1
|
D'Agate S, Velickovic P, García-Barrios N, Ramón-García S, Della Pasqua O. Optimizing β-lactam-containing antibiotic combination therapy for the treatment of Buruli ulcer. Br J Clin Pharmacol 2024. [PMID: 39290131 DOI: 10.1111/bcp.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 09/19/2024] Open
Abstract
AIMS The current treatment for Buruli ulcer is based on empirical evidence of efficacy. However, there is an opportunity for shortening its duration and improving response rates. Evolving understanding of the pharmacokinetic-pharmacodynamic relationships provides the basis for a stronger dose rationale for antibiotics. In conjunction with modelling and simulation, it is possible to identify dosing regimens with the highest probability of target attainment (PTA). This investigation aims to: (i) assess the dose rationale for a new combination therapy including amoxicillin/clavulanic acid (AMX/CLV) currently in clinical trials; and (ii) compare its performance with alternative dosing regimens including rifampicin, clarithromycin and AMX/CLV. METHODS In vitro estimates of the minimum inhibitory (MIC) concentration were selected as a measure of the antibacterial activity of different drug combinations. Clinical trial simulations were used to characterize the concentration vs. time profiles of rifampicin, clarithromycin and amoxicillin in a virtual cohort of adult and paediatric patients, considering the effect of baseline covariates on disposition parameters and interindividual variability in exposure. The PTA of each regimen was then assessed using different thresholds of the time above MIC. RESULTS A weight-banded dosing regimen including 150-600 mg rifampicin once daily, 250-1000 mg clarithromycin and AMX/CLV 22.5 mg/kg /1000 mg twice daily ensures higher PTA than the standard of care with AMX/CLV 45 mg/kg/2000 mg once daily. CONCLUSION The higher PTA values support the proposed 4-drug combination (rifampicin, clarithromycin, AMX/CLV) currently under clinical investigation. Our findings also suggest that higher rifampicin doses might contribute to enhanced treatment efficacy.
Collapse
Affiliation(s)
- Salvatore D'Agate
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | - Peter Velickovic
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | | | - Santiago Ramón-García
- Research and Development Agency of Aragón Foundation (ARAID Foundation), Zaragoza, Spain
- Department of Microbiology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
- Spanish Network for Research on Respiratory Diseases (CIBERES), Carlos III Health Institute, Health Institute Carlos III, Madrid, Spain
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
- National Research Council (CNR), Rome, Italy
| |
Collapse
|
2
|
Aktar A, Bhuia S, Chowdhury R, Ferdous J, Khatun M, Hasan SA, Mia E, Hasan R, Islam MT. An Insight of Plant Source, Toxicological Profile, and Pharmacological Activities of Iridoid Loganic Acid: A ComprehensiveReview. Chem Biodivers 2024:e202400874. [PMID: 39113595 DOI: 10.1002/cbdv.202400874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/08/2024] [Indexed: 10/20/2024]
Abstract
This study evaluates the pharmacological effects of iridoid glucoside loganic acid, a plant constituent with diverse properties, based on literature, and explores the underlying cellular mechanisms for treating several ailments. Data were collected from reliable electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar, etc. The results demonstrated the anti-inflammatory, anti-oxidant, and other protective effects of loganic acid on metabolic diseases and disorders such as atherosclerosis, diabetes, and obesity, in addition to its osteoprotective and anticancer properties. The antioxidant activity of loganic acid demonstrates its capacity to protect cells from oxidative damage and mitigates inflammation by reducing the activity of inflammatory cytokines involving TNF-α and IL-6, substantially upregulating the expression of PPAR-γ/α, and decreasing the clinical signs of inflammation-related conditions related to hypertriglyceridemia and atherosclerosis. Meanwhile, loganic acid inhibits bone loss, exhibits osteoprotective properties by increasing mRNA expression levels of bone synthesizing genes such as Alpl, Bglap, and Sp7, and significantly increases osteoblastic proliferation in preosteoblast cells. Loganic acid is an anti-metastatic drug that reduces MnSOD expression, inhibits EMT and metastasis, and prevents cellular migration, proliferation, and invasion in hepatocellular carcinoma cells. However, additional clinical trials are required to assess its safety, efficacy, and human dose.
