1
|
Park S, Lim J, Kim S, Jeon M, Baek H, Park W, Park J, Kim SN, Kang NG, Park CG, Kim JW. Anti-Inflammatory Artificial Extracellular Vesicles with Notable Inhibition of Particulate Matter-Induced Skin Inflammation and Barrier Function Impairment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59199-59208. [PMID: 37983083 DOI: 10.1021/acsami.3c14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Particulate matter (PM) exposure disrupts the skin barrier, causing cutaneous inflammation that may eventually contribute to the development of various skin diseases. Herein, we introduce anti-inflammatory artificial extracellular vesicles (AEVs) fabricated through cell extrusion using the biosurfactant PEGylated mannosylerythritol lipid (P-MEL), hereafter named AEVP-MEL. The P-MEL has anti-inflammatory abilities with demonstrated efficacy in inhibiting the secretion of pro-inflammatory mediators. Mechanistically, AEVP-MEL enhanced anti-inflammatory response by inhibiting the mitogen-activated protein kinase (MAPK) pathway and decreasing the release of inflammatory mediators such as reactive oxygen species (ROS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in human keratinocytes. Moreover, AEVP-MEL promoted increased expression levels of skin barrier proteins (e.g., involucrin, IVL) and water-proteins (e.g., aquaporin 3, AQP3). In vivo studies revealed that repeated PM exposure to intact skin resulted in cutaneous inflammatory responses, including increased skin thickness (hyperkeratosis) and mast cell infiltration. Importantly, our data showed that the AEVP-MEL treatment significantly restored immune homeostasis in the skin affected by PM-induced inflammation and enhanced the intrinsic skin barrier function. This study highlights the potential of the AEVP-MEL in promoting skin health against PM exposure and its promising implications for the prevention and treatment of PM-related skin disorders.
Collapse
Affiliation(s)
- Simon Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minha Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwira Baek
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu 96813, United States
| | - Se Na Kim
- Research and Development Center, MediArk Inc.,Cheongju 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nae-Gyu Kang
- R&D Campus, LG Household & Health Care, Seoul 07795, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Ming Y, Zhou X, Liu G, Abudupataer M, Zhu S, Xiang B, Yin X, Lai H, Sun Y, Wang C, Li J, Zhu K. PM2.5 exposure exacerbates mice thoracic aortic aneurysm and dissection by inducing smooth muscle cell apoptosis via the MAPK pathway. CHEMOSPHERE 2023; 313:137500. [PMID: 36495979 DOI: 10.1016/j.chemosphere.2022.137500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Air pollution is a major public health concern worldwide. Exposure to fine particulate matter (PM2.5) is closely associated with cardiovascular diseases. However, the effect of PM2.5 exposure on thoracic aortic aneurysm and dissection (TAAD) has not been fully elucidated. Diesel exhaust particulate (DEP) is an important component of PM2.5, which causes health effects and is closely related to the incidence of cardiovascular disease. In the current study, we found that DEP exposure increased the incidence of aortic dissection (AD) in β-aminopropionitrile (BAPN)-induced thoracic aortic aneurysm (TAA). In addition, exposure to PM2.5 increased the diameter of the thoracic aorta in mice models. The number of apoptotic cells increased in the aortic wall of PM2.5-treated mice, as did the protein expression level of BAX/Bcl2 and cleaved caspase3/caspase3. Using a rhythmically stretching aortic mechanical simulation model, fluorescent staining indicated that PM2.5 administration could induce mitochondrial dysfunction and increase reactive oxygen species (ROS) levels in human aortic smooth muscle cells (HASMCs). Furthermore, ERK1/2 mitogen-activated protein kinase (MAPK) signaling pathways participated in the apoptosis of HASMCs after PM2.5 exposure. Therefore, we concluded that PM2.5 exposure could exacerbate the progression of TAAD, which could be induced by the increased apoptosis in HASMCs through the ERK1/2 MAPK signaling pathway.
