1
|
Alhusain AF, Mahmoud MA, Alhamami HN, Ebrahim Alobid S, Ansari MA, Ahmad SF, Nadeem A, Bakheet SA, Harisa GI, Attia SM. Salubrious effects of proanthocyanidins on behavioral phenotypes and DNA repair deficiency in the BTBR mouse model of autism. Saudi Pharm J 2024; 32:102187. [PMID: 39493830 PMCID: PMC11530837 DOI: 10.1016/j.jsps.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Autism is a neurodevelopmental disorder distinguished by impaired social interaction and repetitive behaviors. Global estimates indicate that autism affects approximately 1.6% of children, with the condition progressively becoming more prevalent over time. Despite noteworthy progress in autism research, the condition remains untreatable. This serves as a driving force for scientists to explore new approaches to disease management. Autism is linked to elevated levels of oxidative stress and disturbances in the DNA repair mechanism, which may potentially play a role in its comorbidities development. The current investigation aimed to evaluate the beneficial effect of the naturally occurring flavonoid proanthocyanidins on the behavioral characteristics and repair efficacy of autistic BTBR mice. Moreover, the mechanisms responsible for these effects were clarified. The present findings indicate that repeated administration of proanthocyanidins effectively reduces altered behavior in BTBR animals without altering motor function. Proanthocyanidins decreased oxidative DNA strand breaks and accelerated the rate of DNA repair in autistic animals, as evaluated by the modified comet test. In addition, proanthocyanidins reduced the elevated oxidative stress and recovered the disrupted DNA repair mechanism in the autistic animals by decreasing the expressions of Gadd45a and Parp1 levels and enhancing the expressions of Ogg1, P53, and Xrcc1 genes. This indicates that proanthocyanidins have significant potential as a new therapeutic strategy for alleviating autistic features.
Collapse
Affiliation(s)
- Abdulelah F. Alhusain
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saad Ebrahim Alobid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Attia SM, Alshamrani AA, Ahmad SF, Albekairi NA, Nadeem A, Attia MSM, Ansari MA, Almutairi F, Bakheet SA. Dulaglutide reduces oxidative DNA damage and hypermethylation in the somatic cells of mice fed a high-energy diet by restoring redox balance, inflammatory responses, and DNA repair gene expressions. J Biochem Mol Toxicol 2024; 38:e23764. [PMID: 38963172 DOI: 10.1002/jbt.23764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Obesity is an established risk factor for numerous malignancies, although it remains uncertain whether the disease itself or weight-loss drugs are responsible for a greater predisposition to cancer. The objective of the current study was to determine the impact of dulaglutide on genetic and epigenetic DNA damage caused by obesity, which is a crucial factor in the development of cancer. Mice were administered a low-fat or high-fat diet for 12 weeks, followed by a 5-week treatment with dulaglutide. Following that, modifications of the DNA bases were examined using the comet assay. To clarify the underlying molecular mechanisms, oxidized and methylated DNA bases, changes in the redox status, levels of inflammatory cytokines, and the expression levels of some DNA repair genes were evaluated. Animals fed a high-fat diet exhibited increased body weights, elevated DNA damage, oxidation of DNA bases, and DNA hypermethylation. In addition, obese mice showed altered inflammatory responses, redox imbalances, and repair gene expressions. The findings demonstrated that dulaglutide does not exhibit genotoxicity in the investigated conditions. Following dulaglutide administration, animals fed a high-fat diet demonstrated low DNA damage, less oxidation and methylation of DNA bases, restored redox balance, and improved inflammatory responses. In addition, dulaglutide treatment restored the upregulated DNMT1, Ogg1, and p53 gene expression. Overall, dulaglutide effectively maintains DNA integrity in obese animals. It reduces oxidative DNA damage and hypermethylation by restoring redox balance, modulating inflammatory responses, and recovering altered gene expressions. These findings demonstrate dulaglutide's expediency in treating obesity and its associated complications.