1
|
Alves Dos Santos K, Costa Alves de Sousa LM, Costa de Souza KS, Amigo OM, Luchessi AD, Silbiger VN. mirSNPs as Potential Colorectal Cancer Biomarkers: A Systematic Review. Int J Mol Sci 2024; 25:12975. [PMID: 39684686 DOI: 10.3390/ijms252312975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common neoplasm in the world and the second with the highest mortality rate. Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes known as mirSNPs may be related to dysregulated miRNA expression in several neoplasms. This systematic review aims to investigate studies that investigate SNPs located in regions of miRNA genes that influence their expression and are associated with CRC, as well as their potential as biomarkers for the disease, based on the available literature. For this, searches were performed in public databases, including MEDLINE/PubMed, Embase, Web of Science, and Scopus. The rigorous review of the PRISMA 2020 guidelines and the methodological quality of these studies was assessed using the Newcastle-Ottawa scale and the Mixed Methods Assessment Tool. Of the 175 studies identified, 26 were considered eligible: 18 of them highlighted mirSNPs as potential biomarkers of risk and prognosis for CRC; 4 studies suggested a protective role; 1 study linked mirSNPs to treatment; 3 studies found no relevant evidence. These results highlight the importance of conducting further research on the topic, given the potential of these biomarkers to contribute to risk assessment, prognosis, and the development of therapeutic strategies for patients with CRC.
Collapse
Affiliation(s)
- Katiusse Alves Dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | | | - Karla Simone Costa de Souza
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Olalla Maroñas Amigo
- Pharmacogenomics and Drug Discovery (GenDeM), Foundation of Health Research Institute of Santiago de Compostela (FIDIS), 15782 Galicia, Spain
- Genomic Medicine Group, Galician Public Foundation for Genomic Medicine (FPGMX), 15782 Galicia, Spain
| | - André Ducati Luchessi
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| |
Collapse
|
2
|
Gu L, Wang Q, Xu G, Liu D. Functional genetic variation in 3'UTR of PARP1 indicates a decreased risk and a better severity of ischemic stroke. Int J Neurosci 2024; 134:804-809. [PMID: 36448327 DOI: 10.1080/00207454.2022.2151907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 12/05/2022]
Abstract
Aim of the study: Polymorphisms of DNA repair enzyme gene may alter the ability of damage repair, ischemic stroke susceptibility and outcome. This study aimed to explore the association of polymorphisms in PARP1 and the effects of interactions between genes in Chinese.Materials and methods: A total of 500 patients and 500 healthy controls were enrolled for genotyping. Results: Clinical information analysis revealed higher levels of alcohol and smoking exposure in patients with ischemic stroke, as well as chronic conditions such as diabetes, hypertension, and higher serum triglycerides concentration. In addition, Polymorphism in PARP1 rs8679 was significantly associated with the decreased ischemic stroke risk. Patients harboring the PARP1 rs8679 AG/GG genotype had a better initial stroke, and as for the mRNA level of PARP1, it was suppressed with mutant genotype in comparison with the wild genotype. Finally, the suppressed of PARP1 was induced by gain-binding ability of miR-124-5p through 3'UTR directly binding.Conclusions: In conclusion, our study demonstrates that the SNP rs8679 in PARP1 3'-UTR might act as a protective factor for the outcome of patients with ischemic stroke.
Collapse
Affiliation(s)
- Lujun Gu
- Department of Physical Medicine and Rehabilitation, Jiangyin Fifth People's Hospital, Wuxi, China
| | - Qingguang Wang
- Department of Neurology, The Affiliated Jiangyin People's Hospital of Southeast University Medical College, Wuxi, China
| | - Gangtao Xu
- Department of Physical Medicine and Rehabilitation, Jiangyin Fifth People's Hospital, Wuxi, China
| | - Dinghua Liu
- Department of Neurology, The Affiliated Jiangyin People's Hospital of Southeast University Medical College, Wuxi, China
| |
Collapse
|
3
|
Yılmaz B, Çakmak Genç G, Karakaş Çelik S, Pişkin N, Horuz E, Dursun A. The 3'UTR region of the DNA repair gene PARP-1 May increase the severity of COVID-19 by altering the binding of antiviral miRNAs. Virology 2023; 583:29-35. [PMID: 37087842 PMCID: PMC10110933 DOI: 10.1016/j.virol.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
COVID-19 may cause the release of systemic inflammatory cytokines resulting in severe inflammation. PARP-1 has been identified as a nuclear enzyme that is activated by DNA strand breaks. It has been suggested that PARP-1 has a role in the cytokine storm shown as a cause of mortality in COVID-19, and its inhibition may adversely affect the replication of SARS -CoV-2. We aimed to investigate the relationship between PARP-1 gene polymorphisms and the clinical severity of COVID-19. rs8679 TT genotype was found to increase with the COVID-19 disease severity. The 3'UTR polymorphism rs8679 may cause PARP-1 activity as a result of viral replication increase by changing the binding site of antiviral or anti-inflammatory miRNAs. PARP-1 may affect the severity of COVID-19 by cytokine release and maybe a possible treatment target.
