1
|
Langsdorf E, Yu L, Kanevskaia L, Felkner R, Sturner S, McVey D, Khetan A. Retrospective assessment of clonal origin of cell lines. Biotechnol Prog 2021; 37:e3157. [PMID: 33896120 DOI: 10.1002/btpr.3157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 11/08/2022]
Abstract
Cell lines used for the manufacture of recombinant proteins are expected to arise from a single cell as a control strategy to limit variability and ensure consistent protein production. Health authorities require a minimum of two rounds of limiting dilution cloning or its equivalent to meet the requirement of single cell origin. However, many legacy cell lines may not have been generated with process meeting this criteria potentially impeding the path to commercialization. A general monoclonality assessment strategy was developed based on using the site of plasmid integration for a cell's identity. By comparing the identities of subclones from a master cell bank (MCB) to each other and that of the MCB, a probability of monoclonality was established. Two technologies were used for cell identity, Southern blot and a PCR assay based on plasmid-genome junction sequences identified by splinkerette PCR. Southern blot analysis revealed that subclones may have banding patterns that differ from each other and yet indicate monoclonal origin. Splinkerette PCR identifies cellular sequence flanking the point(s) of plasmid integration. The two assays together provide complimentary data for cell identity that enables proper monoclonality assessment and establishes that the three legacy cell lines investigated are all of clonal origin.
Collapse
Affiliation(s)
- Erik Langsdorf
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Le Yu
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Lioudmila Kanevskaia
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Roland Felkner
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Stephen Sturner
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Duncan McVey
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus). Transgenic Res 2013; 22:913-24. [PMID: 23417791 DOI: 10.1007/s11248-013-9693-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
The success of gene transfer has been demonstrated in many of vertebrate species, whereas the efficiency of producing transgenic animals remains pretty low due to the random integration of foreign genes into a recipient genome. The Sleeping Beauty (SB) transposon is able to improve the efficiency of gene transfer in zebrafish and mouse, but its activity in tilapia (Oreochromis niloticus) has yet to be characterized. Herein, we demonstrate the potential of using the SB transposon system as an effective tool for gene transfer and insertional mutagenesis in tilapia. A transgenic construct pT2/tiHsp70-SB11 was generated by subcloning the promoter of tilapia heat shock protein 70 (tiHsp70) gene, the SB11 transposase gene and the carp β-actin gene polyadenylation signal into the second generation of SB transposon. Transgenic tilapia was produced by microinjection of this construct with in vitro synthesized capped SB11 mRNA. SB11 transposon was detected in 28.89 % of founders, 12.9 % of F1 and 43.75 % of F2. Analysis of genomic sequences flanking integrated transposons indicates that this transgenic tilapia line carries two copies of SB transposon, which landed into two different endogenous genes. Induced expression of SB11 gene after heat shock was detected using reverse transcription PCR in F2 transgenic individuals. In addition, the Cre/loxP system was introduced to delete the SB11 cassette for stabilization of gene interruption and bio-safety. These findings suggest that the SB transposon system is active and can be used for efficient gene transfer and insertional mutagenesis in tilapia.
Collapse
|
3
|
Read-through activation of transcription in a cellular genomic context. PLoS One 2010; 5:e15704. [PMID: 21209942 PMCID: PMC3011013 DOI: 10.1371/journal.pone.0015704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/18/2010] [Indexed: 11/19/2022] Open
Abstract
Read-through transcription from the adjacent E1a gene region is required for wild-type (wt) activity of the downstream adenovirus E1b promoter early after infection (read-through activation). However, whether a cellular chromosomal template can support read-through activation is not known. To address this issue, read-through activation was evaluated in the context of stably expressed templates in transfected cells. Inhibition of read-through transcription by insertion of a transcription termination sequence between the E1a and E1b promoters reduced downstream gene expression from stably integrated templates. The results indicate that the mechanism of read-through activation does not depend on the structure of early adenovirus nucleoprotein complexes, a structure that is likely to be different from that of cellular chromatin. Accordingly, this regulatory interaction could participate in the coordinated control of the expression of closely linked cellular genes.