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faris Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Attia SM, Albekairi NA, Alshamrani AA, Ahmad SF, Almutairi F, Attia MSM, Ansari MA, Bakheet SA, Harisa GI, Nadeem A. Dapagliflozin suppresses diabetes-induced oxidative DNA damage and hypermethylation in mouse somatic cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503765. [PMID: 38821673 DOI: 10.1016/j.mrgentox.2024.503765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faris Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Alshamrani AA, Alwetaid MY, Al-Hamamah MA, Attia MSM, Ahmad SF, Algonaiah MA, Nadeem A, Ansari MA, Bakheet SA, Attia SM. Aflatoxin B1 Exacerbates Genomic Instability and Apoptosis in the BTBR Autism Mouse Model via Dysregulating DNA Repair Pathway. TOXICS 2023; 11:636. [PMID: 37505601 PMCID: PMC10384561 DOI: 10.3390/toxics11070636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The pathophysiology of autism is influenced by a combination of environmental and genetic factors. Furthermore, individuals with autism appear to be at a higher risk of developing cancer. However, this is not fully understood. Aflatoxin B1 (AFB1) is a potent food pollutant carcinogen. The effects of AFB1 on genomic instability in autism have not yet been investigated. Hence, we have aimed to investigate whether repeated exposure to AFB1 causes alterations in genomic stability, a hallmark of cancer and apoptosis in the BTBR autism mouse model. The data revealed increased micronuclei generation, oxidative DNA strand breaks, and apoptosis in BTBR animals exposed to AFB1 when compared to unexposed animals. Lipid peroxidation in BTBR mice increased with a reduction in glutathione following AFB1 exposure, demonstrating an exacerbated redox imbalance. Furthermore, the expressions of some of DNA damage/repair- and apoptosis-related genes were also significantly dysregulated. Increases in the redox disturbance and dysregulation in the DNA damage/repair pathway are thus important determinants of susceptibility to AFB1-exacerbated genomic instability and apoptosis in BTBR mice. This investigation shows that AFB1-related genomic instability can accelerate the risk of cancer development. Moreover, approaches that ameliorate the redox balance and DNA damage/repair dysregulation may mitigate AFB1-caused genomic instability.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed A Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Alsaleh NB, Alasmari AF, Al-Hamamah MA, Alanazi A, Alshamrani AA, Bakheet SA, Harisa GI. The small molecule Erk1/2 signaling pathway inhibitor PD98059 improves DNA repair in an experimental autoimmune encephalomyelitis SJL/J mouse model of multiple sclerosis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503650. [PMID: 37491119 DOI: 10.1016/j.mrgentox.2023.503650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder in which the myelin sheath covering the central nervous system axons is damaged or lost, disrupting action potential conduction and leading to various neurological complications. The pathogenesis of MS remains unclear, and no effective therapies are currently available. MS is triggered by environmental factors in genetically susceptible individuals. DNA damage and DNA repair failure have been proposed as MS genetic risk factors; however, inconsistent evidence has been found in multiple studies. Therefore, more investigations are needed to ascertain whether DNA damage/repair is altered in this disorder. In this context, therapies that prevent DNA damage or enhance DNA repair could be effective strategies for MS treatment. The overactivation of the extracellular-signal-related kinase 1 and 2 (Erk1/2) pathway can lead to DNA damage and has been linked to MS pathogenesis. In our study, we observed substantially elevated oxidative DNA damage and slower DNA repair rates in an experimentally autoimmune encephalomyelitis animal model of MS (EAE). Moreover, statistical decreases in oxidative DNA strand breaks and faster repair rates were observed in EAE animals injected with the Erk1/2 inhibitor PD98059 (PD). Moreover, the expression of several genes associated with DNA strand breaks and repair changed in EAE mice at both the mRNA and protein levels, as revealed by the RT2 Profiler PCR array and verified by RT-PCR and protein analyses. The treatment with PD mitigated these changes and improved DNA repair gene expression. Our results demonstrate clear associations between Erk1/2 activation, DNA damage/repair, and MS pathology, and further suggest that PD therapy may be a promising adjuvant therapeutic strategy.