Collapse
Affiliation(s)
- Büşra Yılmaz
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey.
| | - Güneş Çakmak Genç
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Sevim Karakaş Çelik
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Nihal Pişkin
- Department of Infectious Disease, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Emre Horuz
- Department of Infectious Disease, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ahmet Dursun
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
4
|
Rosic J, Miladinov M, Dragicevic S, Eric K, Bogdanovic A, Krivokapic Z, Nikolic A. Genetic analysis and allele-specific expression of SMAD7 3'UTR variants in human colorectal cancer reveal a novel somatic variant exhibiting allelic imbalance. Gene 2023; 859:147217. [PMID: 36690223 DOI: 10.1016/j.gene.2023.147217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Considering the impact of SMAD7 deregulation in colorectal cancer (CRC) progression and the significance of single nucleotide variant (SNV)-mediated disruptions of microRNA (miRNA)-dependent regulation for cancer susceptibility, our study aimed to analyze genetic variation in the SMAD7 3' untranslated region ( 3'UTR) in CRC, measure differences in allelic mRNA expression, and evaluate its interference with miRNA-mediated post-transcriptional regulation. PATIENTS AND METHODS This study included 80 patients with different CRC stages and six human colon cancer cell lines of various histological origins. SMAD7 3'UTR was analyzed by direct sequencing, followed by the relative quantification of differential allelic expression of detected variants by allele-specific qRT-PCR. In silico tools were employed for predictions of regulatory consequences of detected variants. RESULTS A total of four different SNVs in one cell line and nine patients were found, among which were a novel somatic point variant and three already known germline variants (rs16950113, rs1050799536, and rs1043778717). All evaluated SNVs exhibited variable extents of allelic imbalance in expression. In silico analysis predicted significant effects of SNVs on miRNA binding efficiency, with each SNV disrupting existing and creating new target sites for one or more miRNAs. CONCLUSION Imbalance observed in the expression of SNV alleles altering miRNA binding suggests that all investigated SNVs are potential contributing factors impacting SMAD7 expression regulation in CRC that further studies should investigate.
Collapse
Affiliation(s)
- Jovana Rosic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Marko Miladinov
- Clinic for Digestive Surgery - First Surgical Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Sandra Dragicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Eric
- Department of Patohistology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandar Bogdanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Digestive Surgery - First Surgical Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Zoran Krivokapic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Digestive Surgery - First Surgical Clinic, University Clinical Center of Serbia, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Zhao J, Zhao T. A functional polymorphism in the poly(ADP-ribose) polymerase-1 gene increases the risk of endometrial carcinoma. J OBSTET GYNAECOL 2022; 42:3299-3303. [PMID: 36006023 DOI: 10.1080/01443615.2022.2114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this study was to investigate the effects of two functional genetic polymorphisms in the poly(ADP-ribose) polymerase-1 (PARP-1) gene on the risk of endometrial carcinoma (EC). Genotypes of the rs1136410 and rs8679 polymorphisms were determined by polymerase chain reaction and ligase detection reaction in 327 EC patients and 329 controls. The results showed that there were significant differences in the genotype distributions of rs1136410 between cases and controls. Women carrying the rs1136410 CC genotype had a significantly increased risk of EC compared to those with the rs1136410 TT genotype (OR = 1.73, 95% CI = 1.10-2.72, p = .018). After adjustment for clinical characteristics, the rs1136410 CC genotype still significantly increased the risk of EC (adjusted OR = 1.83, 95% CI = 1.09-3.07, p = .021). However, no significant difference was observed in the genotype frequencies of rs8679 between cases and controls. This study indicated that rs1136410 was related to the risk of developing EC, and the CC genotype of rs1136410 may be a risk factor for EC in the northern Chinese population.IMPACT STATEMENTWhat is already known on this subject? Genetic variations in the PARP-1 gene may affect protein function and hence reduce DNA repair capacity, leading to the accumulation of DNA damage and a subsequent increased probability of tumorigenesis. Previous studies have shown that polymorphisms of the PARP-1 gene are associated with the risk of various carcinomas, including breast cancer, lung cancer, thyroid cancer, colorectal cancer, and oral squamous cell carcinoma.What do the results of this study add? Our results suggest that the rs1136410 polymorphism of PARP-1 was related to the risk of developing endometrial carcinoma, and the CC genotype of rs1136410 may be a risk factor for endometrial carcinoma in the northern Chinese population.What are the implications of these findings for clinical practice and/or further research? The new genetic marker may help to identify genetic basis of endometrial carcinoma, and develop gene-targeted therapies for endometrial carcinoma.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Gynecology, the People's Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, P.R. China
| | - Tao Zhao
- Department of Gynecology, the People's Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
6
|
Bendova P, Pardini B, Susova S, Rosendorf J, Levy M, Skrobanek P, Buchler T, Kral J, Liska V, Vodickova L, Landi S, Soucek P, Naccarati A, Vodicka P, Vymetalkova V. Genetic variations in microRNA-binding sites of solute carrier transporter genes as predictors of clinical outcome in colorectal cancer. Carcinogenesis 2021; 42:378-394. [PMID: 33319241 DOI: 10.1093/carcin/bgaa136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
One of the principal mechanisms of chemotherapy resistance in highly frequent solid tumors, such as colorectal cancer (CRC), is the decreased activity of drug transport into tumor cells due to low expression of important membrane proteins, such as solute carrier (SLC) transporters. Sequence complementarity is a major determinant for target gene recognition by microRNAs (miRNAs). Single-nucleotide polymorphisms (SNPs) in target sequences transcribed into messenger RNA may therefore alter miRNA binding to these regions by either creating a new site or destroying an existing one. miRSNPs may explain the modulation of expression levels in association with increased/decreased susceptibility to common diseases as well as in chemoresistance and the consequent inter-individual variability in drug response. In the present study, we investigated whether miRSNPs in SLC transporter genes may modulate CRC susceptibility and patient's survival. Using an in silico approach for functional predictions, we analyzed 26 miRSNPs in 9 SLC genes in a cohort of 1368 CRC cases and 698 controls from the Czech Republic. After correcting for multiple tests, we found several miRSNPs significantly associated with patient's survival. SNPs in SLCO3A1, SLC22A2 and SLC22A3 genes were defined as prognostic factors in the classification and regression tree analysis. In contrast, we did not observe any significant association between miRSNPs and CRC risk. To the best of our knowledge, this is the first study investigating miRSNPs potentially affecting miRNA binding to SLC transporter genes and their impact on CRC susceptibility or patient's prognosis.