Collapse
|
4
|
Suzuki K, Ohbayashi F, Nikaido I, Okuda A, Takaki H, Okazaki Y, Mitani K. Integration of exogenous DNA into mouse embryonic stem cell chromosomes shows preference into genes and frequent modification at junctions. Chromosome Res 2010; 18:191-201. [PMID: 20177773 DOI: 10.1007/s10577-010-9111-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/22/2009] [Accepted: 01/05/2010] [Indexed: 11/29/2022]
Abstract
Chromosomal integration of exogenous DNA in mammalian cells allows stable gene expression for a variety of biological applications. Although it is presumably mediated by DNA repair machinery, little is known regarding site preferences and other characteristics. We isolated and analyzed 256 chromosomal-plasmid DNA integration junctions from 158 plasmid integrants after electroporation in mouse embryonic stem (ES) cells. The frequency of integrations in transcription units (40%) showed a slight but significant increase over the frequency estimated by computer simulation of random events (30%), suggesting preferential integration into genes. Microarray analysis revealed preference into genes, which are expressed in mouse ES cells. In contrast, bias toward integrations around transcriptional start sites, CpG islands and repeat elements was not observed. Furthermore, all host chromosome sequences as well as the majority of plasmids (96%) at the integration junctions were modified by deletions and/or insertions of additional nucleotides. Detailed analyses revealed frequent stem loop/hairpin formation mediated by weak homologies near plasmid ends before integration. Our study sheds light on a natural fate of exogenous DNA, which preferentially integrates into transcriptionally active chromosomal sites and by an imprecise end-joining pathway, associated with highly frequent modification of the end sequences.
Collapse
Affiliation(s)
- Keiichiro Suzuki
- Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Weber EL, Cannon PM. Promoter Choice for Retroviral Vectors: Transcriptional Strength Versus Trans-Activation Potential. Hum Gene Ther 2007; 18:849-60. [PMID: 17767401 DOI: 10.1089/hum.2007.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene expression from retroviral vectors can be driven by either the retroviral long terminal repeat (LTR) promoter or by cellular or viral promoters located internally in an LTR-deleted self-inactivating vector design. Adverse events in a gene therapy clinical trial for X-linked severe combined immune deficiency have led to the realization that the enhancer/promoter elements contained within integrated vectors may also act outside the vector genome to trans-activate host genes. Ideally, the gene expression system chosen for a vector should possess a low probability of trans-activation while still being able to support adequate levels of transgene expression. However, the parameters that define these specific characteristics are unknown. To gain insight into the mechanism of trans-activation, we compared a panel of commonly used retroviral LTRs and cellular and viral promoters for their ability to drive gene expression and to trans-activate a nearby minimal promoter in three different cell lines. These studies identified two elements, the cytomegalovirus enhancer/chicken beta-actin (CAG) and elongation factor (EF)-1alpha promoters, as being of potential value for use in vectors targeting lymphoid cells, as these elements exhibited both high levels of reporter gene expression and relatively low levels of trans-activation in T cells.
Collapse
Affiliation(s)
- Erin L Weber
- Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | |
Collapse
|
6
|
Abstract
Foreign DNA integration is one of the most widely exploited cellular processes in molecular biology. Its technical use permits us to alter a cellular genome by incorporating a fragment of foreign DNA into the chromosomal DNA. This process employs the cell's own endogenous DNA modification and repair machinery. Two main classes of integration mechanisms exist: those that draw on sequence similarity between the foreign and genomic sequences to carry out homology-directed modifications, and the nonhomologous or 'illegitimate' insertion of foreign DNA into the genome. Gene therapy procedures can result in illegitimate integration of introduced sequences and thus pose a risk of unforeseeable genomic alterations. The choice of insertion site, the degree to which the foreign DNA and endogenous locus are modified before or during integration, and the resulting impact on structure, expression, and stability of the genome are all factors of illegitimate DNA integration that must be considered, in particular when designing genetic therapies.
