile divergent results observed from research conducted within and across different scientific disciplines - especially toxicology and epidemiology - and in integrating diverse, multi-disciplinary mechanistic evidence.
Collapse
Affiliation(s)
- Melvin E Andersen
- ScitoVation LLC, 100 Capitola Drive, Drive 106, Durham, NC, 27713, USA.
| | | | - James A Swenberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kenneth A Mundt
- Ramboll US Corporation, Amherst, MA (currently with Cardno Chemrisk, Boston, MA, USA
| | | | | | - James Bus
- Center for Toxicology and Mechanistic Biology, Exponent, Alexandria, VA, USA
| | | | | | - Hermann Bolt
- Leibniz Institute for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Gary M Marsh
- Department of Biostatistics, Center for Occupational Biostatistics and Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Harvey Checkoway
- University of California, San Diego, Department of Family Medicine and Public Health, USA
| | - David Coggon
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
| | - Harvey J Clewell
- Ramboll US Corporation, 6 Davis Drive, Suite 13, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
5
|
Albertini RJ, Kaden DA. Do chromosome changes in blood cells implicate formaldehyde as a leukemogen? Crit Rev Toxicol 2016; 47:145-184. [DOI: 10.1080/10408444.2016.1211987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
LEE WONHO, CHOI SEONGHUN, KANG SUJIN, SONG CHANGHYUN, PARK SOOJIN, LEE YOUNGJOON, KU SAEKWANG. Genotoxicity testing of Persicariae Rhizoma ( Persicaria tinctoria H. Gross) aqueous extracts. Exp Ther Med 2016; 12:123-134. [PMID: 27347027 PMCID: PMC4906793 DOI: 10.3892/etm.2016.3273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/05/2016] [Indexed: 12/27/2022] Open
Abstract
Persicariae Rhizoma (PR) has been used as an anti-inflammatory and detoxification agent in Korea, and contains the biologically active dyes purple indirubin and blue indigo. Despite synthetic indigo showing genotoxic potential, thorough studies have not been carried out on the genotoxicity of PR. The potential genotoxicity of an aqueous extract of PR containing indigo (0.043%) and indirubin (0.009%) was evaluated using a standard battery of tests for safety assessment. The PR extract did not induce any genotoxic effects under the conditions of this study. The results of a reverse mutation assay in four Salmonella typhimurium strains and one Escherichia coli strain indicated that PR extract did not increase the frequency of revertant colonies in any strain, regardless of whether S9 mix was present or not. The PR extract also did not increase chromosomal aberrations in the presence or absence of S9 mix. Although slight signs of diarrhea were restrictedly detected in the mice treated with 2,000 mg/kg PR extract, no noteworthy changes in the frequency of micronucleated polychromatic erythrocytes were observed at doses ≤2,000 mg/kg in a bone marrow micronucleus test. These results indicate the potential safety of the PR extract, particularly if it is consumed in small amounts compared with the quantities used in the genotoxicity tests.