Collapse
Affiliation(s)
- Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Emon Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh
| |
Collapse
|
3
|
Assaggaf H, El Hachlafi N, Elbouzidi A, Taibi M, Benkhaira N, El Kamari F, Alnasseri SM, Laaboudi W, Bouyahya A, Ardianto C, Goh KW, Ming LC, Mrabti HN. Unlocking the combined action of Mentha pulegium L. essential oil and Thym honey: In vitro pharmacological activities, molecular docking, and in vivo anti-inflammatory effect. Heliyon 2024; 10:e31922. [PMID: 38947443 PMCID: PMC11214453 DOI: 10.1016/j.heliyon.2024.e31922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Mentha pulegium L., a plant widely embraced for its therapeutic properties by populations worldwide, including Morocco, has long been recognized for its potential in treating various ailments. This study aims to comprehensively evaluate the antioxidant, anti-inflammatory, and dermatoprotective properties of essential oil derived from M. pulegium, and thyme honey as well as their combined effects. To unravel the chemical composition, a rigorous GC-MS analysis was conducted. Subsequently, we examined their antioxidant potential through three distinct assays: DPPH●, hydrogen peroxide assay, and xanthine oxidase assay. The anti-inflammatory properties were scrutinized through both in vitro and in vivo experiments. Simultaneously, the dermatoprotective efficacy was investigated in vitro by evaluating tyrosinase inhibition. Our findings revealed that pulegone constitutes the predominant compound in M. pulegium essential oil (MPEO), constituting a remarkable 74.82 % of the composition. Significantly, when the essential oil was combined with thym honey, it exhibited superior anti-inflammatory and dermatoprotective effects across all in vivo and in vitro tests. Moreover, our in silico molecular docking analysis hinted at the potential role of cyclohexanone, 3-methyl, an element found in the MPEO, in contributing to the observed outcomes. While this study has unveiled promising results regarding the combined in vitro, in vivo and in silico biological activities of the essential oil and honey, it is imperative to delve further into the underlying mechanisms through additional experimentation and alternative experimental methods. Understanding these mechanisms in greater detail will not only enhance our comprehension of the therapeutic potential but also pave the way for the development of innovative treatments and applications rooted in the synergy of these natural compounds. Furthermore, it would be advantageous to test different possible combinations using experimental design model. Moreover, it would be better to test the effect of single compounds of MPEO to clearly elucidate their efficiency. MPEO alone or combined with thyme honey may be a useful for the development of novel biopharmaceuticals.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naoufal El Hachlafi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Oujda, 60000, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Oujda, 60000, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Fatima El Kamari
- Laboratoire d’Ingénierie des Matériaux Organométalliques, Moléculaires et Environnement, Sidi Mohamed Ben Abdellah University, Fez, B.P. 1796, Morocco
| | - Sulaiman Mohammed Alnasseri
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Wafa Laaboudi
- High Institute of Nursing Professions and Health Techniques Fez, Fez, 30050, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca, 20250, Morocco
- Euromed Research Center, Euromed Faculty of Pharmacy and School of Engineering and Biotechnology, Euromed University of Fes(UEMF), Meknes Road, 30000, Fez, Morocco
| |
Collapse
|
4
|
Major benznidazole metabolites in patients treated for Chagas disease: Mass spectrometry-based identification, structural analysis and detoxification pathways. Toxicol Lett 2023; 377:71-82. [PMID: 36775077 DOI: 10.1016/j.toxlet.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/22/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Benznidazole is the drug of choice for the treatment of Chagas disease, but its metabolism in humans is unclear. Here, we identified and characterized the major benznidazole metabolites and their biosynthetic mechanisms in humans by analyzing the ionic profiles of urine samples from patients and untreated donors through reversed-phase UHPLC-ESI-QTOF-MS and UHPLC-ESI-QqLIT-MS. A strategy for simultaneous detection and fragmentation of characteristic positive and negative ions was employed using information-dependent acquisitions (IDA). Selected precursor ions, neutral losses, and MS3 experiments complemented the study. A total of six phase-I and ten phase-II metabolites were identified and structurally characterized in urine of benznidazole-treated patients. Based on creatinine-corrected ion intensities, nitroreduction to amino-benznidazole (M1) and its subsequent N-glucuronidation to M5 were the main metabolic pathways, followed by imidazole-ring cleavage, oxidations, and cysteine conjugations. This extensive exploration of benznidazole metabolites revealed potentially toxic structures in the form of glucuronides and glutathione derivatives, which may be associated with recurrent treatment adverse events; this possibility warrants further exploration in future clinical trials. Incorporation of this knowledge of the benznidazole metabolic profile into clinical pharmacology trials could lead to improved treatments, facilitate the study of possible drug-drug interactions, and even mitigation of adverse drug reactions.
Collapse
|
5
|
Ayman R, Radwan AM, Elmetwally AM, Ammar YA, Ragab A. Discovery of novel pyrazole and pyrazolo[1,5-a]pyrimidine derivatives as cyclooxygenase inhibitors (COX-1 and COX-2) using molecular modeling simulation. Arch Pharm (Weinheim) 2023; 356:e2200395. [PMID: 36336646 DOI: 10.1002/ardp.202200395] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Searching for effective and selective anti-inflammatory agents, our study involved designing and synthesizing new pyrazole and pyrazolo[1,5-a]pyrimidine derivatives 4-11. The structures of the synthesized derivatives were confirmed using different spectroscopic techniques. Virtual screening was achieved for the newly designed derivatives using in silico docking simulation inside the active sites of four proteins classified as two cyclooxygenases (COX)-1 (PDB: 3KK6 and 4OIZ) and two COX-2 (PBD: 1CX2 and 3LN1). Among them, six derivatives 4c, 5b, 6a, 7a, 7b, and 10b displayed the highest binding energy. These derivatives were evaluated for their in vitro COX-1 and COX-2 inhibitory activities and their selectivity indexes were calculated. Additionally, these derivatives displayed IC50 values ranging between 4.909 ± 0.25 and 57.53 ± 2.91 µM, and 3.289 ± 0.14 and 124 ± 5.32 µM, against COX-1 and COX-2, respectively. Furthermore, the tested derivatives were found to have selective inhibitory activity on the COX-2 enzyme. Surprisingly, the two pyrazole derivatives 4c and 5b were found to be the most active, with IC50 values of 9.835 ± 0.50 and 4.909 ± 0.25 µM and 4.597 ± 0.20 and 3.289 ± 0.14 µM compared with meloxicam (1.879 ± 0.1 and 5.409 ± 0.23 µM) and celecoxib (5.439 ± 0.28 and 2.164 ± 0.09 µM) against COX-1/-2, respectively. Besides, two pyrazole derivatives, 4c and 5b, displayed a COX-1/COX-2 SI of 2.14 and 1.49. Computational techniques such as molecular docking, density function theory (DFT) calculation, and chemical absorption, distribution, metabolism, excretion, and toxicity evaluation were applied to explain the molecules' binding mode, chemical nature, drug likeness, and toxicity prediction.