Collapse
Affiliation(s)
- H Würtele
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Canada
| | | | | |
Collapse
|
7
|
Wurm FM, Jordan M. Gene transfer and gene amplification in mammalian cells. GENE TRANSFER AND EXPRESSION IN MAMMALIAN CELLS 2003. [DOI: 10.1016/s0167-7306(03)38019-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Wu MH, Smith SL, Dolan ME. High efficiency electroporation of human umbilical cord blood CD34+ hematopoietic precursor cells. Stem Cells 2002; 19:492-9. [PMID: 11713340 DOI: 10.1634/stemcells.19-6-492] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human umbilical cord blood provides an alternative source of hematopoietic cells for purposes of transplantation or ex vivo genetic modification. The objective of this study was to evaluate electroporation as a means to introduce foreign genes into human cord blood CD34+ cells and evaluate gene expression in CD34+/CD38(dim) and committed myeloid progenitors (CD33+, CD11b+). CD34+ cells were cultured in X-VIVO 10 supplemented with thrombopoietin, stem cell factor, and Flt-3 ligand. Electroporation efficiency and cell viability measured by flow cytometry using enhanced green fluorescent protein (EGFP) as a reporter indicated 31% +/- 2% EGFP+ /CD34+ efficiency and 77% +/- 3% viability as determined 48 hours post-electroporation. The addition of allogeneic cord blood plasma increased the efficiency to 44% +/- 5% with no effect on viability. Of the total CD34+ cells 48 hours post-electroporation, 20% were CD38(dim)/EGFP+. CD34+ cells exposed to interleukin-3, GM-CSF and G-CSF for an additional 11 days differentiated into CD33+ and CD11b+ cells, and 9% +/- 3% and 8% +/- 7% were expressing the reporter gene, respectively. We show that electroporation can be used to introduce foreign genes into early hematopoietic stem cells (CD34+/CD38(dim)), and that the introduced gene is functionally expressed following expansion into committed myeloid progenitors (CD33+, CD11b+) in response to corresponding cytokines. Further investigation is needed to determine the transgene expression in functional terminal cells derived from the genetically modified CD34+ cells, such as T cells and dendritic cells.
Collapse
Affiliation(s)
- M H Wu
- Section of Hematology-Oncology, Department of Medicine and Cancer Research Center, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | | | | |
Collapse
|
9
|
Wagner K, Dendorfer U, Chilla S, Schlöndorff D, Luckow B. Identification of new regulatory sequences far upstream of the mouse monocyte chemoattractant protein-1 gene. Genomics 2001; 78:113-23. [PMID: 11735217 DOI: 10.1006/geno.2001.6660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We systematically searched for sequences influencing the expression of the mouse monocyte chemoattractant protein-1 (MCP-1) gene (Scya2) by mapping DNase I hypersensitive sites (HS) in the chromatin of mesangial cells in a 40-kb interval around the gene. We found nine HS located between -24 kb and +12.7 kb. Three HS coincided with previously known regulatory sequences (HS-2.4, HS-1.0, and HS-0.2). We tested two of the previously unknown HS located far upstream of Scya2 (HS-19.4 and HS-16.3) in transfection experiments using luciferase reporter constructs and mouse mesangial cells as recipients. In transient transfections, both HS had a moderate effect on basal promoter activity as well as promoter activity stimulated by tumor necrosis factor-alpha. In stable transfection experiments, we found much higher activity. A DNA fragment containing HS-19.4 and HS-16.3 caused a considerable increase in the number of stably integrated luciferase copies. We determined the nucleotide sequence of the 5' flanking region to -28.6 kb. Computer-assisted sequence analysis did not yield evidence of an additional gene. These HS are located within the 5' flanking region of a gene cluster consisting of Scya2 (MCP-1), Scya7 (MCP-3), Scya11 (eotaxin), Scya12 (MCP-5), and Scya8 (MCP-2). This report represents the first comprehensive chromatin analysis of the mouse MCP-1 locus leading to the identification of a complex regulatory region located far upstream of Scya2.