Collapse
Affiliation(s)
- Yang Ming
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Gang Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Mieradilijiang Abudupataer
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Shichao Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Bitao Xiang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiujie Yin
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Cao X, Padoan S, Binder S, Bauer S, Orasche J, Rus CM, Mudan A, Huber A, Kuhn E, Oeder S, Lintelmann J, Adam T, Di Bucchianico S, Zimmermann R. A comparative study of persistent DNA oxidation and chromosomal instability induced in vitro by oxidizers and reference airborne particles. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503446. [PMID: 35151426 DOI: 10.1016/j.mrgentox.2022.503446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Adverse health effects driven by airborne particulate matter (PM) are mainly associated with reactive oxygen species formation, pro-inflammatory effects, and genome instability. Therefore, a better understanding of the underlying mechanisms is needed to evaluate health risks caused by exposure to PM. The aim of this study was to compare the genotoxic effects of two oxidizing agents (menadione and 3-chloro-1,2-propanediol) with three different reference PM (fine dust ERM-CZ100, urban dust SRM1649, and diesel PM SRM2975) on monocytic THP-1 and alveolar epithelial A549 cells. We assessed DNA oxidation by measuring the oxidized derivative 8-hydroxy-2'-deoxyguanosine (8-OHdG) following short and long exposure times to evaluate the persistency of oxidative DNA damage. Cytokinesis-block micronucleus cytome assay was performed to assess chromosomal instability, cytostasis, and cytotoxicity. Particles were characterized by inductively coupled plasma mass spectrometry in terms of selected elemental content, the release of ions in cell medium and the cellular uptake of metals. PM deposition and cellular dose were investigated by a spectrophotometric method on adherent A549 cells. The level of lipid peroxidation was evaluated via malondialdehyde concentration measurement. Despite differences in the tested concentrations, deposition efficiency, and lipid peroxidation levels, all reference PM samples caused oxidative DNA damage to a similar extent as the two oxidizers in terms of magnitude but with different oxidative DNA damage persistence. Diesel SRM2975 were more effective in inducing chromosomal instability with respect to fine and urban dust highlighting the role of polycyclic aromatic hydrocarbons derivatives on chromosomal instability. The persistence of 8-OHdG lesions strongly correlated with different types of chromosomal damage and revealed distinguishing sensitivity of cell types as well as specific features of particles versus oxidizing agent effects. In conclusion, this study revealed that an interplay between DNA oxidation persistence and chromosomal damage is driving particulate matter-induced genome instability.
Collapse
Affiliation(s)
- Xin Cao
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany; Joint Mass Spectrometry Center at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Sara Padoan
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany; Joint Mass Spectrometry Center at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Corina-Marcela Rus
- Joint Mass Spectrometry Center at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Centogene GmbH, Rostock, Germany
| | - Ajit Mudan
- Institute of Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jutta Lintelmann
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Adam
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Chemistry and Environmental Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany; Joint Mass Spectrometry Center at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Fidelis KR, Dos Santos Nunes RG, da Silva CS, Oliveira CVB, Costa AR, de Lima Silva JR, Dos Santos LB, de Oliveira EES, Pereira PS, de Menezes IRA, Kamdem JP, Duarte AE, Pinho AI, Barros LM. Evaluation of the neuroprotective effect of rutin on Drosophila melanogaster about behavioral and biochemical aspects induced by mercury chloride (HgCl 2). Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109119. [PMID: 34182094 DOI: 10.1016/j.cbpc.2021.109119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Mercury chloride (HgCl2) acts as a bioaccumulator capable of causing numerous neurological and physiological changes in organisms in a negative way. However, rutin has been considered a very effective antioxidant compound in the treatment of neurodegenerative diseases, as it can neutralize radicals capable of damaging neuronal cells. In this context, this study aimed to evaluate rutin as a neoprotective agent against the damage induced by HgCl2 in Drosophila melanogaster. The exposure of the flies to the agents was carried out in triplicate, and about 150 adult flies were evaluated. To assess the antioxidant action of rutin, MTT, phenanthroline, nitric oxide, total thiols and NPSH tests were carried out in the following concentrations: Control (1500 μL of distilled water), 1 mg/g of HgCl2, 0.5 mg/g of Rutin + HgCl2, 1 mg/g of Rutin + HgCl2, 2 mg/g of Rutin + HgCl2. The locomotion test was verified by negative geotaxis, the result of which showed that flies exposed to HgCl2 had difficulties in flight. The group treated with HgCl2 alone had a high mortality rate, while in combination with different concentrations of rutin, it heard a moderate reduction in the number of deaths, as well as in the negative geotaxis data in which the rutin had a positive effect. An increase in iron (II) levels was observed at the highest concentrations of rutin, while at low concentrations, rutin significantly decreased nitric oxide levels. The HgCl2 + R group (2 mg/g) showed a significant increase in the total thiols content, while for the NPSH all rutin concentrations showed a significant increase in the levels of non-protein thiols. Our results demonstrate that mercury chloride can cause oxidative stress in D. melanogaster. However, the results suggest that rutin has antioxidant and protective effects against the damage caused by HgCl2.