Collapse
Affiliation(s)
- Radwa Ayman
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - A M Radwan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
6
|
LC-MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals (Basel) 2022; 15:ph15091156. [PMID: 36145377 PMCID: PMC9503641 DOI: 10.3390/ph15091156] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Atriplex halimus L., also known as Mediterranean saltbush, and locally as "Lgtef", an halophytic shrub, is used extensively to treat a wide variety of ailments in Morocco. The present study was undertaken to determine the antioxidant activity and cytotoxicity of the ethanolic extract of A. halimus leaves (AHEE). We first determined the phytochemical composition of AHEE using a liquid chromatography (LC)-tandem mass spectrometry (MS/MS) technique. The antioxidant activity was evaluated using different methods including DPPH scavenging capacity, β-carotene bleaching assay, ABTS scavenging, iron chelation, and the total antioxidant capacity assays. Cytotoxicity was investigated against human cancer breast cells lines MCF-7 and MDA-MB-231. The results showed that the components of the extract are composed of phenolic acids and flavonoids. The DPPH test showed strong scavenging capacity for the leaf extract (IC50 of 0.36 ± 0.05 mg/mL) in comparison to ascorbic acid (IC50 of 0.19 ± 0.02 mg/mL). The β-carotene test determined an IC50 of 2.91 ± 0.14 mg/mL. The IC50 values of ABTS, iron chelation, and TAC tests were 44.10 ± 2.92 TE µmol/mL, 27.40 ± 1.46 mg/mL, and 124 ± 1.27 µg AAE/mg, respectively. In vitro, the AHE extract showed significant inhibitory activity in all tested tumor cell lines, and the inhibition activity was found in a dose-dependent manner. Furthermore, computational techniques such as molecular docking and ADMET analysis were used in this work. Moreover, the physicochemical parameters related to the compounds' pharmacokinetic indicators were evaluated, including absorption, distribution, metabolism, excretion, and toxicity prediction (Pro-Tox II).
Collapse
|
7
|
Batista D, Romáryo Duarte da Luz J, Evellyn Silva Do Nascimento T, Felipe de Senes-Lopes T, Araújo Galdino O, Victor E Silva S, Pinheiro Ferreira M, Arrison Dos Santos Azevedo M, Brandão-Neto J, Araujo-Silva G, López JA, das Graças Almeida M. Licania rigida leaf extract: Protective effect on oxidative stress, associated with cytotoxic, mutagenic and preclinical aspects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:276-290. [PMID: 34789080 DOI: 10.1080/15287394.2021.2002744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brazilian plant biodiversity is a rich alternative source of bioactive compounds since plant-derived extracts and/or their secondary metabolites exhibit potential properties to treat several diseases. In this context, Licania rigida Benth (Chrysobalanaceae Family), a large evergreen tree distributed in Brazilian semi-arid regions, deserves attention for its widespread use in popular medicine, although its biological properties are still poorly studied. The aim of this study was to examine (1) acute and sub-chronic oral toxicity at 2000 mg/kg dose; (2) in vitro cytotoxicity at 0.1; 1; 10; 100 or 1000 µg/ml; (3) in vivo mutagenicity at 5, 10 or 20 mg/ml, and (4) potential antioxidant protective effect of L. rigida aqueous leaf extract of (AELr). No marked apparent toxic and genotoxic effects were observed using in vitro and in vivo assays after in vitro treatment of Chinese hamster ovary cell line (CHO-K1) with AELr or in vivo exposure of Wistar rats and Drosophila melanogaster to different extract concentrations. Concerning the antioxidant effect, the extract exhibited a protective effect by decreasing lipid peroxidation as determined by malondialdehyde levels. No significant changes were observed for glutathione (GSH) levels and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Data demonstrate the beneficial potential of AELr to be employed for therapeutic purposes. However, further studies are required to validate the pharmacological application of this plant extract to develop as a phytotherapeutic formulation.