Collapse
Affiliation(s)
- WON HO LEE
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SEONG HUN CHOI
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SU JIN KANG
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - CHANG HYUN SONG
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SOO JIN PARK
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - YOUNG JOON LEE
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SAE KWANG KU
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| |
Collapse
|
7
|
Bogen KT, Heilman JM. Reassessment of MTBE cancer potency considering modes of action for MTBE and its metabolites. Crit Rev Toxicol 2016; 45 Suppl 1:1-56. [PMID: 26414780 DOI: 10.3109/10408444.2015.1052367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A 1999 California state agency cancer potency (CP) evaluation of methyl tert-butyl ether (MTBE) assumed linear risk extrapolations from tumor data were plausible because of limited evidence that MTBE or its metabolites could damage DNA, and based such extrapolations on data from rat gavage and rat and mouse inhalation studies indicating elevated tumor rates in male rat kidney, male rat Leydig interstitial cells, and female rat leukemia/lymphomas. More recent data bearing on MTBE cancer potency include a rodent cancer bioassay of MTBE in drinking water; several new studies of MTBE genotoxicity; several similar evaluations of MTBE metabolites, formaldehyde, and tert-butyl alcohol or TBA; and updated evaluations of carcinogenic mode(s) of action (MOAs) of MTBE and MTBE metabolite's. The lymphoma/leukemia data used in the California assessment were recently declared unreliable by the U.S. Environmental Protection Agency (EPA). Updated characterizations of MTBE CP, and its uncertainty, are currently needed to address a variety of decision goals concerning historical and current MTBE contamination. To this end, an extensive review of data sets bearing on MTBE and metabolite genotoxicity, cytotoxicity, and tumorigenicity was applied to reassess MTBE CP and related uncertainty in view of MOA considerations. Adopting the traditional approach that cytotoxicity-driven cancer MOAs are inoperative at very low, non-cytotoxic dose levels, it was determined that MTBE most likely does not increase cancer risk unless chronic exposures induce target-tissue toxicity, including in sensitive individuals. However, the corresponding expected (or plausible upper bound) CP for MTBE conditional on a hypothetical linear (e.g., genotoxic) MOA was estimated to be ∼2 × 10(-5) (or 0.003) per mg MTBE per kg body weight per day for adults exposed chronically over a lifetime. Based on this conservative estimate of CP, if MTBE is carcinogenic to humans, it is among the weakest 10% of chemical carcinogens evaluated by EPA.
Collapse
|
8
|
Peteffi GP, da Silva LB, Antunes MV, Wilhelm C, Valandro ET, Glaeser J, Kaefer D, Linden R. Evaluation of genotoxicity in workers exposed to low levels of formaldehyde in a furniture manufacturing facility. Toxicol Ind Health 2015; 32:1763-73. [PMID: 25971585 DOI: 10.1177/0748233715584250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Formaldehyde (FA) is a chemical widely used in the furniture industry and has been classified as a potential human carcinogen. The purpose of this study was to evaluate the occupational exposure of workers to FA at a furniture manufacturing facility and the relationship between environmental concentrations of FA, formic acid concentration in urine, and DNA damage. The sample consisted of 46 workers exposed to FA and a control group of 45 individuals with no history of occupational exposure. Environmental concentrations of FA were determined by high-performance liquid chromatography. Urinary formic acid concentrations were determined by gas chromatography with flame ionization detector. DNA damage was evaluated by the micronucleus (MN) test performed in exfoliated buccal cells and comet assay with venous blood. The 8-h time-weighted average of FA environmental concentration ranged from 0.03 ppm to 0.09 ppm at the plant, and the control group was exposed to a mean concentration of 0.012 ppm. Workers exposed to higher environmental FA concentrations had urinary formic acid concentrations significantly different from those of controls (31.85 mg L(-1) vs. 19.35 mg L(-), p ≤ 0.01 Mann-Whitney test). Significant differences were found between control and exposed groups for the following parameters: damage frequency and damage index in the comet assay, frequency of binucleated cells in the MN test, and formic acid concentration in urine. The frequency of micronuclei, nuclear buds, and karyorrhexis did not differ between groups. There was a positive correlation between environmental concentrations of FA and damage frequency (Spearman's rank correlation coefficient [r s] = 0.24), damage index (r s = 0.21), binucleated cells (r s = 0.34), and urinary formic acid concentration (r s = 0.63). The results indicate that, although workers in the furniture manufacturing facility were exposed to low environmental levels of FA, this agent contributes to the observed increase in cytogenetic damage. In addition, urinary formic acid concentrations correlated strongly with occupational exposure to FA.
