1
|
Guichard E, Peona V, Malagoli Tagliazucchi G, Abitante L, Jagoda E, Musella M, Ricci M, Rubio-Roldán A, Sarno S, Luiselli D, Pettener D, Taccioli C, Pagani L, Garcia-Perez JL, Boattini A. Impact of non-LTR retrotransposons in the differentiation and evolution of anatomically modern humans. Mob DNA 2018; 9:28. [PMID: 30147753 PMCID: PMC6094920 DOI: 10.1186/s13100-018-0133-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Background Transposable elements are biologically important components of eukaryote genomes. In particular, non-LTR retrotransposons (N-LTRrs) played a key role in shaping the human genome throughout evolution. In this study, we compared retrotransposon insertions differentially present in the genomes of Anatomically Modern Humans, Neanderthals, Denisovans and Chimpanzees, in order to assess the possible impact of retrotransposition in the differentiation of the human lineage. Results We first identified species-specific N-LTRrs and established their distribution in present day human populations. These analyses shortlisted a group of N-LTRr insertions that were found exclusively in Anatomically Modern Humans. These insertions are associated with an increase in the number of transcriptional/splicing variants of those genes they inserted in. The analysis of the functionality of genes containing human-specific N-LTRr insertions reflects changes that occurred during human evolution. In particular, the expression of genes containing the most recent N-LTRr insertions is enriched in the brain, especially in undifferentiated neurons, and these genes associate in networks related to neuron maturation and migration. Additionally, we identified candidate N-LTRr insertions that have likely produced new functional variants exclusive to modern humans, whose genomic loci show traces of positive selection. Conclusions Our results strongly suggest that N-LTRr impacted our differentiation as a species, most likely inducing an increase in neural complexity, and have been a constant source of genomic variability all throughout the evolution of the human lineage. Electronic supplementary material The online version of this article (10.1186/s13100-018-0133-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Etienne Guichard
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Valentina Peona
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy.,2Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | | | - Lucia Abitante
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Evelyn Jagoda
- 4Human Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA
| | - Margherita Musella
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marco Ricci
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alejandro Rubio-Roldán
- 5GENYO - Pfizer - Universidad de Granada - Junta de Andalucía Centre for Genomics and Oncological Research, PTS Granada, 18007 Granada, Spain
| | - Stefania Sarno
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- 6Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| | - Davide Pettener
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cristian Taccioli
- 7Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Pd Italy
| | - Luca Pagani
- 8Department of Biology, University of Padova, 35131 Padova, Italy.,9Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Jose Luis Garcia-Perez
- 5GENYO - Pfizer - Universidad de Granada - Junta de Andalucía Centre for Genomics and Oncological Research, PTS Granada, 18007 Granada, Spain.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU UK
| | - Alessio Boattini
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Mechanism of Alu integration into the human genome. Genomic Med 2007; 1:9-17. [PMID: 18923924 DOI: 10.1007/s11568-007-9002-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/06/2007] [Indexed: 12/11/2022] Open
Abstract
LINE-1 or L1 has driven the generation of at least 10% of the human genome by mobilising Alu sequences. Although there is no doubt that Alu insertion is initiated by L1-dependent target site-primed reverse transcription, the mechanism by which the newly synthesised 3' end of a given Alu cDNA attaches to the target genomic DNA is less well understood. Intrigued by observations made on 28 pathological simple Alu insertions, we have sought to ascertain whether microhomologies could have played a role in the integration of shorter Alu sequences into the human genome. A meta-analysis of the 1624 Alu insertion polymorphisms deposited in the Database of Retrotransposon Insertion Polymorphisms in Humans (dbRIP), when considered together with a re-evaluation of the mechanism underlying how the three previously annotated large deletion-associated short pathological Alu inserts were generated, enabled us to present a unifying model for Alu insertion into the human genome. Since Alu elements are comparatively short, L1 RT is usually able to complete nascent Alu cDNA strand synthesis leading to the generation of full-length Alu inserts. However, the synthesis of the nascent Alu cDNA strand may be terminated prematurely if its 3' end anneals to the 3' terminal of the top strand's 5' overhang by means of microhomology-mediated mispairing, an event which would often lead to the formation of significantly truncated Alu inserts. Furthermore, the nascent Alu cDNA strand may be 'hijacked' to patch existing double strand breaks located in the top-strand's upstream regions, leading to the generation of large genomic deletions.
Collapse
|
3
|
Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution. BMC Genomics 2007; 8:23. [PMID: 17239240 PMCID: PMC1785376 DOI: 10.1186/1471-2164-8-23] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 01/19/2007] [Indexed: 11/11/2022] Open
Abstract
Background Nuclear receptors are hormone-regulated transcription factors whose signaling controls numerous aspects of development and physiology. Many receptors recognize DNA hormone response elements formed by direct repeats of RGKTCA motifs separated by 1 to 5 bp (DR1-DR5). Although many known such response elements are conserved in the mouse and human genomes, it is unclear to which extent transcriptional regulation by nuclear receptors has evolved specifically in primates. Results We have mapped the positions of all consensus DR-type hormone response elements in the human genome, and found that DR2 motifs, recognized by retinoic acid receptors (RARs), are heavily overrepresented (108,582 elements). 90% of these are present in Alu repeats, which also contain lesser numbers of other consensus DRs, including 50% of consensus DR4 motifs. Few DR2s are in potentially mobile AluY elements and the vast majority are also present in chimp and macaque. 95.5% of Alu-DR2s are distributed throughout subclasses of AluS repeats, and arose largely through deamination of a methylated CpG dinucleotide in a non-consensus motif present in AluS sequences. We find that Alu-DR2 motifs are located adjacent to numerous known retinoic acid target genes, and show by chromatin immunoprecipitation assays in squamous carcinoma cells that several of these elements recruit RARs in vivo. These findings are supported by ChIP-on-chip data from retinoic acid-treated HL60 cells revealing RAR binding to several Alu-DR2 motifs. Conclusion These data provide strong support for the notion that Alu-mediated expansion of DR elements contributed to the evolution of gene regulation by RARs and other nuclear receptors in primates and humans.