Collapse
Affiliation(s)
- Débora Batista
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Thayse Evellyn Silva Do Nascimento
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Tiago Felipe de Senes-Lopes
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Ony Araújo Galdino
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Saulo Victor E Silva
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Macelia Pinheiro Ferreira
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Marcelo Arrison Dos Santos Azevedo
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - José Brandão-Neto
- Department of Clinical Medicine, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Faculty of Degree in Chemistry, Amapá State University (Ueap), Macapá/AP, Brazil
| | - Jorge A López
- Graduate Program in Industrial Biotechnology, Tiradentes University/Research and Technology Institute, Aracaj u/SE, Brazil
| | - Maria das Graças Almeida
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| |
Collapse
|
8
|
Tosca EM, Bartolucci R, Magni P, Poggesi I. Modeling approaches for reducing safety-related attrition in drug discovery and development: a review on myelotoxicity, immunotoxicity, cardiovascular toxicity, and liver toxicity. Expert Opin Drug Discov 2021; 16:1365-1390. [PMID: 34181496 DOI: 10.1080/17460441.2021.1931114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction:Safety and tolerability is a critical area where improvements are needed to decrease the attrition rates during development of new drug candidates. Modeling approaches, when smartly implemented, can contribute to this aim.Areas covered:The focus of this review was on modeling approaches applied to four kinds of drug-induced toxicities: hematological, immunological, cardiovascular (CV) and liver toxicity. Papers, mainly published in the last 10 years, reporting models in three main methodological categories - computational models (e.g., quantitative structure-property relationships, machine learning approaches, neural networks, etc.), pharmacokinetic-pharmacodynamic (PK-PD) models, and quantitative system pharmacology (QSP) models - have been considered.Expert opinion:The picture observed in the four examined toxicity areas appears heterogeneous. Computational models are typically used in all areas as screening tools in the early stages of development for hematological, cardiovascular and liver toxicity, with accuracies in the range of 70-90%. A limited number of computational models, based on the analysis of drug protein sequence, was instead proposed for immunotoxicity. In the later stages of development, toxicities are quantitatively predicted with reasonably good accuracy using either semi-mechanistic PK-PD models (hematological and cardiovascular toxicity), or fully exploited QSP models (immuno-toxicity and liver toxicity).
Collapse
Affiliation(s)
- Elena M Tosca
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Roberta Bartolucci
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Italo Poggesi
- Clinical Pharmacology & Pharmacometrics, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
9
|
Khurm M, Wang X, Zhang H, Hussain SN, Qaisar MN, Hayat K, Saqib F, Zhang X, Zhan G, Guo Z. The genus Cassia L.: Ethnopharmacological and phytochemical overview. Phytother Res 2021; 35:2336-2385. [PMID: 33617115 DOI: 10.1002/ptr.6954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Nature gifts medicinal plants with the untapped and boundless treasure of active chemical constituents with significant therapeutic potential that makes these plants a beneficial source in the development of phytomedicines. Genus Cassia, with approximately 500 species, is a large group of flowering plants in the family Fabaceae. Cassia species are widely distributed throughout different regions mainly tropical Asia, North America, and East Africa. In the folk medicinal history, these plants are used as laxative and purgative agents. In the Ayurveda system of medicine, they are used to cure headache and fever. Cassia plants exhibit pharmacological activities at large scales such as antimicrobial, anticancer, antiinflammatory, antioxidant, hypoglycemic, hyperglycemic, antimutagenic, and antivirals. The phytochemical investigations of genus Cassia demonstrate the presence of more than 200 chemical compounds, including piperidine alkaloids, anthracene derivatives (anthraquinones), flavonoids, pentacyclic triterpenoids, sterols, phenylpropanoids, and γ-naphthopyrones. The literature illustrated anthraquinones and flavonoids as major secondary metabolites from this genus. However, some Cassia plants, with rich contents of anthraquinones, still show toxicology properties. As Cassia plants are used extensively in the herbal system of medicine, but only senna dosage forms have achieved the status of the pharmaceutical market as standard laxative agents. In conclusion, further investigations on isolating newer biologically active constituents, unknown underlying mechanisms, toxicology profiles, and clinical studies of Cassia species are needed to be explored. This review article specifies the systematic breach existing between the current scientific knowledge and the fundamentals for the marketization of genus Cassia products.
Collapse
Affiliation(s)
- Muhammad Khurm
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xingbin Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Hui Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | | | | | - Khezar Hayat
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Xinxin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Guanqun Zhan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Zengjun Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Emmerich CH, Gamboa LM, Hofmann MCJ, Bonin-Andresen M, Arbach O, Schendel P, Gerlach B, Hempel K, Bespalov A, Dirnagl U, Parnham MJ. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat Rev Drug Discov 2021; 20:64-81. [PMID: 33199880 PMCID: PMC7667479 DOI: 10.1038/s41573-020-0087-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Academic research plays a key role in identifying new drug targets, including understanding target biology and links between targets and disease states. To lead to new drugs, however, research must progress from purely academic exploration to the initiation of efforts to identify and test a drug candidate in clinical trials, which are typically conducted by the biopharma industry. This transition can be facilitated by a timely focus on target assessment aspects such as target-related safety issues, druggability and assayability, as well as the potential for target modulation to achieve differentiation from established therapies. Here, we present recommendations from the GOT-IT working group, which have been designed to support academic scientists and funders of translational research in identifying and prioritizing target assessment activities and in defining a critical path to reach scientific goals as well as goals related to licensing, partnering with industry or initiating clinical development programmes. Based on sets of guiding questions for different areas of target assessment, the GOT-IT framework is intended to stimulate academic scientists' awareness of factors that make translational research more robust and efficient, and to facilitate academia-industry collaboration.