Collapse
Affiliation(s)
- K Wagner
- Ludwig-Maximilians-Universität, Medizinische Poliklinik, Schillerstrasse 42, D-80336 München, Germany
| | | | | | | | | |
Collapse
|
10
|
Wu MH, Smith SL, Danet GH, Lin AM, Williams SF, Liebowitz DN, Dolan ME. Optimization of culture conditions to enhance transfection of human CD34+ cells by electroporation. Bone Marrow Transplant 2001; 27:1201-9. [PMID: 11551032 DOI: 10.1038/sj.bmt.1703054] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to culture CD34+ stem cells, while maintaining their pluripotency, is essential for manipulations such as gene transfection for therapeutic trials. Human peripheral blood (PB) CD34+ cells (> or = 90% purity) were cultured for up to 4 days in serum-free culture medium supplemented with thrombopoietin (TPO), stem cell factor (SCF), Flt-3 ligand (Flt-3L), with or without PIXY321 (IL-3/GM-CSF fusion protein) and human serum. The CD34 mean fluorescence intensity (MFI) and cell cycle status were evaluated daily using flow cytometry and hypotonic propidium iodide. Prior to culture (day 0), 97.0 +/- 0.9%, 1.9 +/- 0.3% and 1.0 +/- 0.6% of the selected CD34+ cells were in G0-G1, S-phase, or G2-M, respectively. After 2-4 days in culture with TPO/SCF/Flt-3L, there was an increase in the percent of cells in S-phase to 26.4 +/- 0.1% without significant loss of CD34 MFI. The addition of PIXY321 increased.the percentage of CD34+ cells in S-phase to 36.3 +/- 4.0%, but the CD34 MFI and numbers of CFU (colony-forming units) were significantly decreased at day 3 when cultured with PIXY321 or various recombinant cytokine combinations that included IL-3 and IL-6. There is an increase from day 0 to day 4 in the percentages of CD34+ with CD38-, HLA-DR-, and c-kit(low), but not Thy-1+ cells. Electroporation with EGFP reporter gene showed that 1-2 days of pre-stimulation in X-VIVO 10 supplemented with TPO/SCF/Flt-3L was necessary and sufficient for efficient transfection. Flow cytometry analysis demonstrated that 22% of the viable cells are CD34+/EGFP+ 48 h post electroporation. The introduced reporter gene appears to be stable as determined by EGFP+/LTC-IC (long-term colony-initiating cells), at 30-40 positive colonies (16 +/- 7%) per 1 x 10(5) electroporated CD34+ cells.
Collapse
Affiliation(s)
- M H Wu
- Department of Medicine, and Cancer Research Center, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Wu MH, Liebowitz DN, Smith SL, Williams SF, Dolan ME. Efficient expression of foreign genes in human CD34(+) hematopoietic precursor cells using electroporation. Gene Ther 2001; 8:384-90. [PMID: 11313815 DOI: 10.1038/sj.gt.3301393] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2000] [Accepted: 11/16/2000] [Indexed: 11/09/2022]
Abstract
Introduction of foreign genes into human CD34(+) hematopoietic precursor cells offers a means to correct inborn errors or to protect human stem cells from chemotherapeutic damage. Electroporation is a non-chemical, nonviral, highly reproducible means to introduce foreign genes into mammalian cells that has been used primarily for rapidly dividing cells. CD34(+) cells isolated from mobilized peripheral blood of patients were cultured for 48 h in serum-free culture medium supplemented with Flt-3 ligand, stem cell factor and thrombopoietin. Cell cycle analysis showed an increase in % S-phase from 2% on day 0 to 28% on day 2 without significant loss of mean fluorescence intensity (MFI). Optimal electroporation conditions for CD34(+) cells were 550 V/cm, 38 ms, 30 microg DNA/500 microl at cell densities between 0.2 x 10(6) and 10 x 10(6) cells/ml resulting in transient EGFP gene expression in 21% (+/- 1%) of CD34(+) precursor cells, as determined by flow cytometry 48 h after electroporation. The more primitive cells were also found to be EGFP(+) as determined by subset analysis using Thy1, CD38, AC133 and c-kit conjugated monoclonal antibodies. Methylcellulose assays on electroporated CD34(+) cells yielded 20% (+/- 7%) EGFP(+) colonies (CFU-GM, BFU-E and CFU-mix) and 22% (+/- 5%) EGFP(+) long-term colony-initiating cells (LTC-IC). The reporter gene was found to be integrated into the LTC-IC genomic DNA as determined by inverse PCR and DNA sequencing. These results suggest that electroporation has the potential to effectively and stably deliver exogenous genes into human hematopoietic precursor cells.
Collapse
Affiliation(s)
- M H Wu
- Section of Hematology-Oncology and Cancer Research Center, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Box MC2115, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
While the technique of homologous recombination, or gene targeting, has led to the generation of transgenic mice of great value to biomedical research, similar approaches are only being developed in other species. With the exception of recent reports on the generation of gene-targeted sheep, the technology in domestic animals is still in its infancy (45). The development of techniques for generating large animals with deleted or modified genes will result in the generation of animals of great value to society. While the technical difficulties to achieve gene targeting in domestic species are significant, they are not insurmountable. Potential applications in both the bovine and porcine species are described with particular emphasis on the generation of cattle resistant to bovine spongiform encephalopathy (BSE) and pigs that can be of use in xenotransplantation.