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - S F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - N B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - S A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - G I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Attia SM, Ahmad SF, Nadeem A, Attia M, Ansari MA, Al-Hamamah MA, Hussein MH, Alameen AA, Alasmari AF, Bakheet SA. Multiple exposure to methylmercury aggravates DNA damage in the BTBR T + Itpr3 tf/J autistic mouse model: the role of DNA repair efficiency. Toxicology 2022; 477:153277. [PMID: 35914580 DOI: 10.1016/j.tox.2022.153277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Environmental and genetic factors have been recognized to play major roles in the pathogenesis of autism. Here we examined the BTBR T+Itpr3tf/J (BTBR) mice's susceptibility, an autistic model, to the genotoxic effects and DNA repair dysregulation of methylmercury. Micronuclei formation and oxidative DNA damage were analyzed using the micronucleus/fluorescence in situ hybridization test and modified comet assay, respectively. The results showed higher centromeric-positive micronuclei and oxidative DNA damage in BTBR mice exposed to methylmercury than the unexposed mice, which indicates that mutagenesis aggravated in BTBR mice after methylmercury exposure. Lipid peroxides in BTBR mice were significantly elevated, with a decrease in reduced/oxidized glutathione ratio after methylmercury exposure, indicating an augmenting oxidant-antioxidant imbalance. The expression of several genes involved in DNA repair was markedly altered in BTBR mice after methylmercury exposure as evaluated via PCR array and RT-PCR analyses. Declining of the antioxidant defense and dysregulation in DNA repair process after methylmercury exposure may explain the aggravated genotoxic susceptibility of BTBR mice. Thus, autistic individuals exposed to methylmercury must be under regular medical follow-up through standard timetabled medical laboratory inquiry to allow for early recognition of any mutagenic changes. Additionally, strategies that elevate cellular antioxidants/DNA repair efficiency may counteract methylmercury-induced genotoxicity.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - S F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - A Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Msm Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - M A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - M A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - M H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - A A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - A F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - S A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Pugsley K, Scherer SW, Bellgrove MA, Hawi Z. Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Mol Psychiatry 2022; 27:710-730. [PMID: 34002022 PMCID: PMC8960415 DOI: 10.1038/s41380-021-01142-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Although the full aetiology of autism spectrum disorder (ASD) is unknown, familial and twin studies demonstrate high heritability of 60-90%, indicating a predominant role of genetics in the development of the disorder. The genetic architecture of ASD consists of a complex array of rare and common variants of all classes of genetic variation usually acting additively to augment individual risk. The relative contribution of heredity in ASD persists despite selective pressures against the classic autistic phenotype; a phenomenon thought to be explained, in part, by the incidence of spontaneous (or de novo) mutations. Notably, environmental exposures attributed as salient risk factors for ASD may play a causal role in the emergence of deleterious de novo variations, with several ASD-associated agents having significant mutagenic potential. To explore this hypothesis, this review article assesses published epidemiological data with evidence derived from assays of mutagenicity, both in vivo and in vitro, to determine the likely role such agents may play in augmenting the genetic liability in ASD. Broadly, these exposures were observed to elicit genomic alterations through one or a combination of: (1) direct interaction with genetic material; (2) impaired DNA repair; or (3) oxidative DNA damage. However, the direct contribution of these factors to the ASD phenotype cannot be determined without further analysis. The development of comprehensive prospective birth cohorts in combination with genome sequencing is essential to forming a causal, mechanistic account of de novo mutations in ASD that links exposure, genotypic alterations, and phenotypic consequences.