Collapse
|
4
|
Nozawa M, Kumagai M, Aotsuka T, Tamura K. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Unusual evolution of interspersed repeat sequences in the Drosophila ananassae subgroup. Mol Biol Evol 2006; 23:981-7. [PMID: 16467489 DOI: 10.1093/molbev/msj105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
New repeat sequences were found in the Drosophila ananassae genome sequence. They accounted for approximately 1.2% of the D. ananassae genome and were estimated to be more abundant in genomes of its closely related species belonging to the Drosophila bipectinata complex, whereas it was entirely absent in the Drosophila melanogaster genome. They were interspersed throughout euchromatic regions of the genome, usually as short tandem arrays of unit sequences, which were mostly 175-200 bp long with two distinct peaks at 180 and 189 bp in the length distribution. The nucleotide differences among unit sequences within the same array (locus) were much smaller than those between separate loci, suggesting within-locus concerted evolution. The phylogenetic tree of the repeat sequences from different loci showed that divergences between sequences from different chromosome arms occurred only at earlier stages of evolution, while those within the same chromosome arm occurred thereafter, resulting in the increase in copy number. We found RNA polymerase III promoter sequences (A box and B box), which play a critical role in retroposition of short interspersed elements. We also found conserved stem-loop structures, which are possibly associated with certain DNA rearrangements responsible for the increase in copy number within a chromosome arm. Such an atypical combination of characteristics (i.e., wide dispersal and tandem repetition) may have been generated by these different transposition mechanisms during the course of evolution.
Collapse
Affiliation(s)
- Masafumi Nozawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | | | | | | |
Collapse
|
5
|
Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements. BMC Evol Biol 2004; 4:37. [PMID: 15461819 PMCID: PMC524483 DOI: 10.1186/1471-2148-4-37] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 10/04/2004] [Indexed: 11/24/2022] Open
Abstract
Background The primate-specific Alu elements, which originated 65 million years ago, exist in over a million copies in the human genome. These elements have been involved in genome shuffling and various diseases not only through retrotransposition but also through large scale Alu-Alu mediated recombination. Only a few subfamilies of Alus are currently retropositionally active and show insertion/deletion polymorphisms with associated phenotypes. Retroposition occurs by means of RNA intermediates synthesised by a RNA polymerase III promoter residing in the A-Box and B-Box in these elements. Alus have also been shown to harbour a number of transcription factor binding sites, as well as hormone responsive elements. The distribution of Alus has been shown to be non-random in the human genome and these elements are increasingly being implicated in diverse functions such as transcription, translation, response to stress, nucleosome positioning and imprinting. Results We conducted a retrospective analysis of putative functional sites, such as the RNA pol III promoter elements, pol II regulatory elements like hormone responsive elements and ligand-activated receptor binding sites, in Alus of various evolutionary ages. We observe a progressive loss of the RNA pol III transcriptional potential with concomitant accumulation of RNA pol II regulatory sites. We also observe a significant over-representation of Alus harboring these sites in promoter regions of signaling and metabolism genes of chromosome 22, when compared to genes of information pathway components, structural and transport proteins. This difference is not so significant between functional categories in the intronic regions of the same genes. Conclusions Our study clearly suggests that Alu elements, through retrotransposition, could distribute functional and regulatable promoter elements, which in the course of subsequent selection might be stabilized in the genome. Exaptation of regulatory elements in the preexisting genes through Alus could thus have contributed to evolution of novel regulatory networks in the primate genomes. With such a wide spectrum of regulatory sites present in Alus, it also becomes imperative to screen for variations in these sites in candidate genes, which are otherwise repeat-masked in studies pertaining to identification of predisposition markers.
Collapse
|
6
|
Rao M, Carlson BA, Novoselov SV, Weeks DP, Gladyshev VN, Hatfield DL. Chlamydomonas reinhardtii selenocysteine tRNA[Ser]Sec. RNA (NEW YORK, N.Y.) 2003; 9:923-30. [PMID: 12869703 PMCID: PMC1370458 DOI: 10.1261/rna.5510503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 05/07/2003] [Indexed: 05/19/2023]
Abstract
Eukaryotic selenocysteine (Sec) protein insertion machinery was thought to be restricted to animals, but the occurrence of both Sec-containing proteins and the Sec insertion system was recently found in Chlamydomonas reinhardtii, a member of the plant kingdom. Herein, we used RT-PCR to determine the sequence of C. reinhardtii Sec tRNA[Ser]Sec, the first non-animal eukaryotic Sec tRNA[Ser]Sec sequence. Like its animal counterpart, it is 90 nucleotides in length, is aminoacylated with serine by seryl-tRNA synthetase, and decodes specifically UGA. Evolutionary analyses of known Sec tRNAs identify the C. reinhardtii form as the most diverged eukaryotic Sec tRNA[Ser]Sec and reveal a common origin for this tRNA in bacteria, archaea, and eukaryotes.