Collapse
Affiliation(s)
| | - Lorena Martinez Gamboa
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Martine C J Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Marc Bonin-Andresen
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Arbach
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- SPARK-Validation Fund, Berlin Institute of Health, Berlin, Germany
| | - Pascal Schendel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katja Hempel
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anton Bespalov
- PAASP GmbH, Heidelberg, Germany
- Valdman Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry & Pharmacy, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Smit IA, Afzal AM, Allen CHG, Svensson F, Hanser T, Bender A. Systematic Analysis of Protein Targets Associated with Adverse Events of Drugs from Clinical Trials and Postmarketing Reports. Chem Res Toxicol 2020; 34:365-384. [PMID: 33351593 DOI: 10.1021/acs.chemrestox.0c00294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adverse drug reactions (ADRs) are undesired effects of medicines that can harm patients and are a significant source of attrition in drug development. ADRs are anticipated by routinely screening drugs against secondary pharmacology protein panels. However, there is still a lack of quantitative information on the links between these off-target proteins and the reporting of ADRs in humans. Here, we present a systematic analysis of associations between measured and predicted in vitro bioactivities of drugs and adverse events (AEs) in humans from two sources of data: the Side Effect Resource, derived from clinical trials, and the Food and Drug Administration Adverse Event Reporting System, derived from postmarketing surveillance. The ratio of a drug's therapeutic unbound plasma concentration over the drug's in vitro potency against a given protein was used to select proteins most likely to be relevant to in vivo effects. In examining individual target bioactivities as predictors of AEs, we found a trade-off between the positive predictive value and the fraction of drugs with AEs that can be detected. However, considering sets of multiple targets for the same AE can help identify a greater fraction of AE-associated drugs. Of the 45 targets with statistically significant associations to AEs, 30 are included on existing safety target panels. The remaining 15 targets include 9 carbonic anhydrases, of which CA5B is significantly associated with cholestatic jaundice. We include the full quantitative data on associations between measured and predicted in vitro bioactivities and AEs in humans in this work, which can be used to make a more informed selection of safety profiling targets.
Collapse
Affiliation(s)
- Ines A Smit
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Avid M Afzal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Chad H G Allen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Fredrik Svensson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thierry Hanser
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Andreas Bender
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Shakya A, Chaudhary SK, Bhat HR, Ghosh SK. Acute and sub-chronic toxicity studies of Benincasa hispida (Thunb.) cogniaux fruit extract in rodents. Regul Toxicol Pharmacol 2020; 118:104785. [PMID: 32976857 DOI: 10.1016/j.yrtph.2020.104785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
The objective of the present study was to evaluate the safety of standardized 70% ethanolic extract of Benincasa hispida fruit pulp (HABH) in rodents. Chemical characterization of HABH has been done by GC-MS and dimethylsulfoxonium formyl methylide, l-(+)-ascorbic acid and 2,6-dihexadecanoate were identified as major compounds in the extract. Acute oral toxicity study of HABH was done according to the Organization for Economic Cooperation and Development (OECD) guideline, by 'up and down' method, using the limit test at 2000 mg/kg, body weight in mice and were observed up to 14 days. In sub-chronic oral toxicity study, HABH was administered to Wistar rats at doses of 1000, 200 and 40 mg/kg b. w. per day for 90 days. In acute toxicity study, there was no mortality and no behavioural signs of toxicity at the limit test dose level (2000 mg/kg b. w.). In sub-chronic oral toxicity study, there was no significant difference observed in the consumption of food and water, body weight and relative organ weights. Haematological, serum biochemical and urine analysis revealed the non-adverse effects of prolonged oral consumption of HABH. The histopathologic examination did not show any differences in vital organs. Based on our findings, HABH, at dosage levels up to 1000 mg/kg b. w., is non-toxic and safe for long term oral consumption.
Collapse
Affiliation(s)
- Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786 004, Assam, India.