Collapse
Affiliation(s)
- Petra Bendova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic.,Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Barbara Pardini
- IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Susova
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Srobarova, Prague, Czech Republic
| | - Jachym Rosendorf
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Miloslav Levy
- Department of Surgery, Thomayer University Hospital, Videnska, Prague, Czech Republic
| | - Pavel Skrobanek
- Department of Oncology, Thomayer Hospital, Videnska, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Thomayer Hospital, Videnska, Prague, Czech Republic
| | - Jan Kral
- Institute for Clinical and Experimental Medicine, IKEM, Prague, Czech Republic
| | - Vaclav Liska
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic.,Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Via Derna, Pisa, Italy
| | - Pavel Soucek
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Srobarova, Prague, Czech Republic
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic.,Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic.,Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| |
Collapse
|
7
|
Association analysis of miRNA-related genetic polymorphisms in miR-143/145 and KRAS with colorectal cancer susceptibility and survival. Biosci Rep 2021; 41:228219. [PMID: 33825830 PMCID: PMC8062955 DOI: 10.1042/bsr20204136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background: There is accumulating evidence of aberrant expression of miR-143 and miR-145 and their target gene KRAS in colorectal cancer (CRC). We hypothesize that single nucleotide polymorphisms (SNPs) within or near mRNA–microRNA (miRNA) binding sites may affect miRNA/target gene interaction, resulting in differential mRNA/protein expression and promoting the development and progression of CRC. Methods: We conducted a case–control study of 507 patients with CRC recruited from a tertiary hospital and 497 population-based controls to assess the association of genetic polymorphisms in miR-143/145 and the KRAS 3′ untranslated region (3′UTR) with susceptibility to CRC and patients’ survival. In addition, genetic variations of genomic regions located from 500 bp upstream to 500 bp downstream of the miR-143/miR-145 gene and the 3′UTR of KRAS were selected for analysis using the Haploview and HaploReg software. Results: Using publicly available expression profiling data, we found that miR-143/145 and KRAS expression were all reduced in rectal cancer tissue compared with adjacent non-neoplastic large intestinal mucosa. The rs74693964 C/T variant located 65 bp downstream of miR-145 genomic regions was observed to be associated with susceptibility to CRC (adjusted odds ratio (OR): 2.414, 95% CI: 1.385–4.206). Cumulative effects of miR-143 and miR-145 on CRC risk were observed (Ptrend=0.03). Patients having CRC carrying variant genotype TT of KRAS rs712 had poorer survival (log-rank P=0.044, adjusted hazard ratio (HR): 4.328, 95% CI: 1.236–15.147). Conclusions: Our results indicate that miRNA-related polymorphisms in miR-143/145 and KRAS are likely to be deleterious and represent potential biomarkers for susceptibility to CRC and patients’ survival.