Collapse
Affiliation(s)
- Mahadev Rao
- Section on the Molecular Biology of Selenium, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chang Z, Westaway S, Li S, Zaia JA, Rossi JJ, Scherer LJ. Enhanced expression and HIV-1 inhibition of chimeric tRNA(Lys3)-ribozymes under dual U6 snRNA and tRNA promoters. Mol Ther 2002; 6:481-9. [PMID: 12377189 DOI: 10.1006/mthe.2002.0696] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that chimeric tRNA(Lys3)-ribozymes targeting the primer binding site of HIV produced virions with reduced infectivity. To further enhance the anti-HIV efficiency of these ribozymes by increasing their level of transcription, we designed several tRNA(Lys3) promoter variants and compared their expression levels from the internal tRNA(Lys3) promoters and also from an exogenous human U6 snRNA promoter. The dual U6/tRNA promoter constructs gave rise to much higher levels of expression than constructs that used only an internal tRNA promoter. The most abundant expression is produced when a U6 promoter drives a chimeric tRNA(Lys3)-ribozyme containing a mutation in the tRNA B box. As detected by fluorescent in situ hybridization, transcripts from a construct with the tRNA promoter alone localized strictly to the cytoplasm, whereas transcripts from dual U6/tRNA promoter were present in both the cytoplasm and the nucleus. Inhibition of HIV-1 correlates well with expression levels of the chimeric constructs. The results presented demonstrate that U6 and tRNA promoters can be placed in tandem for high-level expression of small RNA therapeutic transcripts.
Collapse
Affiliation(s)
- Zongli Chang
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hamada M, Sakulich AL, Koduru SB, Maraia RJ. Transcription termination by RNA polymerase III in fission yeast. A genetic and biochemically tractable model system. J Biol Chem 2000; 275:29076-81. [PMID: 10843998 DOI: 10.1074/jbc.m003980200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order for RNA polymerase (pol) III to produce a sufficient quantity of RNAs of appropriate structure, initiation, termination, and reinitiation must be accurate and efficient. Termination-associated factors have been shown to facilitate reinitiation and regulate transcription in some species. Suppressor tRNA genes that differ in the dT(n) termination signal were examined for function in Schizosaccharomyces pombe. We also developed an S. pombe extract that is active for tRNA transcription that is described here for the first time. The ability of this tRNA gene to be transcribed in extracts from different species allowed us to compare termination in three model systems. Although human pol III terminates efficiently at 4 dTs and S. pombe at 5 dTs, Saccharomyces cerevisiae pol III requires 6 dTs to direct comparable but lower termination efficiency and also appears qualitatively distinct. Interestingly, this pattern of sensitivity to a minimal dT(n) termination signal was found to correlate with the sensitivity to alpha-amanitin, as S. pombe was intermediate between human and S. cerevisiae pols III. The results establish that the pols III of S. cerevisiae, S. pombe, and human exhibit distinctive properties and that termination occurs in S. pombe in a manner that is functionally more similar to human than is S. cerevisiae.
Collapse
Affiliation(s)
- M Hamada
- Laboratory of Molecular Growth Regulation, NICHHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | |
Collapse
|
9
|
Perl A, Colombo E, Samoilova E, Butler MC, Banki K. Human transaldolase-associated repetitive elements are transcribed by RNA polymerase III. J Biol Chem 2000; 275:7261-72. [PMID: 10702296 DOI: 10.1074/jbc.275.10.7261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repetitive elements flanked by exons 2 and 3 of the human transaldolase gene, thus termed transaldolase-associated repetitive elements, TARE, were identified in human DNA. Nonpolyadenylated TARE transcripts were detected by Northern blot analysis and cloned by reverse transcriptase-mediated polymerase chain reaction from human T lymphocytes. A dominant 1085-nucleotide long transcript, TARE-6, contained two adjacent Alu elements, a right monomer and a complete dimer, oriented opposite to the direction of transcription of the transaldolase gene. Reverse transcriptase-polymerase chain reaction and in vitro transcription analyses showed that transcription of TARE-6 proceeded in the orientation of the RNA pol III promoter of the Alu dimer and opposite to the orientation of the TAL-H gene. TAREs lacking RNA polymerase III promoter showed no transcriptional activity. In vitro transcription of TARE-6 was resistant to 1 microg/ml alpha-amanitin but sensitive to 100 microg/ml alpha-amanitin and tagetitoxin, suggesting involvement of RNA polymerase III. TAREs in both the transaldolase and HSAG-1 genomic loci were surrounded by TA target site duplications. Homologies between transaldolase and HSAG-1 break off internally at splice donor and acceptor sites. The results suggest RNA polymerase III-mediated transcription of TARE may be a source of repetitive elements, contributing to distinct genes and thus shaping the human genome.