Collapse
Affiliation(s)
- Giovana Piva Peteffi
- Laboratory of Toxicological Analysis, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, Brazil
| | - Luciano Basso da Silva
- Laboratory of Genetics and Molecular Biology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, Brazil
| | - Marina Venzon Antunes
- Laboratory of Toxicological Analysis, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, Brazil
| | - Camila Wilhelm
- Laboratory of Genetics and Molecular Biology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, Brazil
| | - Eduarda Trevizani Valandro
- Laboratory of Genetics and Molecular Biology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, Brazil
| | - Jéssica Glaeser
- Laboratory of Genetics and Molecular Biology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, Brazil
| | - Djeine Kaefer
- Laboratory of Genetics and Molecular Biology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, Brazil
| | - Rafael Linden
- Laboratory of Toxicological Analysis, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, Brazil
| |
Collapse
|
9
|
Costa S, Carvalho S, Costa C, Coelho P, Silva S, Santos LS, Gaspar JF, Porto B, Laffon B, Teixeira JP. Increased levels of chromosomal aberrations and DNA damage in a group of workers exposed to formaldehyde. Mutagenesis 2015; 30:463-73. [PMID: 25711496 DOI: 10.1093/mutage/gev002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formaldehyde (FA) is a commonly used chemical in anatomy and pathology laboratories as a tissue preservative and fixative. Because of its sensitising properties, irritating effects and cancer implication, FA accounts probably for the most important chemical-exposure hazard concerning this professional group. Evidence for genotoxic effects and carcinogenic properties in humans is insufficient and conflicting, particularly in regard to the ability of inhaled FA to induce toxicity on other cells besides first contact tissues, such as buccal and nasal cells. To evaluate the effects of exposure to FA in human peripheral blood lymphocytes, a group of 84 anatomy pathology laboratory workers exposed occupationally to FA and 87 control subjects were tested for chromosomal aberrations (CAs) and DNA damage (comet assay). The level of exposure to FA in the workplace air was evaluated. The association between genotoxicity biomarkers and polymorphic genes of xenobiotic-metabolising and DNA repair enzymes were also assessed. The estimated mean level of FA exposure was 0.38±0.03 ppm. All cytogenetic endpoints assessed by CAs test and comet assay % tail DNA (%TDNA) were significantly higher in FA-exposed workers compared with controls. Regarding the effect of susceptibility biomarkers, results suggest that polymorphisms in CYP2E1 and GSTP1 metabolic genes, as well as, XRCC1 and PARP1 polymorphic genes involved in DNA repair pathways are associated with higher genetic damage in FA-exposed subjects. Data obtained in this study show a potential health risk situation of anatomy pathology laboratory workers exposed to FA (0.38 ppm). Implementation of security and hygiene measures may be crucial to decrease risk. The obtained information may also provide new important data to be used by health care programs and by governmental agencies responsible for occupational health and safety.
Collapse
Affiliation(s)
- Solange Costa
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal Epidemiology Research Unit - Institute of Public Health (EPIUnit), University of Porto, Rua das Taipas nº135, Porto 4050-600, Portugal
| | - Sandra Carvalho
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal
| | - Carla Costa
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal Epidemiology Research Unit - Institute of Public Health (EPIUnit), University of Porto, Rua das Taipas nº135, Porto 4050-600, Portugal
| | - Patrícia Coelho
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal
| | - Susana Silva
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal
| | - Luís S Santos
- Toxomics, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Edifício CEDOC II, Rua Câmara Pestana nº 6, Lisboa 1150-082, Portugal Department of Health Sciences, Portuguese Catholic University, Estrada da Circunvalação, Viseu 3504-505, Portugal
| | - Jorge F Gaspar
- Toxomics, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Edifício CEDOC II, Rua Câmara Pestana nº 6, Lisboa 1150-082, Portugal
| | - Beatriz Porto
- Laboratory of Cytogenetics, Abel Salazar Institute for Biomedical Sciences (ICBAS), Rua de Jorge Viterbo Ferreira n.º 228, Porto 4050-313, Portugal
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Campus Elviña s/n, A Coruña 15071, Spain
| | - João P Teixeira
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal Epidemiology Research Unit - Institute of Public Health (EPIUnit), University of Porto, Rua das Taipas nº135, Porto 4050-600, Portugal