Collapse
|
8
|
Takemura M, Bowden N, Lu YS, Nakato E, O'Connor MB, Nakato H. Drosophila MOV10 regulates the termination of midgut regeneration. Genetics 2021; 218:6156853. [PMID: 33693718 DOI: 10.1093/genetics/iyab031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms by which stem cell proliferation is precisely controlled during the course of regeneration are poorly understood. Namely, how a damaged tissue senses when to terminate the regeneration process, inactivates stem cell mitotic activity, and organizes ECM integrity remain fundamental unanswered questions. The Drosophila midgut intestinal stem cell (ISC) offers an excellent model system to study the molecular basis for stem cell inactivation. Here, we show that a novel gene, CG6967 or dMOV10, is induced at the termination stage of midgut regeneration, and shows an inhibitory effect on ISC proliferation. dMOV10 encodes a putative component of the microRNA (miRNA) gene silencing complex (miRISC). Our data, along with previous studies on the mammalian MOV10, suggest that dMOV10 is not a core member of miRISC, but modulates miRISC activity as an additional component. Further analyses identified direct target mRNAs of dMOV10-containing miRISC, including Daughter against Dpp (Dad), a known inhibitor of BMP/TGF-β signaling. We show that RNAi knockdown of Dad significantly impaired ISC division during regeneration. We also identified six miRNAs that are induced at the termination stage and their potential target transcripts. One of these miRNAs, mir-1, is required for proper termination of ISC division at the end of regeneration. We propose that miRNA-mediated gene regulation contributes to the precise control of Drosophila midgut regeneration.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nanako Bowden
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yi-Si Lu
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Zhou R, Li Y, Wang N, Niu C, Huang X, Cao S, Huo X. PARP1 rs1136410 C/C genotype associated with an increased risk of esophageal cancer in smokers. Mol Biol Rep 2021; 48:1485-1491. [PMID: 33528729 DOI: 10.1007/s11033-021-06169-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/15/2021] [Indexed: 01/17/2023]
Abstract
DNA repair system plays a crucial role in maintaining genomic integrity and stability and in protecting against cancer. Poly(ADP-ribose) polymerase 1 (PARP1) functions as a key enzyme in the base excision repair (BER) pathway. Single nucleotide polymorphism (SNP) that could affect the function or expression of PARP1 gene might be associated with the risk of cancer. This study was designed to evaluate the association between PARP1 SNPs and the susceptibility to esophageal squamous cell carcinoma (ESCC) in a population from Cixian, a high incidence region from northern China. In 574 ESCC patients and 577 controls, PARP1 rs1136410 and rs8679 SNPs were genotyped by polymerase chain reaction ligase detection reaction (PCR-LDR) method. Upper gastrointestinal cancer (UGIC) family history enhanced the risk of ESCC (the sex-, age- and smoking status-adjusted OR 1.355, 95% CI 1.071-1.715). Overall, rs1136410 and rs8679 SNPs did not modify the risk of ESCC. When stratified by sex, age, smoking status and UGIC family history, the rs1136410 C/C genotype was associated with an increased risk of ESCC in smokers compared to T/T or T/C genotype (the sex-, age- and UGIC family history-adjusted OR 1.696, 95% CI 1.032-2.787). In Cixian high incidence region from northern China, smokers with rs1136410 C/C genotype might have higher susceptibility to ESCC than those with T/T or T/C genotype. These high-risk individuals receiving periodic upper gastrointestinal fiber tests might facilitate early detection and early treatment of ESCC.
Collapse
Affiliation(s)
- Rongmiao Zhou
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei Province, China.
| | - Yan Li
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei Province, China
| | - Na Wang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei Province, China
| | - Chaoxu Niu
- Department of Surgery, Shijiazhuang Ping'an Hospital, 48 Cangfeng Road, Shijiazhuang, 050051, Hebei Province, China
| | - Xi Huang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei Province, China
| | - Shiru Cao
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei Province, China
| | - Xiangran Huo
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei Province, China
| |
Collapse
|
10
|
The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction. Cancers (Basel) 2021; 13:cancers13030479. [PMID: 33513745 PMCID: PMC7865496 DOI: 10.3390/cancers13030479] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.
Collapse
|
11
|
Zhao J, Wu J, Zuo W, Kang S, Li Y. A functional polymorphism in the poly(ADP-ribose) polymerase-1 gene is associated with platinum-based chemotherapeutic response and prognosis in epithelial ovarian cancer patients. Eur J Obstet Gynecol Reprod Biol 2020; 255:183-189. [PMID: 33147530 DOI: 10.1016/j.ejogrb.2020.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To explore the effects of two functional genetic variants of poly(ADP-ribose) polymerase-1 (PARP-1) on the susceptibility to epithelial ovarian cancer (EOC), the platinum-based chemotherapeutic response, and the prognosis of northern Chinese patients. STUDY DESIGN This case-control study included 710 EOC patients in the case group and 700 healthy women in the control group. Two polymorphisms (rs1136410 and rs8679) of PARP-1 were genotyped by polymerase chain reaction and ligase detection reaction. RESULTS The genotype frequencies of rs1136410 and rs8679 were not significantly different between the case and control groups. However, the CC genotype of rs1136410 was significantly associated with a favorable response to platinum drugs. Compared with the TT genotype, the CC genotype of rs1136410 was related to a reduced risk of platinum resistance (adjusted OR: 0.40; 95% CI = 0.24-0.67; P = 0.001). In addition, multivariable analysis containing clinical variables showed that patients who carried the rs1136410 CC genotype had a significantly improved progression-free survival compared with patients who carried the TT genotype (HR = 0.67, 95% CI = 0.47-0.97, P = 0.031). CONCLUSION The rs1136410 polymorphism may serve as a potential marker for predicting the response to platinum agents and prognosis of EOC patients treated with surgery and platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China; Department of Gynecology, the First Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Jianlei Wu
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Weiwei Zuo
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Shan Kang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China.