Collapse
Affiliation(s)
- A Perl
- Departments of Medicine, Microbiology and Immunology, and Pathology, State University of New York Health Science Center, College of Medicine, Syracuse, New York 13210, USA.
| | | | | | | | | |
Collapse
|
10
|
Chesnokov I, Chu WM, Botchan MR, Schmid CW. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 1996; 16:7084-8. [PMID: 8943363 PMCID: PMC231711 DOI: 10.1128/mcb.16.12.7084] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Wild-type p53 represses Alu template activity in vitro and in vivo. However, upstream activating sequence elements from both the 7SL RNA gene and an Alu source gene relieve p53-mediated repression. p53 also represses the template activity of the U6 RNA gene both in vitro and in vivo but has no effect on in vitro transcription of genes encoding 5S RNA, 7SL RNA, adenovirus VAI RNA, and tRNA. The N-terminal activation domain of p53, which binds TATA-binding protein (TBP), is sufficient for repressing Alu transcription in vitro, and mutation of positions 22 and 23 in this region impairs p53-mediated repression of an Alu template both in vitro and in vivo. p53's N-terminal domain binds TFIIIB, presumably through its known interaction with TBP, and mutation of positions 22 and 23 interferes with TFIIIB binding. These results extend p53's transcriptional role to RNA polymerase III-directed templates and identify an additional level of Alu transcriptional regulation.
Collapse
Affiliation(s)
- I Chesnokov
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
11
|
Martignetti JA, Brosius J. BC1 RNA: transcriptional analysis of a neural cell-specific RNA polymerase III transcript. Mol Cell Biol 1995; 15:1642-50. [PMID: 7862155 PMCID: PMC230388 DOI: 10.1128/mcb.15.3.1642] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rodent BC1 RNA represents the first example of a neural cell-specific RNA polymerase III (Pol III) transcription product. By developing a rat brain in vitro system capable of supporting Pol III-directed transcription, we showed that the rat BC1 RNA intragenic promoter elements, comprising an A box element and a variant B box element, as well as its upstream region, containing octamer-binding consensus sequences and functional TATA and proximal sequence element sites, are necessary for transcription. The BC1 B box, lacking the invariant A residue found in the consensus B boxes of tRNAs, represents a functionally related and possibly distinct promoter element. The transcriptional activity of the BC1 B box element is greatly increased, in both a BC1 RNA and a chimeric tRNA(Leu) gene construct, when the BC1 5' flanking region is present and is appropriately spaced. Moreover, a tRNA consensus B-box sequence can efficiently replace the BC1 B box only if the BC1 upstream region is removed. These interactions, identified only in a homologous in vitro system, between upstream Pol II and intragenic Pol III promoters suggest a mechanism by which the tissue-specific BC1 RNA gene and possibly other Pol III-transcribed genes can be regulated.
Collapse
Affiliation(s)
- J A Martignetti
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
12
|
|
13
|
Britten RJ. Evolutionary selection against change in many Alu repeat sequences interspersed through primate genomes. Proc Natl Acad Sci U S A 1994; 91:5992-6. [PMID: 8016103 PMCID: PMC44123 DOI: 10.1073/pnas.91.13.5992] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutations have been examined in the 1500 interspersed Alu repeats of human DNA that have been sequenced and are nearly full length. There is a set of particular changes at certain positions that rarely occur (termed suppressed changes) compared to the average of identical changes of identical nucleotides in the rest of the sequence. The suppressed changes occur in positions that are clustered together in what appear to be sites for protein binding. There is a good correlation of the suppression in different positions, and therefore the joint probability of absence of mutation at many pairs of such positions is significantly higher than that expected at random. The suppression of mutation appears to result from selection that is not due to requirements for Alu sequence replication. The implication is that hundreds of thousands of Alu sequences have sequence-dependent functions in the genome that are selectively important for primates. In a few known cases Alu inserts have been adapted to function in the regulation of gene transcription.
Collapse
Affiliation(s)
- R J Britten
- Division of Biology of the California Institute of Technology, Kerckhoff Marine Laboratory, Corona Del Mar 92625
| |
Collapse
|
14
|
Liu WM, Maraia RJ, Rubin CM, Schmid CW. Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res 1994; 22:1087-95. [PMID: 7512262 PMCID: PMC307934 DOI: 10.1093/nar/22.6.1087] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Full length Alu transcripts in HeLa cells are detected by primer extension using reverse transcriptase and are also analyzed as cloned cDNA sequences. The 5' end of these transcripts corresponds to the transcriptional start site for RNA polymerase III indicating that these RNAs are transcribed from their internal polymerase III promoters. The Alu transcripts found in cytoplasmic poly A+ RNAs appear to be organized into RNPs as assayed by sucrose gradient sedimentation. Present at about one hundred to one thousand copies per cell, the Alu transcripts are rare as compared to 7SL RNA. In agreement with previous reports that methylation inhibits Pol III-directed transcription of Alu in vitro, treatment of HeLa cells with 5-azacytidine results in Alu DNA hypomethylation and an increase in the abundance of the Alu transcript. Sequence analysis shows that many different Alu repeats including members of all subfamilies are transcribed by Pol III in vivo. cDNA sequences of the Pol III-directed transcripts exactly match the A box of the Pol III promoter element whereas in other Alu transcripts this element is not faithfully conserved.