| |
Collapse
|
10
|
Lan Q, Smith MT, Tang X, Guo W, Vermeulen R, Ji Z, Hu W, Hubbard AE, Shen M, McHale CM, Qiu C, Liu S, Reiss B, Beane-Freeman L, Blair A, Ge Y, Xiong J, Li L, Rappaport SM, Huang H, Rothman N, Zhang L. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde. Carcinogenesis 2015; 36:160-7. [PMID: 25391402 PMCID: PMC4291049 DOI: 10.1093/carcin/bgu229] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/11/2014] [Accepted: 11/09/2014] [Indexed: 11/12/2022] Open
Abstract
Formaldehyde (FA) is an economically important industrial chemical to which millions of people worldwide are exposed environmentally and occupationally. Recently, the International Agency for Cancer Research concluded that there is sufficient evidence that FA causes leukemia, particularly myeloid leukemia. To evaluate the biological plausibility of this association, we employed a chromosome-wide aneuploidy study approach, which allows the evaluation of aneuploidy and structural chromosome aberrations (SCAs) of all 24 chromosomes simultaneously, to analyze cultured myeloid progenitor cells from 29 workers exposed to relatively high levels of FA and 23 unexposed controls. We found statistically significant increases in the frequencies of monosomy, trisomy, tetrasomy and SCAs of multiple chromosomes in exposed workers compared with controls, with particularly notable effects for monosomy 1 [P = 6.02E-06, incidence rate ratio (IRR) = 2.31], monosomy 5 (P = 9.01E-06; IRR = 2.24), monosomy 7 (P = 1.57E-05; IRR = 2.17), trisomy 5 (P = 1.98E-05; IRR = 3.40) and SCAs of chromosome 5 (P = 0.024; IRR = 4.15). The detection of increased levels of monosomy 7 and SCAs of chromosome 5 is particularly relevant as they are frequently observed in acute myeloid leukemia. Our findings provide further evidence that leukemia-related cytogenetic changes can occur in the circulating myeloid progenitor cells of healthy workers exposed to FA, which may be a potential mechanism underlying FA-induced leukemogenesis.
Collapse
Affiliation(s)
- Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute (NIH), Bethesda, MD 20892, USA, Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA, Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China, Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht NL-3508, The Netherlands, Department of Occupational Health, Qiaotou Hospital, Dongguan, Guangdong 523323, China and Department of Occupational Health, Dongguan Center for Disease Control and Prevention, Guangdong 523129, China
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Xiaojiang Tang
- Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China
| | - Weihong Guo
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht NL-3508, The Netherlands
| | - Zhiying Ji
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute (NIH), Bethesda, MD 20892, USA, Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA, Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China, Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht NL-3508, The Netherlands, Department of Occupational Health, Qiaotou Hospital, Dongguan, Guangdong 523323, China and Department of Occupational Health, Dongguan Center for Disease Control and Prevention, Guangdong 523129, China
| | - Alan E Hubbard
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Min Shen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute (NIH), Bethesda, MD 20892, USA, Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA, Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China, Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht NL-3508, The Netherlands, Department of Occupational Health, Qiaotou Hospital, Dongguan, Guangdong 523323, China and Department of Occupational Health, Dongguan Center for Disease Control and Prevention, Guangdong 523129, China
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Chuangyi Qiu
- Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China
| | - Songwang Liu
- Department of Occupational Health, Qiaotou Hospital, Dongguan, Guangdong 523323, China and
| | - Boris Reiss
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht NL-3508, The Netherlands
| | - Laura Beane-Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute (NIH), Bethesda, MD 20892, USA, Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA, Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China, Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht NL-3508, The Netherlands, Department of Occupational Health, Qiaotou Hospital, Dongguan, Guangdong 523323, China and Department of Occupational Health, Dongguan Center for Disease Control and Prevention, Guangdong 523129, China