Collapse
Affiliation(s)
- Kealan Pugsley
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Stephen W. Scherer
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Yi S, Liu YP, Li XY, Yuan XY, Wang Y, Cai Y, Lei YD, Huang L, Zhang ZH. The expression profile and bioinformatics analysis of microRNAs in human bronchial epithelial cells treated by beryllium sulfate. J Appl Toxicol 2020; 41:1275-1285. [PMID: 33197057 DOI: 10.1002/jat.4116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022]
Abstract
Beryllium and its compounds are systemic toxicants that mainly accumulate in the lungs. As a regulator of gene expression, microRNAs (miRNAs) were involved in some lung diseases. This study aimed to analyze the levels of some inflammatory cytokine and the differential expressions of miRNAs in human bronchial epithelial cells (16HBE) induced by beryllium sulfate (BeSO4 ) and to further explore the biological functions of differentially expressed miRNAs. The profile of miRNAs in 16HBE cells was detected using the high-throughput sequencing between the control groups (n = 3) and the 150 μmol/L of BeSO4 -treated groups (n = 3). Bioinformatics analysis of differentially expressed miRNAs was performed, including the prediction of target genes, Gene Ontology (GO) analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify some damage-related miRNAs. We found that BeSO4 can increase the levels of some inflammatory cytokine such as interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). And BeSO4 altered miRNAs expression of 16HBE cells and a total of 179 differentially expressed miRNAs were identified, including 88 upregulated miRNAs and 91 downregulated miRNAs. The target genes predicted by 28 dysregulated miRNAs were mainly involved in the transcription regulation, signal transduction, MAPK, and VEGF signaling pathway. The qRT-PCR verification results were consistent with the sequencing results. miRNA expression profiling in 16HBE cells exposed to BeSO4 provides new insights into the toxicity mechanism of beryllium exposure.
Collapse
Affiliation(s)
- Shan Yi
- School of Public Health, University of South China, Hengyang, China
| | - Yan-Ping Liu
- School of Public Health, University of South China, Hengyang, China
| | - Xun-Ya Li
- School of Public Health, University of South China, Hengyang, China
| | - Xiao-Yan Yuan
- School of Public Health, University of South China, Hengyang, China
| | - Ye Wang
- School of Public Health, University of South China, Hengyang, China
| | - Ying Cai
- School of Public Health, University of South China, Hengyang, China
| | - Yuan-di Lei
- School of Public Health, University of South China, Hengyang, China
| | - Lian Huang
- School of Public Health, University of South China, Hengyang, China
| | - Zhao-Hui Zhang
- School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
9
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, As Sobeai HM, Al-Mazroua HA, Alasmari AF, Bakheet SA. 3-Aminobenzamide alleviates elevated DNA damage and DNA methylation in a BTBR T +Itpr3 tf/J mouse model of autism by enhancing repair gene expression. Pharmacol Biochem Behav 2020; 199:173057. [PMID: 33069747 DOI: 10.1016/j.pbb.2020.173057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Little is known about genetic and epigenetic alterations in autism spectrum disorder. Moreover, the efficiency of DNA repair in autism must be improved to correct these alterations. We examined whether 3-aminobenzamide (3-AB) could reverse these alterations. We conducted experiments to clarify the molecular mechanism underlying these ameliorations. An assessment of genetic and epigenetic alterations by a modified comet assay showed elevated levels of oxidative DNA strand breaks and DNA hypermethylation in BTBR T+Itpr3tf/J (BTBR) mice used as a model of autism. Oxidative DNA strand breaks and DNA methylation were further quantified fluorometrically, and the results showed similar changes. Conversely, 3-AB treated BTBR mice showed a significant reduction in these alterations compared with untreated mice. The expressions of 43 genes involved in DNA repair were altered in BTBR mice. RT2 Profiler PCR Array revealed significantly altered expression of seven genes, which was confirmed by RT-PCR analyses. 3-AB treatment relieved these disturbances and significantly improved Ogg1 and Rad1 up-regulation. Moreover, autism-like behaviors were also mitigated in BTBR animals by 3-AB treatment without alterations in locomotor activities. The simultaneous effects of reduced DNA damage and DNA methylation levels as well as the regulation of repair gene expression indicate the potential of 3-AB as a therapeutic agent to decrease the levels of DNA damage and DNA methylation in autistic patients. The current data may help in the development of therapies that ultimately provide a better quality of life for individuals suffering from autism.