Collapse
Affiliation(s)
- W M Liu
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | | | | | |
Collapse
|
15
|
Abstract
Alu repeats are short interspersed elements (SINEs) of dimeric structure whose transposition sometimes leads to heritable disorders in humans. Human cells contain a poly(A)- small cytoplasmic transcript of -120 nucleotides (nt) homologous to the left Alu monomer. Although its monomeric size indicates that small cytoplasmic Alu (scAlu) RNA is not an intermediary of human Alu transpositions, a less abundant poly(A)-containing Alu transcript of dimeric size and specificity expected of a transposition intermediary is also detectable in HeLa cells (A. G. Matera, U. Hellmann, M. F. Hintz, and C. W. Schmid, Mol. Cell. Biol. 10:5424-5432, 1990). Although its function is unknown, the accumulation of Alu RNA and its ability to interact with a conserved protein suggest a role in cell biology (D.-Y. Chang and R. J. Maraia, J. Biol. Chem. 268:6423-28, 1993). The relationship between the -120- and -300-nt Alu transcripts had not been determined. However, a B1 SINE produces scB1 RNA by posttranscriptional processing, suggesting a similar pathway for scAlu. An Alu SINE which recently transposed into the neurofibromatosis 1 locus was expressed in microinjected frog oocytes. This neurofibromatosis 1 Alu produced a primary transcript followed by the appearance of the scAlu species. 3' processing of a synthetic -300-nt Alu RNA by HeLa nuclear extract in vitro also produced scAlu RNA. Primer extension of scAlu RNA indicates synthesis by RNA polymerase III. HeLa-derived scAlu cDNAs were cloned so as to preserve their 5'-terminal sequences and were found to correspond to polymerase III transcripts of the left monomeric components of three previously identified Alu SINE subfamilies. Rodent x human somatic cell hybrids express Alu RNAs whose size, heterogeneous length, and chromosomal distribution indicate their derivation from SINEs. The coexpression of dimeric and monomeric Alu RNA in several hybrids suggests a precursor-product relationship.
Collapse
|
16
|
Maraia RJ, Driscoll CT, Bilyeu T, Hsu K, Darlington GJ. Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol 1993; 13:4233-41. [PMID: 7686619 PMCID: PMC359973 DOI: 10.1128/mcb.13.7.4233-4241.1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alu repeats are short interspersed elements (SINEs) of dimeric structure whose transposition sometimes leads to heritable disorders in humans. Human cells contain a poly(A)- small cytoplasmic transcript of -120 nucleotides (nt) homologous to the left Alu monomer. Although its monomeric size indicates that small cytoplasmic Alu (scAlu) RNA is not an intermediary of human Alu transpositions, a less abundant poly(A)-containing Alu transcript of dimeric size and specificity expected of a transposition intermediary is also detectable in HeLa cells (A. G. Matera, U. Hellmann, M. F. Hintz, and C. W. Schmid, Mol. Cell. Biol. 10:5424-5432, 1990). Although its function is unknown, the accumulation of Alu RNA and its ability to interact with a conserved protein suggest a role in cell biology (D.-Y. Chang and R. J. Maraia, J. Biol. Chem. 268:6423-28, 1993). The relationship between the -120- and -300-nt Alu transcripts had not been determined. However, a B1 SINE produces scB1 RNA by posttranscriptional processing, suggesting a similar pathway for scAlu. An Alu SINE which recently transposed into the neurofibromatosis 1 locus was expressed in microinjected frog oocytes. This neurofibromatosis 1 Alu produced a primary transcript followed by the appearance of the scAlu species. 3' processing of a synthetic -300-nt Alu RNA by HeLa nuclear extract in vitro also produced scAlu RNA. Primer extension of scAlu RNA indicates synthesis by RNA polymerase III. HeLa-derived scAlu cDNAs were cloned so as to preserve their 5'-terminal sequences and were found to correspond to polymerase III transcripts of the left monomeric components of three previously identified Alu SINE subfamilies. Rodent x human somatic cell hybrids express Alu RNAs whose size, heterogeneous length, and chromosomal distribution indicate their derivation from SINEs. The coexpression of dimeric and monomeric Alu RNA in several hybrids suggests a precursor-product relationship.
Collapse
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
17
|
Liu WM, Leeflang EP, Schmid CW. Unusual sequences of two old, inactive human Alu repeats. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1132:306-8. [PMID: 1420311 DOI: 10.1016/0167-4781(92)90165-v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two human Alu repeats terminating in an oligo(T) run rather than the usual A-rich 3' tail were isolated by library screening. Base sequence comparisons reveal that these unusual Alus are also exceptionally divergent from other Alu family members implying that they are evolutionarily old. Unlike other members of the family, they are not transcribed in vitro by RNA polymerase III (Pol III) suggesting a partial explanation for how Alu source genes might become inactive with age.
Collapse
Affiliation(s)
- W M Liu
- Department of Genetics, University of California, Davis 95616
| | | | | |
Collapse
|
18
|
Gonos ES, Goddard JP. The role of the 5'-flanking sequence of a human tRNA(Glu) gene in modulation of its transcriptional activity in vitro. Biochem J 1990; 272:797-803. [PMID: 2268303 PMCID: PMC1149778 DOI: 10.1042/bj2720797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of a tRNA-like structure within the 5'-flanking sequence of a human tRNA(Glu) gene in the modulation of its transcription in vitro by HeLa cell extracts has been investigated using several deletion mutants of a recombinant of the gene which lacked part or all of the tRNA-like structure. The transcriptional efficiency of four mutants was the same as that of the wild-type recombinant, two mutants had decreased transcriptional efficiency, one was more efficient, and one, lacking part of the 5' intragenic control region, was inactive. Correlation of the transcriptional efficiencies with the position and the size of the 5'-flanking sequence that was deleted indicated that the tRNA-like structure may be deleted without loss of transcriptional efficiency. Current models for the modulation of tRNA gene transcription by the 5'-flanking sequence are assessed in the light of the results obtained, and a potential model is presented.