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute (NIH), Bethesda, MD 20892, USA, Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA, Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China, Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht NL-3508, The Netherlands, Department of Occupational Health, Qiaotou Hospital, Dongguan, Guangdong 523323, China and Department of Occupational Health, Dongguan Center for Disease Control and Prevention, Guangdong 523129, China
| | - Yichen Ge
- Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China
| | - Jun Xiong
- Department of Occupational Health, Dongguan Center for Disease Control and Prevention, Guangdong 523129, China
| | - Laiyu Li
- Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Hanlin Huang
- Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute (NIH), Bethesda, MD 20892, USA, Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA, Science and Education Department, Guangdong Poisoning Control Center, Guangzhou 510300, China, Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht NL-3508, The Netherlands, Department of Occupational Health, Qiaotou Hospital, Dongguan, Guangdong 523323, China and Department of Occupational Health, Dongguan Center for Disease Control and Prevention, Guangdong 523129, China
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, Berkeley, CA 94720, USA,
| |
Collapse
|
11
|
Speit G, Linsenmeyer R, Duong G, Bausinger J. Investigations on potential co-mutagenic effects of formaldehyde. Mutat Res 2013; 760:48-56. [PMID: 24361396 DOI: 10.1016/j.mrfmmm.2013.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 11/19/2022]
Abstract
The genotoxicity and mutagenicity of formaldehyde (FA) has been well-characterized during the last years. Besides its known direct DNA-damaging and mutagenic activity in sufficiently exposed cells, FA at low concentrations might also enhance the mutagenic and carcinogenic effects of other environmental mutagens by interfering with the repair of DNA lesions induced by these mutagens. To further assess potential co-mutagenic effects of FA, we exposed A549 human lung cells to FA in combination with various mutagens and measured the induction and removal of DNA damage by the comet assay and the production of chromosomal mutations by the cytokinesis-block micronucleus assay (CBMN assay). The mutagens tested were ionizing radiation (IR), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), N-nitroso-N-methylurea (methyl nitrosourea; MNU) and methyl methanesulfonate (MMS). FA (10-75μM) did not enhance the genotoxic and mutagenic activity of these mutagens under the test conditions applied. FA alone and in combination with MNU or MMS did not affect the expression (mRNA level) of the gene of the O(6)-methylguanine-DNA methyltransferase (MGMT) in A549 cells. The results of these experiments do not support the assumption that low FA concentrations might interfere with the repair of DNA damage induced by other mutagens.
Collapse
Affiliation(s)
- Günter Speit
- Universität Ulm, Institut für Humangenetik, 89069 Ulm, Germany.
| | | | - Giang Duong
- Universität Ulm, Institut für Humangenetik, 89069 Ulm, Germany
| | - Julia Bausinger
- Universität Ulm, Institut für Humangenetik, 89069 Ulm, Germany
| |
Collapse
|
12
|
Gentry PR, Rodricks JV, Turnbull D, Bachand A, Van Landingham C, Shipp AM, Albertini RJ, Irons R. Formaldehyde exposure and leukemia: critical review and reevaluation of the results from a study that is the focus for evidence of biological plausibility. Crit Rev Toxicol 2013; 43:661-70. [PMID: 23902349 DOI: 10.3109/10408444.2013.818618] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A recent study (Zhang et al., 2010) has provided results attributed to aneuploidy in circulating stem cells that has been characterized as providing potential support for proposed mechanisms for formaldehyde to impact bone marrow. A critical review of the study, as well as a reanalysis of the underlying data, was performed and the results of this reanalysis suggested factors other than formaldehyde exposure may have contributed to the effects reported. In addition, although the authors stated in their paper that "all scorable metaphase spreads on each slide were analyzed, and a minimum of 150 cells per subject was scored," this protocol was not followed. In fact, the protocol to evaluate the presence of monosomy 7 or trisomy 8 was followed for three or less samples in exposed workers and six or less samples in non-exposed workers. In addition, the assays used (CFU-GM) do not actually measure the proposed events in primitive cells involved in the development of acute myeloid leukemia. Evaluation of these data indicates that the aneuploidy measured could not have arisen in vivo, but rather arose during in vitro culture. The results of our critical review and reanalysis of the data, in combination with recent toxicological and mechanistic studies, do not support a mechanism for a causal association between formaldehyde exposure and myeloid or lymphoid malignancies.