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun, 248 009, Uttarakhand, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786 004, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786 004, Assam, India
| |
Collapse
|
13
|
Effect of Gender and Age on Voriconazole Trough Concentrations in Italian Adult Patients. Eur J Drug Metab Pharmacokinet 2020; 45:405-412. [DOI: 10.1007/s13318-019-00603-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Dihydropyrimidine dehydrogenase pharmacogenetics for predicting fluoropyrimidine-related toxicity in the randomised, phase III adjuvant TOSCA trial in high-risk colon cancer patients. Br J Cancer 2017; 117:1269-1277. [PMID: 29065426 PMCID: PMC5709672 DOI: 10.1038/bjc.2017.289] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Dihydropyrimidine dehydrogenase (DPD) catabolises ∼85% of the administered dose of fluoropyrimidines. Functional DPYD gene variants cause reduced/abrogated DPD activity. DPYD variants analysis may help for defining individual patients’ risk of fluoropyrimidine-related severe toxicity. Methods: The TOSCA Italian randomised trial enrolled colon cancer patients for 3 or 6 months of either FOLFOX-4 or XELOX adjuvant chemotherapy. In an ancillary pharmacogenetic study, 10 DPYD variants (*2A rs3918290 G>A, *13 rs55886062 T>G, rs67376798 A>T, *4 rs1801158 G>A, *5 rs1801159 A>G, *6 rs1801160 G>A, *9A rs1801265 T>C, rs2297595 A>G, rs17376848 T>C, and rs75017182 C>G), were retrospectively tested for associations with ⩾grade 3 fluoropyrimidine-related adverse events (FAEs). An association analysis and a time-to-toxicity (TTT) analysis were planned. To adjust for multiple testing, the Benjamini and Hochberg’s False Discovery Rate (FDR) procedure was used. Results: FAEs occurred in 194 out of 508 assessable patients (38.2%). In the association analysis, FAEs occurred more frequently in *6 rs1801160 A allele carriers (FDR=0.0083). At multivariate TTT analysis, significant associations were found for *6 rs1801160 A allele carriers (FDR<0.0001), *2A rs3918290 A allele carriers (FDR<0.0001), and rs2297595 GG genotype carriers (FDR=0.0014). Neutropenia was the most common FAEs (28.5%). *6 rs1801160 (FDR<0.0001), and *2A rs3918290 (FDR=0.0004) variant alleles were significantly associated with time to neutropenia. Conclusions: This study adds evidence on the role of DPYD pharmacogenetics for safety of patients undergoing fluoropyrimidine-based chemotherapy.
Collapse
|
15
|
Kiyosawa N, Manabe S. Data-intensive drug development in the information age: applications of Systems Biology/Pharmacology/Toxicology. J Toxicol Sci 2017; 41:SP15-SP25. [PMID: 28003636 DOI: 10.2131/jts.41.sp15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pharmaceutical companies continuously face challenges to deliver new drugs with true medical value. R&D productivity of drug development projects depends on 1) the value of the drug concept and 2) data and in-depth knowledge that are used rationally to evaluate the drug concept's validity. A model-based data-intensive drug development approach is a key competitive factor used by innovative pharmaceutical companies to reduce information bias and rationally demonstrate the value of drug concepts. Owing to the accumulation of publicly available biomedical information, our understanding of the pathophysiological mechanisms of diseases has developed considerably; it is the basis for identifying the right drug target and creating a drug concept with true medical value. Our understanding of the pathophysiological mechanisms of disease animal models can also be improved; it can thus support rational extrapolation of animal experiment results to clinical settings. The Systems Biology approach, which leverages publicly available transcriptome data, is useful for these purposes. Furthermore, applying Systems Pharmacology enables dynamic simulation of drug responses, from which key research questions to be addressed in the subsequent studies can be adequately informed. Application of Systems Biology/Pharmacology to toxicology research, namely Systems Toxicology, should considerably improve the predictability of drug-induced toxicities in clinical situations that are difficult to predict from conventional preclinical toxicology studies. Systems Biology/Pharmacology/Toxicology models can be continuously improved using iterative learn-confirm processes throughout preclinical and clinical drug discovery and development processes. Successful implementation of data-intensive drug development approaches requires cultivation of an adequate R&D culture to appreciate this approach.
Collapse
Affiliation(s)
- Naoki Kiyosawa
- Translational Medicine & Clinical Pharmacology Department, Daiichi Sankyo Co. Ltd
| | | |
Collapse
|
16
|
van den Brink W, Emerenciana A, Bellanti F, Della Pasqua O, van der Laan JW. Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents. Toxicol Appl Pharmacol 2017; 320:51-59. [PMID: 28213092 DOI: 10.1016/j.taap.2017.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 01/03/2023]
Abstract
Increased incidence of C-cell carcinogenicity has been observed for glucagon-like-protein-1 receptor (GLP-1r) agonists in rodents. It is suggested that the duration of exposure is an indicator of carcinogenic potential in rodents of the different products on the market. Furthermore, the role of GLP-1-related mechanisms in the induction of C-cell carcinogenicity has gained increased attention by regulatory agencies. This study proposes an integrative pharmacokinetic/pharmacodynamic (PKPD) framework to identify explanatory factors and characterize differences in carcinogenic potential of the GLP-1r agonist products. PK models for four products (exenatide QW (once weekly), exenatide BID (twice daily), liraglutide and lixisenatide) were developed using nonlinear mixed effects modelling. Predicted exposure was subsequently linked to GLP-1r stimulation using in vitro GLP-1r potency data. A logistic regression model was then applied to exenatide QW and liraglutide data to assess the relationship between GLP-1r stimulation and thyroid C-cell hyperplasia incidence as pre-neoplastic predictor of a carcinogenic response. The model showed a significant association between predicted GLP-1r stimulation and C-cell hyperplasia after 2years of treatment. The predictive performance of the model was evaluated using lixisenatide, for which hyperplasia data were accurately described during the validation step. The use of a model-based approach provided insight into the relationship between C-cell hyperplasia and GLP-1r stimulation for all four products, which is not possible with traditional data analysis methods. It can be concluded that both pharmacokinetics (exposure) and pharmacodynamics (potency for GLP-1r) factors determine C-cell hyperplasia incidence in rodents. Our work highlights the pharmacological basis for GLP-1r agonist-induced C-cell carcinogenicity. The concept is promising for application to other drug classes.