Collapse
Affiliation(s)
- E S Gonos
- Department of Biochemistry, University of Glasgow, Scotland, U.K
| | | |
Collapse
|
19
|
Reyes AA, Akeson R. Generation of multiple independent substitution mutants by M13 in vitro mutagenesis using a single mutagenic oligonucleotide. DNA (MARY ANN LIEBERT, INC.) 1988; 7:579-84. [PMID: 3180999 DOI: 10.1089/dna.1.1988.7.579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A 56-nucleotide mutagenic oligomer containing six mismatches with the wild-type template was used to construct multiple transversion mutations in the putative heparin binding region of the rat neural cell adhesion molecule (NCAM) cDNA sequence. Mutants were screened by hybridization to the 56-mer. The relative stability of a mutant DNA:56-mer duplex correlated with the number of base substitutions present in the mutant sequence. Five independent categories of mutants carrying from two to five of the expected nucleotide substitutions were isolated. No mutations other than those directed by the 56-mer were observed. These results suggest a method for generating sets of related predefined substitution mutants.
Collapse
Affiliation(s)
- A A Reyes
- Division of Basic Research, Children's Hospital Research Foundation, Cincinnati, OH 45229
| | | |
Collapse
|
20
|
Snouwaert J, Bunick D, Hutchison C, Fowlkes DM. Large numbers of random point and cluster mutations within the adenovirus VA I gene allow characterization of sequences required for efficient transcription. Nucleic Acids Res 1987; 15:8293-303. [PMID: 3671085 PMCID: PMC306360 DOI: 10.1093/nar/15.20.8293] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have isolated clones with well over 100 randomly dispersed point mutations distributed throughout the 5' half of chemically synthesized adenovirus type 2 VA I genes. In addition, we have isolated clusters of mutations targeted to the regions corresponding to the A and B block consensus sequences of eukaryotic tRNA and adenovirus VA genes. In vitro analyses of these constructs have allowed us to survey in detail the importance of DNA sequence to transcriptional efficiency. Our analyses demonstrate that certain constructs with radically substituted A block regions can be transcribed efficiently. In contrast, there is little tolerance for variation in the sequence within the B block region. We propose that the B block sequence should be R-G-A/T-T-C-R-A-N-N-C for optimal transcriptional efficiency of the VA I gene in mammalian cells.
Collapse
Affiliation(s)
- J Snouwaert
- Department of Pathology, University of North Carolina, Chapel Hill 27514
| | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Hutchison CA, Nordeen SK, Vogt K, Edgell MH. A complete library of point substitution mutations in the glucocorticoid response element of mouse mammary tumor virus. Proc Natl Acad Sci U S A 1986; 83:710-4. [PMID: 3003746 PMCID: PMC322934 DOI: 10.1073/pnas.83.3.710] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The glucocorticoid response element (GRE) of mouse mammary tumor virus (MMTV) was chemically synthesized as two complementary DNA strands bearing cohesive termini. During automated synthesis, random mutations were introduced into the DNA by "doping" each of the four nucleoside phosphoramidites (A, G, C, and T) with a low level of the other three. These preparations were annealed and cloned into an M13 phage vector to produce a library of GRE mutants. Mutations within the synthesized region were identified by sequencing phage isolates at random. All of the chemically distinct classes of transition and transversion mutations have been observed. Statistical considerations indicate that the library contains all of the possible 90 point substitution mutations within a 30-nucleotide mutagenic target. So far 88 of these substitutions have been isolated, 74 as single mutants. At least two of the three possible single mutants at each of the 30 positions have been identified.
Collapse
|
24
|
Abstract
In this paper we first show that the primary structure of U1 snRNA is homologous to that of tandem repeated pre-tRNA. Two sets of polymerase III promoter sites (the a and b boxes) are clearly recognisable at the appropriate positions in U1, although neither is functional; these sites occur in a degenerate form and their transcription is initiated by polymerase II. Moreover, several of the conserved subsequences of tRNAs that are not associated with transcription initiation (and supposedly are conserved because of their role in translation) are conserved in U1 as well, one of them being the pattern Py-Py-anticodon-Pu-Pu (for both anticodons of tandem tRNA). Second, we show that the secondary structure of U1 is apparently formed after fixation of the "B-hairpin loop' by one of the associated proteins. If and only if this hairpin loop is fixed, a consensus secondary structure is produced by the minimisation-of-free-energy technique. Moreover, we show that this B-hairpin loop has been destabilised relatively recently in evolutionary time by deletions (e.g., in the polymerase III box). If we reinsert the deleted bases, the so constructed hypothetical "ancestral" molecule folds into the consensus secondary structure by unconstrained energy minimisation (i.e., without fixation of the B-loop). Some features of the secondary structure of tandem repeated pre-tRNA are conserved in U1, but the overall structure has changed dramatically. Like tRNA, U1 has a cloverleaf-like structure, but its overall size has doubled. By comparing their secondary structures and by alignment of the sequences, we trace the local events associated with the global change in secondary structure (and apparently in the function of the molecule). Finally, we discuss our results from the perspective of informatic prerequisites for heterarchical multilevel evolution.