Collapse
Affiliation(s)
- Kleber Ribeiro Fidelis
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ricardo Gomes Dos Santos Nunes
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Postgraduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Adrielle Rodrigues Costa
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | | | | | - Pedro Silvino Pereira
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | - Jean Paul Kamdem
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | - Antônia Eliene Duarte
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Department of Biological Sciences, University of Regional Cariri, Crato, CE, Brazil
| | | | - Luiz Marivando Barros
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Department of Biological Sciences, University of Regional Cariri, Crato, CE, Brazil.
| |
Collapse
|
5
|
Rossner P, Cervena T, Vojtisek-Lom M, Neca J, Ciganek M, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Sima M, Simova Z, Holan V, Beranek V, Pechout M, Macoun D, Rossnerova A, Topinka J. Markers of lipid oxidation and inflammation in bronchial cells exposed to complete gasoline emissions and their organic extracts. CHEMOSPHERE 2021; 281:130833. [PMID: 34015653 DOI: 10.1016/j.chemosphere.2021.130833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Road traffic emissions consist of gaseous components, particles of various sizes, and chemical compounds that are bound to them. Exposure to vehicle emissions is implicated in the etiology of inflammatory respiratory disorders. We investigated the inflammation-related markers in human bronchial epithelial cells (BEAS-2B) and a 3D model of the human airways (MucilAir™), after exposure to complete emissions and extractable organic matter (EOM) from particles generated by ordinary gasoline (E5), and a gasoline-ethanol blend (E20; ethanol content 20% v/v). The production of 22 lipid oxidation products (derivatives of linoleic and arachidonic acid, AA) and 45 inflammatory molecules (cytokines, chemokines, growth factors) was assessed after days 1 and 5 of exposure, using LC-MS/MS and a multiplex immunoassay, respectively. The response observed in MucilAir™ exposed to E5 gasoline emissions, characterized by elevated levels of pro-inflammatory AA metabolites (prostaglandins) and inflammatory markers, was the most pronounced. E20 EOM exposure was associated with increased levels of AA metabolites with anti-inflammatory effects in this cell model. The exposure of BEAS-2B cells to complete emissions reduced lipid oxidation, while E20 EOM tended to increase concentrations of AA metabolite and chemokine production; the impacts on other inflammatory markers were limited. In summary, complete E5 emission exposure of MucilAir™ induces the processes associated with the pro-inflammatory response. This observation highlights the potential negative health impacts of ordinary gasoline, while the effects of alternative fuel are relatively weak.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague, Czech Republic.
| | - Michal Vojtisek-Lom
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00, Prague, Czech Republic.
| | - Jiri Neca
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00, Brno, Czech Republic.
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00, Brno, Czech Republic.
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Antonin Ambroz
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Zuzana Novakova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Fatima Elzeinova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Vit Beranek
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00, Prague, Czech Republic.
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21, Prague, Czech Republic.
| | - David Macoun
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21, Prague, Czech Republic.