Collapse
Affiliation(s)
- Willem van den Brink
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Medicines Evaluation Board, Utrecht, The Netherlands
| | - Annette Emerenciana
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Medicines Evaluation Board, Utrecht, The Netherlands
| | - Francesco Bellanti
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Oscar Della Pasqua
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, Uxbridge, United Kingdom; Clinical Pharmacology & Therapeutics, UCL, School of Life and Medical Sciences, London, United Kingdom
| | - Jan Willem van der Laan
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Medicines Evaluation Board, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Dubois VFS, Smania G, Yu H, Graf R, Chain ASY, Danhof M, Della Pasqua O. Translating QT interval prolongation from conscious dogs to humans. Br J Clin Pharmacol 2017; 83:349-362. [PMID: 27614058 PMCID: PMC5237692 DOI: 10.1111/bcp.13123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/08/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
AIM In spite of screening procedures in early drug development, uncertainty remains about the propensity of new chemical entities (NCEs) to prolong the QT/QTc interval. The evaluation of proarrhythmic activity using a comprehensive in vitro proarrhythmia assay does not fully account for pharmacokinetic-pharmacodynamic (PKPD) differences in vivo. In the present study, we evaluated the correlation between drug-specific parameters describing QT interval prolongation in dogs and in humans. METHODS Using estimates of the drug-specific parameter, data on the slopes of the PKPD relationships of nine compounds with varying QT-prolonging effects (cisapride, sotalol, moxifloxacin, carabersat, GSK945237, SB237376 and GSK618334, and two anonymized NCEs) were analysed. Mean slope estimates varied between -0.98 ms μM-1 and 6.1 ms μM-1 in dogs and -10 ms μM-1 and 90 ms μM-1 in humans, indicating a wide range of effects on the QT interval. Linear regression techniques were then applied to characterize the correlation between the parameter estimates across species. RESULTS For compounds without a mixed ion channel block, a correlation was observed between the drug-specific parameter in dogs and humans (y = -1.709 + 11.6x; R2 = 0.989). These results show that per unit concentration, the drug effect on the QT interval in humans is 11.6-fold larger than in dogs. CONCLUSIONS Together with information about the expected therapeutic exposure, the evidence of a correlation between the compound-specific parameter in dogs and in humans represents an opportunity for translating preclinical safety data before progression into the clinic. Whereas further investigation is required to establish the generalizability of our findings, this approach can be used with clinical trial simulations to predict the probability of QT prolongation in humans.
Collapse
Affiliation(s)
- Vincent F. S. Dubois
- Leiden Academic Centre for Drug Research, Division of PharmacologyLeiden UniversityLeidenThe Netherlands
- PharmacometricsGrunenthal GmbHAachenGermany
| | - Giovanni Smania
- Clinical Pharmacology Modelling & SimulationGlaxoSmithKline, Stockley ParkUxbridgeUK
| | - Huixin Yu
- Leiden Academic Centre for Drug Research, Division of PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Ramona Graf
- Clinical Pharmacology Modelling & SimulationGlaxoSmithKline, Stockley ParkUxbridgeUK
| | - Anne S. Y. Chain
- Leiden Academic Centre for Drug Research, Division of PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Meindert Danhof
- Leiden Academic Centre for Drug Research, Division of PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Oscar Della Pasqua
- Clinical Pharmacology Modelling & SimulationGlaxoSmithKline, Stockley ParkUxbridgeUK
- Clinical Pharmacology & TherapeuticsUCLLondonUK
| | | | | |
Collapse
|
18
|
Allegra S, De Francia S, Cusato J, Pirro E, Massano D, Piga A, D'Avolio A. Deferasirox pharmacokinetic and toxicity correlation in β-thalassaemia major treatment. ACTA ACUST UNITED AC 2016; 68:1417-1421. [PMID: 27672004 DOI: 10.1111/jphp.12638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Deferasirox adverse effects include the following: gastrointestinal disturbance, mild elevations in serum creatinine levels and intermittent proteinuria; these events are dose-dependent and reversible with drug discontinuation, but this solution can lead to an inadequate iron chelation. For these reasons, interindividual variability of drug plasma concentration could help the clinical management of deferasirox dosage. We sought to describe deferasirox plasma exposure in a cohort of 60 adult patients. METHODS A fully validated chromatographic method was used to quantify deferasirox concentration in plasma collected from β-thalassaemia adult patients. Samples obtained before and after 2, 4, 6 and 24 h drug administration were evaluated. Associations between variables were tested using the Pearson test. KEY FINDINGS Concerning pharmacokinetic parameters, a higher interindividual variability was shown. A positive correlation was found between deferasirox area under the concentration curve over 24 h and serum creatinine (r = 0.314; P = 0.018) and between area and drug dose (r = 0.311; P = 0.016). Moreover, a negative correlation resulted among area under the concentration curve over 24 h and serum ferritin (r = -0.291; P = 0.026) and among drug half-life and its dose (r = -0.319; P = 0.013). CONCLUSIONS Treatment decision based on the individual characteristics could strongly contribute to minimize toxicity and increase efficacy of deferasirox therapy.