Collapse
|
25
|
Kishimoto T, Nagamine M, Sasaki T, Takakusa N, Miwa T, Kominami R, Muramatsu M. Presence of a limited number of essential nucleotides in the promoter region of mouse ribosomal RNA gene. Nucleic Acids Res 1985; 13:3515-32. [PMID: 2989774 PMCID: PMC341256 DOI: 10.1093/nar/13.10.3515] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Point mutations are introduced into a mouse rDNA fragment containing the promoter region by a sodium bisulfite method and the mutants are tested for the ability of accurate transcription initiation in vitro. The results indicate that the change, G to A, at -7 completely eliminates the promoter activity, and those at -16 and at -25 decrease it to about 10% and 50%, respectively. On the other hand, the substitutions at +9, +4, -2, -9 and -39 do not alter the template activity significantly. It is concluded that there are limited but distinct nucleotides that are essential for the transcription initiation of this gene. This sort of absolute requirement for single specific bases is not reported in protein coding genes transcribed by RNA polymerase II. We propose that these rigid recognition signals which we have found are the molecular basis for the strong species-dependency of the transcription machinery of RNA polymerase I system. A model is presented in which a transcription factor interacts with the rDNA promoter from one side of the DNA double-helix with essential contacts at these bases.
Collapse
|
26
|
Louis DS, Spiegelman GB. Steady-state kinetic analysis of transcription of cloned tRNASer genes from Drosophila melanogaster. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 148:305-13. [PMID: 3921375 DOI: 10.1111/j.1432-1033.1985.tb08840.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Drosophila melanogaster Schneider II cells contain a factor which inhibits transcription in vitro of cloned tRNA genes in crude extracts made from these cells. The inhibitor could, however, be effectively neutralized by addition of certain non-template DNAs. In the absence of the transcription inhibitor activity, the steady-state kinetics of tRNA production from cloned genes followed one-substrate enzyme kinetics to a high degree of accuracy. Maximal rates of transcription and apparent affinity constants were analyzed for a collection of cloned D. melanogaster tRNASer genes. The stability of the complex formed by the transcription proteins and the template DNA was found to be nearly constant for the genes examined. The transcription rates, however, were greatly influenced by the DNA sequences flanking the tRNA genes. Analysis of transcription competition between DNA templates showed pure competitive behavior. Inhibition constants derived from these experiments indicated that the formation of the transcription complex was affected by sequences flanking the tRNA genes. Furthermore, the rate-limiting step in complex formation was independent of the stability of the final form of the complex.
Collapse
|
27
|
Camier S, Gabrielsen O, Baker R, Sentenac A. A split binding site for transcription factor tau on the tRNA3Glu gene. EMBO J 1985; 4:491-500. [PMID: 2862029 PMCID: PMC554212 DOI: 10.1002/j.1460-2075.1985.tb03655.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Yeast transcription factor tau forms a stable complex with tRNA genes. Using this property, the factor could be highly purified on a specific tDNA column. The purified factor was found by DNA footprinting to protect the whole yeast tRNA3Glu gene from position -8 to +81. A DNase-sensitive site was retained in the middle of the gene on both strands. The 3' border of the complex was mapped by exonuclease digestion at +88, just downstream of the termination signal. The 5' limit of the complex was found at position -11. However, upon prolonged incubation with exonuclease, the -11 blockage disappeared and the DNA molecules were digested to position +30 to 38 in the middle of the gene. Contact points at guanine residues were identified by dimethyl sulphate protection experiments. Reduced methylation of G residues in the presence of factor was found solely within the A block and in the B block region. All six invariant GC pairs (i.e., G10, G18, G19 and G53, C56 and C61) were found to have strong contacts with the factor. These results show that tau factor interacts with both the 5' and 3' half of the tRNA3Glu gene, with the B block region being the predominant binding site. The presence of this dual binding site suggests a model in which the factor would bind alternately at the A and B block regions to allow transcription of the internal promoter by RNA polymerase C.
Collapse
|
28
|
O'Neill VA, Eden FC, Pratt K, Hatfield DL. A human opal suppressor tRNA gene and pseudogene. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89581-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Dingermann T, Bertling W, Pistel F, Amon E. Characterisation of a Dictyostelium discoideum DNA fragment coding for a putative tRNAValGUU gene. Evidence for a single transcription unit consisting of two overlapping class III genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 146:449-58. [PMID: 3967666 DOI: 10.1111/j.1432-1033.1985.tb08672.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A genomic DNA fragment from Dictyostelium discoideum was characterized. This DNA, although 74% d(A + T)-rich, codes for a putative tRNAValGUU. The tRNAVal gene overlaps at its 5' half with another RNA polymerase III transcription unit. This RNA polymerase III transcription unit can be folded into a tRNA-like shape and is comprised of significant amounts of invariant and semi-invariant nucleotides present in all eukaryotic tRNAs. This unit contains the two promoter blocks defined for RNA polymerase III, which are homologous to recently defined promoter elements to the extent of 76-88% (A block) and 86-93% (B block) respectively [Sharp et al. (1981) Proc. Natl Acad. Sci. USA 78, 6657-6661]. Both of the overlapping class III genes are transcribed in germinal vesicle extracts prepared from Xenopus laevis oocytes as a single transcription unit, resulting in an unusually large product compared to primary transcripts of other tRNA genes. The unit is not transcribed in HeLa extracts but it competes very strongly for transcription factor(s) under the conditions of stable transcription complex formation. Although the whole unit is transcribed, it is believed that only one functional product is formed. Therefore we define the tRNA-like structure, coded for on this class III transcription unit, as a putative tRNA 'pseudogene' meaning that, although it is transcribed by RNA polymerase III, it is not likely to mature to a functional tRNA.