Collapse
Affiliation(s)
- Sabry M Attia
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Homood M As Sobeai
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- College of Pharmacy, Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Attia SM, Al-Khalifa MK, Al-Hamamah MA, Alotaibi MR, Attia MSM, Ahmad SF, Ansari MA, Nadeem A, Bakheet SA. Vorinostat is genotoxic and epigenotoxic in the mouse bone marrow cells at the human equivalent doses. Toxicology 2020; 441:152507. [PMID: 32512035 DOI: 10.1016/j.tox.2020.152507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/10/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
Vorinostat was approved as the first histone deacetylase inhibitor for the management of cutaneous T cell lymphoma. However, it's in vivo genetic and epigenetic effects on non-cancerous cells remain poorly understood. As genetic and epigenetic changes play a critical role in the pathogenesis of carcinogenesis, we investigated whether vorinostat induces genetic and epigenetic alterations in mouse bone marrow cells. Bone marrow cells were isolated 24 h following the last oral administration of vorinostat at the doses of 25, 50, or 100 mg/kg/day for five days (approximately equal to the recommended human doses). The cells were then used to assess clastogenicity and aneugenicity by the micronucleus test complemented by fluorescence in situ hybridization assay; DNA strand breaks, oxidative DNA strand breaks, and DNA methylation by the modified comet assay; apoptosis by annexin V/PI staining analysis and the occurrence of the hypodiploid DNA content; and DNA damage/repair gene expression by polymerase chain reaction (PCR) Array. The expression of the mRNA transcripts were also confirmed by real-time PCR and western blot analysis. Vorinostat caused structural chromosomal damage, numerical chromosomal abnormalities, DNA strand breaks, oxidative DNA strand breaks, DNA hypomethylation, and programed cell death in a dose-dependent manner. Furthermore, the expression of numerous genes implicated in DNA damage/repair were altered after vorinostat treatment. Accordingly, the genetic/epigenetic mechanism(s) of action of vorinostat may play a role in its carcinogenicity and support the continued study and development of new compounds with lower toxicity.
Collapse
Affiliation(s)
- Sabry M Attia
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia.
| | - Mohamed K Al-Khalifa
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Al-Hamamah
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Collins A, Vettorazzi A, Azqueta A. The role of the enzyme-modified comet assay in in vivo studies. Toxicol Lett 2020; 327:58-68. [PMID: 32247831 DOI: 10.1016/j.toxlet.2020.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
The in vivo comet assay is an established genotoxicity test, with an OECD test guideline, but in its standard form it measures only DNA strand breaks. Including in the assay an additional step, in which the DNA is incubated with a lesion-specific enzyme, can provide important information about the nature of the DNA damage. Formamidopyrimidine DNA glycosylase, 8-oxoguanine DNA glycosylase or endonuclease III are commonly used in the in vitro genotoxicity test and in human biomonitoring to detect oxidised bases, but in vivo applications are rarer. A systematic literature search has identified a total of 60 papers that report such in vivo experiments, testing a variety of agents. In many cases, strand breaks were not seen, but significant levels of enzyme-sensitive sites were induced - indicating a mechanism of action involving oxidative stress. Compounds such as methyl methanesulfonate (MMS) or ethyl methanesulfonate (EMS) could be used as positive controls in both the standard and the enzyme-modified in vivo comet assays.
Collapse
Affiliation(s)
- Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain.