| | - Yan Li
- Department of Molecular Biology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China.
| |
Collapse
|
12
|
Gholami M, Zoughi M, Larijani B, M Amoli M, Bastami M. An in silico approach to identify and prioritize miRNAs target sites polymorphisms in colorectal cancer and obesity. Cancer Med 2020; 9:9511-9528. [PMID: 33073494 PMCID: PMC7774712 DOI: 10.1002/cam4.3546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) and obesity are linked clinical entities with a series of complex processes being engaged in their development. MicroRNAs (miRNAs) participate in these processes through regulating CRC and obesity‐related genes. This study aimed to develop an in silico approach to systematically identify and prioritize miRNAs target sites polymorphisms in obesity and CRC. Data from genome‐wide association studies (GWASs) were used to retrieve CRC and obesity‐associated variants. The polymorphisms that were resided in experimentally verified or computationally predicted miRNA target sites were retrieved and prioritized using a range of bioinformatics analyses. We found 6284 CRC and 38931 obesity unique variants. For CRC 33 haplotypes variants in 134 interactions were in miRNA targetome, while for obesity we found more than 935 unique interactions. Functionally prioritized SNPs revealed that, SNPs in 153 obesity and 50 CRC unique interactions were have disruptive effects on miRNA:mRNA integration by changing on target RNA secondary structure. Structural accessibility of target sites were decreased in 418 and 103 unique interactions and increased in 516 and 79 interactions, for obesity and CRC, respectively. The miRNA:mRNA hybrid stability was increased in 127 and 17 unique interactions and decreased in 33 and 24 interactions for the effect of obesity and CRC SNPs, respectively. In this study, seven SNPs with 15 interactions and three SNPs with four interactions were prioritized for obesity and CRC, respectively. These SNPs could be used for future studies for finding potential biomarkers for diagnoses, prognosis, or treatment of CRC and obesity.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Zoughi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Zhou RM, Li Y, Wang N, Niu CX, Huang X, Cao SR, Huo XR. PARP1 Gene Polymorphisms and the Prognosis of Esophageal Cancer Patients from Cixian High-Incidence Region in Northern China. Asian Pac J Cancer Prev 2020; 21:2987-2992. [PMID: 33112558 PMCID: PMC7798169 DOI: 10.31557/apjcp.2020.21.10.2987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Objective: Poly (ADP-ribose) polymerase 1 (PARP1), as a key enzyme in the base excision repair pathway, plays a crucial role in tumorigenesis and progression. This study aimed to assess whether polymorphisms of PARP1 gene could be used as predictive biomarkers for the survival of esophageal squamous cell carcinoma (ESCC) patients from Cixian high-incidence region in northern China. Methods: In 203 ESCC patients with survival information, PARP1 rs1136410 T/C and rs8679 T/C single nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction ligase detection reaction (PCR-LDR) method. All statistical analyses were performed using the SPSS ver. 22.0 software package (SPSS, Chicago, IL, USA). Results: The mean age ± standard deviation of the ESCC patients was 60.4 ± 7.9 years. There was no significant relation of sex, age, smoking status and upper gastrointestinal cancer family history with the survival time of the ESCC patients. The mean survival time of rs1136410 T/T, T/C and C/C genotype carriers were 43.3, 42.3 and 46.6 months, respectively. The rs1136410 was not associated with the survival time of the ESCC patients. For rs8679, the mean survival time of T/T genotype carriers was 43.7 months, which was not significantly different from that of the patients with T/C genotype (42.1 months). Conclusion: In Cixian high-incidence region from northern China, rs1136410 and rs8679 SNPs might not be used to predict survival of ESCC patients. There is a need to explore whether other SNPs of PARP1 gene have an effect on prognosis of ESCC patients.