Collapse
Affiliation(s)
- Sarah Allegra
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Silvia De Francia
- Department of Biological and Clinical Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano (TO), Italy
| | - Jessica Cusato
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Elisa Pirro
- Department of Biological and Clinical Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano (TO), Italy
| | - Davide Massano
- Department of Biological and Clinical Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano (TO), Italy
| | - Antonio Piga
- Department of Biological and Clinical Sciences, S. Luigi Gonzaga Hospital, University of Turin, Orbassano (TO), Italy
| | - Antonio D'Avolio
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy.
| |
Collapse
|
19
|
Gayvert KM, Madhukar NS, Elemento O. A Data-Driven Approach to Predicting Successes and Failures of Clinical Trials. Cell Chem Biol 2016; 23:1294-1301. [PMID: 27642066 DOI: 10.1016/j.chembiol.2016.07.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 02/09/2023]
Abstract
Over the past decade, the rate of drug attrition due to clinical trial failures has risen substantially. Unfortunately it is difficult to identify compounds that have unfavorable toxicity properties before conducting clinical trials. Inspired by the effective use of sabermetrics in predicting successful baseball players, we sought to use a similar "moneyball" approach that analyzes overlooked features to predict clinical toxicity. We introduce a new data-driven approach (PrOCTOR) that directly predicts the likelihood of toxicity in clinical trials. PrOCTOR integrates the properties of a compound's targets and its structure to provide a new measure, the PrOCTOR score. Drug target network connectivity and expression levels, along with molecular weight, were identified as important indicators of adverse clinical events. Our method provides a data-driven, broadly applicable strategy to identify drugs likely to possess manageable toxicity in clinical trials and will help drive the design of therapeutic agents with less toxicity.
Collapse
Affiliation(s)
- Kaitlyn M Gayvert
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Precision Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY 10021, USA; Tri-Institutional Graduate Program on Computational Biology and Medicine (Cornell University in Ithaca, Weill Medical College of Cornell University, and Memorial Sloan-Kettering Cancer Center), New York, NY 10065, USA
| | - Neel S Madhukar
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Precision Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY 10021, USA; Tri-Institutional Graduate Program on Computational Biology and Medicine (Cornell University in Ithaca, Weill Medical College of Cornell University, and Memorial Sloan-Kettering Cancer Center), New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Precision Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
20
|
White PA, Johnson GE. Genetic toxicology at the crossroads-from qualitative hazard evaluation to quantitative risk assessment. Mutagenesis 2016; 31:233-7. [PMID: 27000791 DOI: 10.1093/mutage/gew011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Applied genetic toxicology is undergoing a transition from qualitative hazard identification to quantitative dose-response analysis and risk assessment. To facilitate this change, the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC) sponsored a workshop held in Lancaster, UK on July 10-11, 2014. The event included invited speakers from several institutions and the contents was divided into three themes-1: Point-of-departure Metrics for Quantitative Dose-Response Analysis in Genetic Toxicology; 2: Measurement and Estimation of Exposures for Better Extrapolation to Humans and 3: The Use of Quantitative Approaches in Genetic Toxicology for human health risk assessment (HHRA). A host of pertinent issues were discussed relating to the use of in vitro and in vivo dose-response data, the development of methods for in vitro to in vivo extrapolation and approaches to use in vivo dose-response data to determine human exposure limits for regulatory evaluations and decision-making. This Special Issue, which was inspired by the workshop, contains a series of papers that collectively address topics related to the aforementioned themes. The Issue includes contributions that collectively evaluate, describe and discuss in silico, in vitro, in vivo and statistical approaches that are facilitating the shift from qualitative hazard evaluation to quantitative risk assessment. The use and application of the benchmark dose approach was a central theme in many of the workshop presentations and discussions, and the Special Issue includes several contributions that outline novel applications for the analysis and interpretation of genetic toxicity data. Although the contents of the Special Issue constitutes an important step towards the adoption of quantitative methods for regulatory assessment of genetic toxicity, formal acceptance of quantitative methods for HHRA and regulatory decision-making will require consensus regarding the relationships between genetic damage and disease, and the concomitant ability to use genetic toxicity results per se.
Collapse
Affiliation(s)
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA3 5DE, UK
| |
Collapse
|