Collapse
|
13
|
Kuehner S, Holzmann K, Speit G. Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol 2013; 87:1999-2012. [PMID: 23649840 DOI: 10.1007/s00204-013-1060-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
Gene expression analysis has been established as a tool for the characterization of genotoxic mechanisms of chemical mutagens. It has been suggested that expression analysis is capable of distinguishing compounds that cause DNA damage from those that interfere with mitotic spindle function. Formaldehyde (FA) is known to be a DNA-reactive substance which mainly induces chromosomal damage in cultured mammalian cells. However, there has been concern that FA might also induce leukemia-specific aneuploidies, although recent cytogenetic studies excluded a relevant aneugenic potential of FA. We now investigated whether gene expression profiling can be used as a molecular tool to further characterize FA's genotoxic mode of action and to differentiate between clastogenic and aneugenic activity. TK6 cells were exposed to FA for 4 and 24 h, and changes in gene expression were analyzed using a whole-genome human microarray. Results were compared to the expression profiles of two DNA-damaging clastogens (methyl methanesulfonate and ethyl methanesulfonate) and two aneugens (colcemid and vincristine). The genotoxic activity of FA, MMS and EMS under these conditions was confirmed by comet assay experiments. The gene expression profiles indicated that clastogens and aneugens induce discriminable gene expression patterns. Exposure of TK6 cells to FA led to a discrete gene expression pattern, and all toxicogenomics analyses revealed a closer relationship of FA with clastogens than with aneugens.
Collapse
Affiliation(s)
- Stefanie Kuehner
- Institut für Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Karlheinz Holzmann
- Microarray-Core Facility, Universitätsklinikum Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Günter Speit
- Institut für Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany. .,Institut für Humangenetik, Universität Ulm, 89069, Ulm, Germany.
| |
Collapse
|
14
|
Speit G, Schütz P. Hyperthermia-induced genotoxic effects in human A549 cells. Mutat Res 2013; 747-748:1-5. [PMID: 23643703 DOI: 10.1016/j.mrfmmm.2013.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/11/2013] [Accepted: 04/24/2013] [Indexed: 11/19/2022]
Abstract
Genotoxic effects of hyperthermia in vitro and in vivo have repeatedly been reported. Short-duration heat shocks and elevated temperature over longer time periods have been shown to induce DNA damage, chromosomal damage and to inhibit DNA repair. Using the comet assay and the micronucleus test, we now investigated temperature- and time-related effects on DNA damage and chromosomal effects of hyperthermia on the A549 human lung cell line. We also related the genotoxic effects to cytotoxic effects and the induction of apoptosis. Our results indicate that exposure to hyperthermia (42-48°C for 30-120min) induced genotoxic effects in a temperature- and time-related manner. Interestingly, hyperthermia-induced DNA damage measured by the comet assay was not rapidly removed by post-incubation at 37°C but even increased after exposure to 48°C for 60min. Cytotoxic effects occurred in parallel to the genotoxic effects but apoptosis was not significantly induced under these experimental conditions.
Collapse
Affiliation(s)
- Günter Speit
- Universität Ulm, Institut für Humangenetik, 89069 Ulm, Germany.
| | | |
Collapse
|
15
|
Costa S, García-Lestón J, Coelho M, Coelho P, Costa C, Silva S, Porto B, Laffon B, Teixeira JP. Cytogenetic and immunological effects associated with occupational formaldehyde exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:217-229. [PMID: 23514064 DOI: 10.1080/15287394.2013.757212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Formaldehyde (FA) is a widely used industrial chemical for which exposure is associated with nasopharyngeal and sinonasal cancer. Based on sufficient evidence of carcinogenicity from human investigations, supporting studies on mechanisms underlying carcinogenesis, and experimental evidence in animals, FA status was recently revised and reclassified as a human carcinogen. The highest level of exposure to FA occurs in occupational settings. Although several studies reported FA ability to induce genotoxic responses in exposed workers, not all findings were conclusive. In addition, published studies on the immunological effects of FA indicate that this compound may be able to modulate immune responses, although data in exposed subjects are still preliminary. In this study a group of pathology anatomy workers exposed to FA was evaluated for cytogenetic and immunological parameters. A control group with similar sociodemographic characteristics and without known occupational exposure to FA was also included. Genotoxicity was evaluated by means of micronucleus (MN) test, sister chromatid exchanges (SCE), and T-cell receptor (TCR) mutation assay. Percentages of different lymphocyte subpopulations were selected as immunotoxic biomarkers. The mean level of FA environmental exposure was 0.36 ± 0.03 ppm. MN and SCE frequencies were significantly increased in the exposed group. A significant decrease of the percentage of B cells in the exposed group was also found. Data obtained in this study indicate that genotoxic and immunotoxic increased risk due to FA occupational exposure cannot be excluded. Implementation of effective control measures along with hazard prevention campaigns may be crucial to decrease the risk.