Collapse
Affiliation(s)
- Rong-Miao Zhou
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Hebei Province, China
| | - Yan Li
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Hebei Province, China
| | - Na Wang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Hebei Province, China
| | - Chao-Xu Niu
- Department of Surgery, Shijiazhuang Ping'an Hospital, Hebei Province, China
| | - Xi Huang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Hebei Province, China
| | - Shi-Ru Cao
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Hebei Province, China
| | - Xiang-Ran Huo
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Hebei Province, China
| |
Collapse
|
14
|
Vymetalkova V, Rosa F, Susova S, Bendova P, Levy M, Buchler T, Kral J, Bartu L, Vodickova L, Hughes DJ, Soucek P, Naccarati A, Kumar R, Vodicka P, Pardini B. Expression quantitative trait loci in ABC transporters are associated with survival in 5-FU treated colorectal cancer patients. Mutagenesis 2020; 35:273-281. [DOI: 10.1093/mutage/gez050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
The chemotherapeutic efficacy in colorectal cancer (CRC) is limited due to the inter-individual variability in drug response and the development of tumour resistance. ATP-binding cassette (ABC) transporters are crucial in the development of resistance by the efflux of anticancer agents from cancer cells. In this study, we identified 14 single nucleotide polymorphisms (SNPs) in 11 ABC transporter genes acting as an expression of quantitative trait loci (eQTLs), i.e. whose variation influence the expression of many downstream genes. These SNPs were genotyped in a case–control study comprising 1098 cases and 1442 healthy controls and analysed in relation to CRC development risk and patient survival. Considering a strict correction for multiple tests, we did not observe any significant association between SNPs and CRC risk. The rs3819720 polymorphism in the ABCB3/TAP2 gene was statistically significantly associated with shorter overall survival (OS) in the codominant, and dominant models [GA vs. GG, hazard ratio (HR) = 1.48; P = 0.002; AA vs. GG, HR = 1.70; P = 0.004 and GA + AA vs. GG, HR = 1.52; P = 0.0006]. Additionally, GA carriers of the same SNP displayed worse OS after receiving 5-FU based chemotherapy. The variant allele of rs3819720 polymorphism statistically significantly affected the expression of 36 downstream genes. Screening for eQTL polymorphisms in relevant genes such as ABC transporters that can regulate the expression of several other genes may help to identify the genetic background involved in the individual response to the treatment of CRC patients.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Fabio Rosa
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
| | - Simona Susova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Petra Bendova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Jan Kral
- Institute for Clinical and Experimental Medicine, IKEM, Prague, Czech Republic
| | - Linda Bartu
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology
- Division of Functional Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Barbara Pardini
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
15
|
APC gene 3'UTR SNPs and interactions with environmental factors are correlated with risk of colorectal cancer in Chinese Han population. Biosci Rep 2020; 40:222328. [PMID: 32159210 PMCID: PMC7087318 DOI: 10.1042/bsr20192429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 11/29/2022] Open
Abstract
Objective: To study the correlation between adenomatous polyposis coli (APC) gene 3′ untranslated region (UTR) single nucleotide polymorphisms (SNPs) and their interactions with environmental factors and the risk of colorectal cancer (CRC) in a Chinese Han population. Methods: Genotypes of APC gene 3′UTR rs1804197, rs41116, rs448475, and rs397768 loci in 340 Chinese Han patients with CRC and 340 healthy controls were analyzed. All patients with CRC were analyzed for progression-free survival (PFS) during a 3-year follow-up. Results: The risk of CRC in subjects carrying the APC gene rs1804197 A allele was 2.95-times higher than for the C allele carriers. The interactions of the rs1804197 SNP with body mass index (BMI) and smoking were associated with the risk of CRC. The risk of CRC in the APC gene rs397768 G allele carriers was 1.68-times higher than in the A allele carriers. The interaction between the rs397768 locus SNP and gender was also associated with the risk of CRC. The 3-year PFS of patients with APC gene rs1804197 AA genotype, CA genotype, and CC genotype CRC decreased in this order, with significant difference. In addition, the 3-year PFS of rs397768 locus GG genotype, AG genotype, and AA genotype CRC patients decreased in this order, and the difference was significant. Conclusion: The rs1804197 locus in the 3′UTR region of the APC gene and its interactions with BMI and smoking are associated with the risk of CRC in a Chinese Han population. In addition, the interaction between rs397768 locus SNP and gender is related to the risk of CRC.
Collapse
|
16
|
Gholami M, Larijani B, Sharifi F, Hasani‐Ranjbar S, Taslimi R, Bastami M, Atlasi R, Amoli MM. MicroRNA-binding site polymorphisms and risk of colorectal cancer: A systematic review and meta-analysis. Cancer Med 2019; 8:7477-7499. [PMID: 31637880 PMCID: PMC6885874 DOI: 10.1002/cam4.2600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic variations in miRNAs binding site might participate in cancer risk. This study aimed to systematically review the association between miRNA-binding site polymorphisms and colorectal cancer (CRC). Electronic literature search was carried out on PubMed, Web of Science (WOS), Scopus, and Embase. All types of observational studies till 30 November 2018 were included. Overall 85 studies (21 SNPs) from two systematic searches were included analysis. The results showed that in the Middle East population, the minor allele of rs731236 was associated with decreased risk of CRC (heterozygote model: 0.76 [0.61-0.95]). The minor allele of rs3025039 was related to increased risk of CRC in East Asian population (allelic model: 1.25 [1.01-1.54]). Results for rs3212986 were significant in overall and subgroup analysis (P < .05). For rs1801157 in subgroup analysis the association was significant in Asian populations (including allelic model: 2.28 [1.11-4.69]). For rs712, subgroup analysis revealed a significant (allelic model: 1.41 [1.23-1.61]) and borderline (allelic model: 0.92 [0.84-1.00]) association in Chinese and Czech populations, respectively. The minor allele of rs17281995 increased risk of CRC in different genetic models (P < .05). Finally, rs5275, rs4648298, and rs61764370 did not show significant associations. In conclusion, minor allele of rs3025039, rs3212986, and rs712 polymorphisms increases the risk of CRC in the East Asian population, and heterozygote model of rs731236 polymorphism shows protective effect in the Middle East population. In Europeans, the minor allele of rs17281995 may increase the risk of CRC, while rs712 may have a protective effect. Further analysis based on population stratifications should be considered in future studies.