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
6
|
Ain NU, Qamar SUR. Particulate Matter-Induced Cardiovascular Dysfunction: A Mechanistic Insight. Cardiovasc Toxicol 2021; 21:505-516. [PMID: 33886046 DOI: 10.1007/s12012-021-09652-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Air pollution and particulate matter (PM) are significant factors for adverse health effects most prominently cardiovascular disease (CVD). PM is produced from various sources, which include both natural and anthropogenic. It is composed of biological components, organic compounds, minerals, and metals, which are responsible for inducing inflammation and adverse health effects. However, the adverse effects are related to PM size distribution. Finer particles are a significant cause of cardiovascular events. This review discusses the direct and indirect mechanisms of PM-induced CVD like myocardial infarction, the elevation of blood pressure, cardiac arrhythmias, atherosclerosis, and thrombosis. The two potential mechanisms are oxidative stress and systemic inflammation. Prenatal exposure has also been linked with cardiovascular outcomes later in life. Moreover, we also mentioned the epidemiological studies that strongly associate PM with CVD.
Collapse
Affiliation(s)
- Noor Ul Ain
- Departmetnt of Environmental Sciences, Fatima Jinnah Women University, The Mall Road, Kachari Chowk, Rawalpindi, 46000, Pakistan
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Safi Ur Rehman Qamar
- Integrated Genomics, Cellular, Developmental, and Biotechnology Laboratory (IGCDBL), University of Agriculture, Faisalabad, Punjab, 38000, Pakistan.
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand.
| |
Collapse
|
7
|
Rossner P, Libalova H, Vrbova K, Cervena T, Rossnerova A, Elzeinova F, Milcova A, Novakova Z, Topinka J. Genotoxicant exposure, activation of the aryl hydrocarbon receptor, and lipid peroxidation in cultured human alveolar type II A549 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 853:503173. [DOI: 10.1016/j.mrgentox.2020.503173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 01/06/2023]
|
8
|
Cervena T, Vrbova K, Rossnerova A, Topinka J, Rossner P. Short-term and Long-term Exposure of the MucilAir™ Model to Polycyclic Aromatic Hydrocarbons. Altern Lab Anim 2019; 47:9-18. [PMID: 31237164 DOI: 10.1177/0261192919841484] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells grown in monocultures are widely used to model lung tissue. As a result of these culture conditions, these cells exhibit poor morphological similarity to those present in in vivo lung tissue. MucilAir™, a 3-D in vitro model comprising human basal, goblet and ciliated cells, represents a fully differentiated respiratory epithelium that can be used as an alternative and a more realistic system. The aim of our study was to compare the effects of short-term and long-term exposure to two polycyclic aromatic hydrocarbons (PAHs) - benzo[a]pyrene (B[a]P) and 3-nitrobenzanthrone (3-NBA) - using MucilAir as a model of human lung tissue. Two concentrations (0.1 μM and 1 μM) were tested at three time points (24 hours, 7 days and 28 days). Several aspects were assessed: cytotoxicity (lactate dehydrogenase (LDH) release), integrity of the cell layer (transepithelial electrical resistance (TEER)), induction of oxidative stress (reactive oxygen species production) and changes in the expression of selected genes involved in PAH metabolism (CYP1A1 and AKR1C2) and the antioxidant response (ALDH3A1, SOD1, SOD2, GPX1, CAT, HMOX1 and TXNRD1). The results showed that exposure to B[a]P caused a spike in LDH release at day 5. Exposure to 3-NBA caused a number of spikes in LDH release, starting at day 5, and a decrease in TEER after 11 days. CYP1A1 gene expression was upregulated after the 7-day and 28-day B[a]P exposures, as well as after the 24-hour and 7-day 3-NBA exposures. HMOX1 and SOD1 were downregulated after both 24-hour PAH treatments. HMOX1 was upregulated after a 1-week exposure to 3-NBA. There were no significant changes in the messenger RNA (mRNA) levels of AKR1C2, ALDH3A1, TXNRD1, SOD2, GPX1 or CAT. These results illustrate the potential use of this 3-D in vitro lung tissue model in studying the effects of chronic exposure to PAHs.
Collapse
Affiliation(s)
- Tereza Cervena
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,2 Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Vrbova
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Rossnerova
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Rossner
- 1 Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|