Collapse
Affiliation(s)
- Solange Costa
- National Institute of Health , Environmental Health Department, Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
An assay to detect in vivo Y chromosome loss in Drosophila wing disc cells. G3-GENES GENOMES GENETICS 2012; 2:1095-102. [PMID: 22973547 PMCID: PMC3429924 DOI: 10.1534/g3.112.002899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/05/2012] [Indexed: 11/18/2022]
Abstract
Loss of the Y chromosome in Drosophila has no impact on cell viability and therefore allows us to assay the impact of environmental agents and genetic alterations on chromosomal loss. To detect in vivo chromosome loss in cells of the developing Drosophila wing primordia, we first engineered a Y chromosome with an attP docking site. By making use of the ΦC31 integrase system, we site-specifically integrated a genomic transgene encompassing the multiple wing hair (mwh) locus into this attP site, leading to a mwh+Y chromosome. This chromosome fully rescues the mwh mutant phenotype, an excellent recessive wing cell marker mutation. Loss of this mwh+Y chromosome in wing primordial cells then leads to manifestation of the mwh mutant phenotype in mwh-homozygous cells. The forming mwh clones permit us to quantify the effect of agents and genetic alterations by assaying frequency and size of the mwh mosaic spots. To illustrate the use of the mwh+Y loss system, the effects of four known mutagens (X-rays, colchicine, ethyl methanesulfonate, and formaldehyde) and two genetic conditions (loss- and gain-of-function lodestar mutant alleles) are documented. The procedure is simple, sensitive, and inexpensive.
Collapse
|
17
|
Kuehner S, Schlaier M, Schwarz K, Speit G. Analysis of leukemia-specific aneuploidies in cultured myeloid progenitor cells in the absence and presence of formaldehyde exposure. Toxicol Sci 2012; 128:72-8. [PMID: 22472192 DOI: 10.1093/toxsci/kfs126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recently published human study suggested that exposure to formaldehyde (FA) at the workplace might induce leukemia-specific aneuploidies (monosomy 7 and trisomy 8) in cultured myeloid progenitor cells. Despite its preliminary character, this study was considered by the International Agency for Research on Cancer to be a potential mechanistic explanation for the induction of leukemia by FA. To further evaluate the reliability of these findings, chromosome preparations from cultured myeloid progenitor cells (obtained from blood samples of five healthy subjects) were analyzed by fluorescence in situ hybridization (FISH) for spontaneously occurring numerical aberrations after cultivation for 9 days. FISH analysis with probes for chromosomes 6, 7, and 8 revealed that the baseline frequency of aneuploid metaphases is similar and rather low for all three chromosomes tested. More monosomies than trisomies were measured. We also exposed myeloid progenitor cells during the whole cultivation period to FA and determined the frequency of aneuploidies after 9 days of cultivation. The results clearly indicate that FA did not induce aneuploidy under these experimental conditions. In contrast, aneuploidy was induced under these conditions by the known aneugen vincristine. Myeloid progenitor cells from healthy subjects were not particularly sensitive toward the cytotoxic action of FA. Colony forming ability in the presence of FA was not reduced to a higher degree than in cultured cell lines (A549; V79). Our results do not support the assumption of a specific effect of FA on myeloid progenitor cells as a potential mechanism for the induction of leukemia.
Collapse
Affiliation(s)
- Stefanie Kuehner
- Institut für Humangenetik, Universität Ulm, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|