| |
Collapse
|
12
|
Attia SM, Al-Hamamah MA, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Bakheet SA, Al-Ayadhi LY. Evaluation of DNA repair efficiency in autistic children by molecular cytogenetic analysis and transcriptome profiling. DNA Repair (Amst) 2019; 85:102750. [PMID: 31765876 DOI: 10.1016/j.dnarep.2019.102750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/02/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Data regarding DNA repair perturbations in autism, which might increase the risk of malignancy, are scarce. To evaluate whether DNA repair may be disrupted in autistic children, we assessed the incidence of endogenous basal DNA strand breaks as well as the efficiency of repairing DNA damage caused by γ-ray in lymphocytes isolated from autistic and healthy children. The incidence of DNA damage and the kinetics of DNA repair were determined by comet assay, while the incidence of residual DNA damage was evaluated by structural chromosomal aberration analysis. Transcriptome profiling of 84 genes associated with DNA damage and repair-signaling pathways was performed by RT² Profiler PCR Array. The array data were confirmed by RT-PCR and western blot studies. Our data indicate that the incidence of basal oxidative DNA strand breaks in autistic children was greater than that in nonautistic controls. Lymphocytes from autistic children displayed higher susceptibility to damage by γ-irradiation and slower repair rate than those from nonautistic children. Although the total unstable chromosomal aberrations were unaffected, lymphocytes from autistic children were more susceptible to chromosomal damage caused by γ-ray than those from nonautistic children. Transcriptomic analysis revealed that several genes associated with repair were downregulated in lymphocytes from autistic individuals and in those exposed to γ-irradiation. This may explain the increased oxidative DNA damage and reduced repair rate in lymphocytes from autistic individuals. These features may be related to the possible correlation between autism and the elevated risk of cancer and may explain the role of the disruption of the DNA repair process in the pathogenesis of autism.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
14
|
Drobyshev E, Kybarskaya L, Dagaev S, Solovyev N. New insight in beryllium toxicity excluding exposure to beryllium-containing dust: accumulation patterns, target organs, and elimination. Arch Toxicol 2019; 93:859-869. [DOI: 10.1007/s00204-019-02432-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
|
15
|
Attia SM, Alshahrani AY, Al-Hamamah MA, Attia MM, Saquib Q, Ahmad SF, Ansari MA, Nadeem A, Bakheet SA. Dexrazoxane Averts Idarubicin-Evoked Genomic Damage by Regulating Gene Expression Profiling Associated With the DNA Damage-Signaling Pathway in BALB/c Mice. Toxicol Sci 2017; 160:161-172. [DOI: 10.1093/toxsci/kfx161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
16
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
17
|
Oxidative Stress and the Inorganic Carcinogens. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-3-319-19096-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Attia SM, Ahmad SF, Okash RM, Bakheet SA. Aroclor 1254-induced genotoxicity in male gonads through oxidatively damaged DNA and inhibition of DNA repair gene expression. Mutagenesis 2014; 29:379-84. [DOI: 10.1093/mutage/geu029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Attia SM, Ahmad SF, Zoheir KM, Bakheet SA, Helal GK, Abd-Allah AR, Al-Harbi NO, Al-Hosaini KA, Al-Shabanah OA. Genotoxic evaluation of chloroacetonitrile in murine marrow cells and effects on DNA damage repair gene expressions. Mutagenesis 2013; 29:55-62. [DOI: 10.1093/mutage/get063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Attia SM, Ahmad SF, Harisa GI, Mansour AM, El Sayed ESM, Bakheet SA. Wogonin attenuates etoposide-induced oxidative DNA damage and apoptosis via suppression of oxidative DNA stress and modulation of OGG1 expression. Food Chem Toxicol 2013; 59:724-30. [PMID: 23872129 DOI: 10.1016/j.fct.2013.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022]
Abstract
Damage to DNA can lead to many different acute and chronic pathophysiological conditions, ranging from cancer to endothelial damage. The current study has been initiated to determine whether the flavonoid wogonin can attenuate etoposide-induced oxidative DNA damage and apoptosis in mouse bone marrow cells. We found that oral administration of wogonin before etoposide injection significantly attenuates etoposide-induced oxidative DNA damage and apoptosis in a dose dependent manner. Etoposide induced a significant down-regulation of mRNA expression of the OGG1 repair gene and marked biochemical alterations characteristic of oxidative DNA stress, including increased 8-OHdG, enhanced lipid peroxidation and reduction in reduced glutathione. Prior administration of wogonin ahead of etoposide challenge restored these altered parameters. Importantly, wogonin had no antagonizing effect on etoposide-induce topoisomerase-II inhibition. Conclusively, our study indicates that wogonin has a protective role in the abatement of etoposide-induced oxidative DNA damage and apoptosis in the bone marrow cells of mice via suppression of oxidative DNA stress and enhancing DNA repair through modulation of OGG1 repair gene expression. Therefore, wogonin can be a promising chemoprotective agent and might be useful to avert secondary leukemia and other drug-related cancers in cured cancer patients and medical personnel exposing to the potent carcinogen etoposide.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|