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Farshad Sharifi
- Elderly Health Research CenterEndocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Shirin Hasani‐Ranjbar
- Obesity and Eating Habits Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Reza Taslimi
- Department of GastroenterologyImam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Milad Bastami
- Department of Medical GeneticsFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Rasha Atlasi
- Evidence Based Practice Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
17
|
Zhou L, Dong S, Deng Y, Yang P, Zheng Y, Yao L, Zhang M, Yang S, Wu Y, Zhai Z, Li N, Kang H, Dai Z. GOLGA7 rs11337, a Polymorphism at the MicroRNA Binding Site, Is Associated with Glioma Prognosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:56-65. [PMID: 31525662 PMCID: PMC6745486 DOI: 10.1016/j.omtn.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/25/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs bind to the 3' untranslated regions of mRNAs, affecting translation, tumorigenesis, and apoptosis. This study evaluated the role of TYMS (rs1059394, C > T, and rs2847153, G > A), RYR3 (rs1044129, G > A), KIAA0423 (rs1053667, T > C), and GOLGA7 (rs11337, G > T) polymorphisms for assessment of glioma risk and prognosis among the Chinese Han population. Five single-nucleotide polymorphisms were assessed in 605 glioma patients and 1,300 controls. We found a significant correlation between rs1059394 and glioma susceptibility in the homozygote and dominant genetic models (TT versus CC, odds ratio [OR] = 0.71, 95% confidence interval [CI] = 0.52-0.97, p = 0.03; CT+TT versus CC, OR = 0.74, 95% CI = 0.55-0.99, p = 0.04). The results of the Kaplan-Meier and log rank tests revealed that the rs11337 GG genotype correlated with better overall survival of glioma patients (p = 0.017) than the GT genotype. Multivariate Cox regression analysis results also showed that the rs11337 GT genotype correlated with worse overall survival (p = 0.017, hazard ratio [HR] = 1.25, 95% CI = 1.04-1.5) than the GG genotype. These results suggest that GOLGA7 (rs11337) polymorphism may play a role in the prognosis of glioma patients and that TYMS (rs1059394) is associated with glioma risk.
Collapse
Affiliation(s)
- Linghui Zhou
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shanshan Dong
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Li Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ming Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Na Li
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
18
|
Jiraskova K, Hughes DJ, Brezina S, Gumpenberger T, Veskrnova V, Buchler T, Schneiderova M, Levy M, Liska V, Vodenkova S, Di Gaetano C, Naccarati A, Pardini B, Vymetalkova V, Gsur A, Vodicka P. Functional Polymorphisms in DNA Repair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome. Int J Mol Sci 2018; 20:E97. [PMID: 30591675 PMCID: PMC6337670 DOI: 10.3390/ijms20010097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
DNA repair processes are involved in both the onset and treatment efficacy of colorectal cancer (CRC). A change of a single nucleotide causing an amino acid substitution in the corresponding protein may alter the efficiency of DNA repair, thus modifying the CRC susceptibility and clinical outcome. We performed a candidate gene approach in order to analyze the association of non-synonymous single nucleotide polymorphisms (nsSNPs) in the genes covering the main DNA repair pathways with CRC risk and clinical outcome modifications. Our candidate polymorphisms were selected according to the foremost genomic and functional prediction databases. Sixteen nsSNPs in 12 DNA repair genes were evaluated in cohorts from the Czech Republic and Austria. Apart from the tumor-node-metastasis (TNM) stage, which occurred as the main prognostic factor in all of the performed analyses, we observed several significant associations of different nsSNPs with survival and clinical outcomes in both cohorts. However, only some of the genes (REV3L, POLQ, and NEIL3) were prominently defined as prediction factors in the classification and regression tree analysis; therefore, the study suggests their association for patient survival. In summary, we provide observational and bioinformatics evidence that even subtle alterations in specific proteins of the DNA repair pathways may contribute to CRC susceptibility and clinical outcome.
Collapse
Affiliation(s)
- Katerina Jiraskova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Tanja Gumpenberger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic.
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic.
| | - Michaela Schneiderova
- Department of Surgery, General University Hospital in Prague, U Nemocnice 499/2, 128 08 Prague, Czech Republic.
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Thomayerova 815/5, 140 00 Prague, Czech Republic.
| | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
- Department of Surgery, Medical School in Pilsen, Charles University, Alej svobody 80, 304 600 Pilsen, Czech Republic.
| | - Sona Vodenkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 2411/87, 100 00 Prague, Czech Republic.
| | - Cornelia Di Gaetano
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy.
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy.
| | - Barbara Pardini
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy.