Collapse
Affiliation(s)
- J A Piedrahita
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station 77843, USA
| |
Collapse
|
13
|
Affiliation(s)
- L Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA
| | | |
Collapse
|
14
|
Krueger WH, Madison DL, Pfeiffer SE. Transient transfection of oligodendrocyte progenitors by electroporation. Neurochem Res 1998; 23:421-6. [PMID: 9482256 DOI: 10.1023/a:1022426021173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transient transfection of transgenes into oligodendrocytes offers an important tool for studying the function of proteins during myelin formation. Currently established procedures, however, have generally resulted in low survival rates and low levels of uptake of the transgene into primary oligodendrocyte progenitors. We describe an electroporation method which yields transient transfection of oligodendrocyte progenitors of up to 10-15% of the surviving cells, and provides approximately 10(4) surviving, transfected cells per electroporation reaction. In recent applications transgene expression persisted as the transfected progenitors progressed through subsequent stages of the oligodendrocyte lineage. This technique is expected to facilitate the study of the function of key proteins and lipids during the development of primary cultured oligodendrocytes.
Collapse
Affiliation(s)
- W H Krueger
- Department of Microbiology, University of Connecticut Medical School, Farmington 06030-3205, USA.
| | | | | |
Collapse
|
15
|
Keating A, Berkahn L, Filshie R. A Phase I study of the transplantation of genetically marked autologous bone marrow stromal cells. Hum Gene Ther 1998; 9:591-600. [PMID: 9525320 DOI: 10.1089/hum.1998.9.4-591] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- A Keating
- University of Toronto Autologous Blood and Bone Marrow Transplant Program, The Toronto Hospital, Ontario, Canada
| | | | | |
Collapse
|
16
|
Hill DP, Robertson KA. Differentiation of LA-N-5 neuroblastoma cells into cholinergic neurons: methods for differentiation, immunohistochemistry and reporter gene introduction. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 2:183-90. [PMID: 9507116 DOI: 10.1016/s1385-299x(97)00041-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of model systems derived from cell lines has been a valuable tool in understanding the molecules and cellular processes that govern differentiation processes (T.R. Breitman, S.E. Selonick, S.J. Collins, Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid, Proc. Natl. Acad. Sci. USA 77 (1980) 2936-2940 [2]; N. Gomez, S. Traverse, P. Cohen, Identification of a MAP kinase in phaeochromocytoma (PC12) cells, FEBS Lett. 314 (1992) 461-465 [4]). The use of such systems provides an inexpensive, quick and simple way to identify and test molecules that can be further studied in more complex in vivo experiments. Some cell lines such as embryonic stem cells can be induced to differentiate in vitro, however, the differentiation is difficult to control and most often leads to the generation of a wide variety of cell types. Cell lines derived from sources committed to a restricted cell fate provide an opportunity to examine cell growth and differentiation within a specific cell type (G.M. Keller, In vitro differentiation of embryonic stem cells, Curr. Opin. Cell Biol. 7 (1995) 862-869 [10]). In this article we describe a simple system for the differentiation of the human neuroblastoma cell line LA-N-5 into cholinergic neurons using all-trans retinoic acid (G. Han, B. Chang, M.J. Connor, N. Sidell, Enhanced potency of 9-cis versus all-trans retinoic acid to induce the differentiation of human neuroblastoma cells, Differentiation, 59 (1995) 61-69 [5]; D.P. Hill, K.R. Robertson, Characterization of the cholinergic neuronal differentiation of the human neuroblastoma cell line LA-N-5 after treatment with retinoic acid, Dev. Brain Res. 102 (1997) 53-67 [6]; J.A. Robson, N. Sidell, Ultrastructural features of a human neuroblastoma cell line treated with retinoic acid, Neuroscience 14 (1985) 1149-1162 [12]; N. Sidell, C.A. Lucas, G.W. Kreutzberg, Regulation of acetylcholinesterase activity by retinoic acid in a human neuroblastoma cell line, Exp. Cell Res. 155 (1984) 305-309 [14]). These cells provide a setting for the study of cholinergic neuronal differentiation and of the factors that influence that process. We also discuss procedures that can be used to study gene expression in LA-N-5 cells by immunohistochemistry and reporter gene analysis.