Collapse
|
30
|
Johnson JD, Raymond GJ, deParasis J. Transcription of tRNA gene fragments by HeLa cell extracts. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:55-61. [PMID: 6392825 DOI: 10.1007/bf00327922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Promoter elements for tRNA genes from several eukaryotes have been identified in the coding regions of the DNA. There are two non-contiguous sequences, an A-block or D-control region and a B-block or T-control region, located in the 5'- and 3'-halves of the tRNA sequence respectively. Both sequences are about 12 bp in length and are strongly conserved in all tRNA genes. We and others have recently shown that some tRNA genes from yeast and insects have a third control region located in the 5'-flanking sequences adjacent to tDNA. The tRNALeu3 genes from yeast have such a sequence. It is strongly conserved in non-allelic copies of tRNALeu3 genes as well as several other yeast tRNA genes. This 5'-flanking sequence is indispensable for transcription of the gene in an in vitro system derived from yeast cells. Further, the transcription apparatus from yeast will recognize and transcribe gene fragments including the 5'-flanking sequence in conjunction with either the A or B-blocks. Neither the 5'-flanking sequence alone nor the A and B-blocks lacking the 5'-flanking region can act as promoters in the yeast system. We have used these tRNALeu3 gene fragments to analyze the promoter activity of the three control regions with a Hela cell extract which actively transcribes class III genes. We find that the Hela cell system requires the presence of both A and B-block sequences and is insensitive to 5'-flanking DNA.
Collapse
|
31
|
Gutierrez-Hartmann A, Lieberburg I, Gardner D, Baxter JD, Cathala GG. Transcription of two classes of rat growth hormone gene-associated repetitive DNA: differences in activity and effects of tandem repeat structure. Nucleic Acids Res 1984; 12:7153-73. [PMID: 6091058 PMCID: PMC320148 DOI: 10.1093/nar/12.18.7153] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The rat growth hormone (rGH) gene contains two classes of repetitive DNA arranged as clusters within intron B and the 3' flanking region. The major family is equivalent to the CHO type 2 DNA. The second ("truncated repeat", TR) is a truncated version of the first and occurs in certain neural-specific transcripts and genes ("identifier" elements, ID). Here we report, using the HeLa cell-free transcription assay, that RNA polymerase III (Pol III) efficiently initiates at internal promoters within a tandem array of rGH gene repetitive DNA monomers and results in a novel organization of overlapping Class III transcription units. Transcription competition studies revealed that the rat type 2 structures share Pol III transcription factors with a tRNA gene, a human Alu repeat, and a mutant VA1 gene. Also, the rGH type 2 but not the TR DNA efficiently promotes Pol III initiation, yet other TR members, which differ only in flanking DNA, are transcribed. Thus, the rGH gene is strikingly enriched with 10 repetitive DNA monomers; multimeric type 2 elements are actively transcribed; rGH-TR sequences are expressed only as part of larger transcripts promoted by type 2 DNA; and, type 2 DNA uses tRNA gene transcription factors. These studies show that flanking sequences, promoter organization and factor competition may all affect rat repetitive DNA expression.
Collapse
|
32
|
Perez-Stable C, Ayres TM, Shen CK. Distinctive sequence organization and functional programming of an Alu repeat promoter. Proc Natl Acad Sci U S A 1984; 81:5291-5. [PMID: 6089189 PMCID: PMC391689 DOI: 10.1073/pnas.81.17.5291] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Plasmid clones containing a human Alu family repeat can be transcribed efficiently by RNA polymerase III in HeLa cell extract. This generated three RNA species, all of which initiated from the first base (+1) of the repeat. By studying the transcriptional properties of deletion clones, subclones, and topologically different DNA templates, we demonstrated that: supercoiled DNA templates are transcribed 3- to 5-fold more efficiently than are linear or nicked circular DNA molecules; a contiguous DNA helix in the transcription complexes that extends into the 5' flanking region of positions -30 to -85 is absolutely required for initiation to occur (this interaction does not involve recognition of specific DNA sequences); and similar to the adenovirus VAI RNA and tRNA genes, the Alu repeat 3' to the alpha 1-globin gene (designated 3'-alpha 1 Alu) contains a split intragenic promoter: an anterior element (positions +4 to +37) and a posterior element (positions +70 to +82). However, the promoter of the Alu repeat functions in distinctive ways in comparison to those of other RNA polymerase III-dependent genes. The posterior promoter element alone is sufficient and necessary for an accurate initiation to occur. The presence of the anterior promoter element, which by itself does not initiate transcription, enhances the transcriptional efficiency by a factor of 10- to 20-fold. Furthermore, the distance between the initiation sites and the posterior promoter element, but not the anterior promoter element, remains constant. These results suggest that the promoter of this Alu family repeat consists of at least two functionally different domains: a "directing element" (the posterior promoter element) that determines the accuracy of initiation and an "enhancing element" (the anterior promoter element) that is mainly responsible for the transcriptional efficiency.
Collapse
|
33
|
Murphy MH, Baralle FE. Construction and functional analysis of a series of synthetic RNA polymerase III promoters. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90950-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|