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Veronika Vymetalkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Pavel Vodicka
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| |
Collapse
|
19
|
The association between rs16917496 T/C polymorphism of SET8 gene and cancer risk in Asian populations: a meta-analysis. Biosci Rep 2018; 38:BSR20180702. [PMID: 30341251 PMCID: PMC6239252 DOI: 10.1042/bsr20180702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 01/03/2023] Open
Abstract
Epidemiological studies have demonstrated close associations between SET8 rs16917496 T/C polymorphism and cancer risk, but the results of published studies were not consistent. We therefore performed this meta-analysis to explore the associations between rs16917496 T/C polymorphism and cancer risk. Five online databases were searched. Odds ratios (ORs) with a 95% confidence interval (CI) were calculated to assess the association between rs16917496 T/C polymorphism and cancer risk. In addition, heterogeneity, accumulative, sensitivity analysis, and publication bias were conducted to check the statistical power. Overall, 13 publications involving 5878 subjects were identified according to included criteria. No significant cancer risk was observed in genetic model of SET8 rs16917496 T/C polymorphism in Asian populations (C vs. T: OR = 1.04, 95%CI = 0.88–1.23, P = 0.63%; TC vs. TT: OR = 1.17, 95%CI = 0.96–1.24, P = 0.11%; CC vs. TT: OR = 0.90, 95%CI = 0.60–1.37, P = 0.63; TC+CC vs. TT: OR = 1.11, 95%CI = 0.90–1.38, P = 0.33; CC vs. TT+TC: OR = 0.92, 95%CI = 0.65–1.30, P = 0.63). Furthermore, similar associations were found in the subgroup analysis of race diversity, control design, genotyping methods, and different cancer types. In summary, our meta-analysis indicated that the SET8 rs16917496 T/C polymorphism may not play a critical role in cancer development in Asian populations.
Collapse
|
20
|
Han B, Feng D, Yu X, Zhang Y, Liu Y, Zhou L. Identification and Interaction Analysis of Molecular Markers in Colorectal Cancer by Integrated Bioinformatics Analysis. Med Sci Monit 2018; 24:6059-6069. [PMID: 30168505 PMCID: PMC6129036 DOI: 10.12659/msm.910106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is an extremely common gastrointestinal malignancy. MATERIAL AND METHODS Three mRNA and 2 microRNA microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and microRNAs (DEMs) were obtained. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) program was utilized to perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) network analysis was performed with the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape and Molecular Complex Detection (MCODE). Kaplan-Meier curves were plotted to determine overall survival (OS) estimates. DEMs targets were predicted by miRWalk. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was utilized to detect the expression of genes and microRNAs. RESULTS A total of 264 DEGs and 8 DEMs were obtained. GO analysis revealed that the DEGs were enriched in terms of cell structure, digestion, receptor binding, and extracellular material (ECM). KEGG pathway analysis showed that the DEGs were enriched in ECM interaction and mineral absorption. Additionally, a PPI network consisting of 181 nodes and 450 edges was established. Three modules with 38 high-degree hubs were extracted from the PPI network and found to be involved in pathways such as chemokine signaling. Five DEGs located in the network of DEM-DEG pairs were associated with the overall survival of CRC patients. Furthermore, hsa-miR-551b was demonstrated to be significantly down-regulated in CRC tissues. CONCLUSIONS The key biomarkers could provide new clues for CRC.
Collapse
Affiliation(s)
- Bin Han
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland).,Health Service Center of Southeast Community, Nanchong, Sichuan, China (mainland)
| | - Dan Feng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Xin Yu
- Health Service Center of Southeast Community, Nanchong, Sichuan, China (mainland)
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Yuanqi Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
21
|
Han B, Feng D, Yu X, Liu Y, Yang M, Luo F, Zhou L, Liu F. MicroRNA-144 mediates chronic inflammation and tumorigenesis in colorectal cancer progression via regulating C-X-C motif chemokine ligand 11. Exp Ther Med 2018; 16:1935-1943. [PMID: 30186421 PMCID: PMC6122338 DOI: 10.3892/etm.2018.6389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. The aim of the present study was to investigate the expression of microRNA-144 (miR-144) and C-X-C motif chemokine ligand 11 (CXCL11) in CRC and their association. Data from Gene Expression Omnibus (GEO) DataSets were analyzed to obtain the expression profile of CXCL11 in CRC. Subsequently, serum samples were collected from 65 subjects, including 39 patients with CRC and 26 controls; CRC and adjacent normal tissues were collected from all 39 CRC patients and the expression of CXCL11 was measured in these specimens. After searching for the potential regulator of CXCL11 through bioinformatics analysis, the levels of miR-144 in the clinical specimens were also detected. Finally, the regulatory association between miR-144 and CXCL11 was certified via the dual-luciferase reporter assay. Microarray data and bioinformatics analysis demonstrated that CXCL11 was significantly upregulated in CRC tissues and miR-144 was a potential regulator of CXCL11. In line with this finding, the expression of CXCL11 was significantly increased in the serum and tumor samples of patients with CRC, while that of miR-144 was downregulated. Dual-luciferase reporter assay revealed that miR-144 directly targets the 3′-untranslated region of CXCL11 mRNA to regulate its expression. These results demonstrated that enhanced CXCL11 expression in patients with CRC was associated with reduced miR-144 expression. The results of the present study may indicate a novel regulatory role of miR-144 in CRC through CXCL11 downregulation.
Collapse
Affiliation(s)
- Bin Han
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Feng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xin Yu
- Health Service Center of Southeast Community, Nanchong, Sichuan 637000, P.R. China
| | - Yuanqi Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|