Collapse
Affiliation(s)
- D P Hill
- Department of Pediatrics, Indiana University School of Medicine, Herman B Wells Center for Pediatric Research, Riley Hospital for Children, Room 2600, 702 Barnhill Drive, Indianapolis, IN 46202, USA
| | | |
Collapse
|
17
|
Henderson G, Simons JP. Processing of DNA prior to illegitimate recombination in mouse cells. Mol Cell Biol 1997; 17:3779-85. [PMID: 9199311 PMCID: PMC232229 DOI: 10.1128/mcb.17.7.3779] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In mammalian cells, the predominant pathway of chromosomal integration of exogenous DNA is random or illegitimate recombination; integration by homologous recombination is infrequent. Homologous recombination is initiated at double-strand DNA breaks which have been acted on by single-strand exonuclease. To further characterize the relationship between illegitimate and homologous recombination, we have investigated whether illegitimate recombination is also preceded by exonuclease digestion. Heteroduplex DNAs which included strand-specific restriction markers at each of four positions were generated. These DNAs were introduced into mouse embryonic stem cells, and stably transformed clones were isolated and analyzed to determine whether there was any strand bias in the retention of restriction markers with respect to their positions. Some of the mismatches appear to have been resolved by mismatch repair. Very significant strand bias was observed in the retention of restriction markers, and there was polarity of marker retention between adjacent positions. We conclude that DNA is frequently subjected to 5'-->3' exonuclease digestion prior to integration by illegitimate recombination and that the length of DNA removed by exonuclease digestion can be extensive. We also provide evidence which suggests that frequent but less extensive 3'-->5' exonuclease processing also occurs.
Collapse
Affiliation(s)
- G Henderson
- Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, London, United Kingdom
| | | |
Collapse
|
18
|
Schäfer H, Schäfer A, Kiderlen AF, Masihi KN, Burger R. A highly sensitive cytotoxicity assay based on the release of reporter enzymes, from stably transfected cell lines. J Immunol Methods 1997; 204:89-98. [PMID: 9202713 DOI: 10.1016/s0022-1759(97)00040-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The well-established methods of generating stably transfected cell lines, and the detection of nanomolar amounts of an enzyme in a fast and reproducible assay, were utilised to establish non-radiometric cytotoxicity assays. In these assay systems, the detection of released enzymes was used to quantitate the leakage of intracellular proteins after membrane disintegration. Target cell lines were transfected with a luciferase reporter gene under the control of a strong eucaryotic promoter. Release of the intracellular expressed enzyme into the culture supernatant occurred after membrane perforation and was measured as an indicator of cellular death. The quantitation of released enzyme was a reliable indicator of cell death initiated either by complement-mediated killing, or by cell-mediated cytotoxicity. This system was initially established with P815 mastocytoma cells as an example of a target cell line. Transfection with the firefly luciferase gene provided an intracellular enzyme absent in mammalian cells. In a parallel approach, P815 and BW5147 target cells were transfected with bacterial beta-galactosidase to provide a similar cytotoxicity system. This enzyme, however, has a considerably longer half life in tissue culture medium than luciferase. In a direct comparison between the standard 51Cr release and beta-galactosidase release, the enzyme release showed a much higher signal-to-noise ratio, i.e., low background and high induced release if spontaneous release and detergent induced maximal lysis were measured. Since a wide range of human and murine cell lines can be stably transfected and several reporter genes are available, the system should provide an alternative for conventional cytotoxicity assays. The detection of released enzymes by colorimetric or luminometric methods makes this cytotoxicity assay independent of radionuclides. The sensitivity of luminometric enzyme detection systems should also permit the measurement of apoptotic processes and might make in vivo studies of cellular death using transgenic animals feasible.
Collapse
Affiliation(s)
- H Schäfer
- Department of Immunology, Robert Koch-Institute, Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Physical, chemical and physiological parameters for electroporation-mediated gene delivery into rice protoplasts. Transgenic Res 1995. [DOI: 10.1007/bf01973754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Wurst W, Rossant J, Prideaux V, Kownacka M, Joyner A, Hill DP, Guillemot F, Gasca S, Cado D, Auerbach A. A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics 1995; 139:889-99. [PMID: 7713439 PMCID: PMC1206388 DOI: 10.1093/genetics/139.2.889] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have used a gene-trap vector and mouse embryonic stem (ES) cells to screen for insertional mutations in genes developmentally regulated at 8.5 days of embryogenesis (dpc). From 38,730 cell lines with vector insertions, 393 clonal integrations had disrupted active transcription units, as assayed by beta-galactosidase reporter gene expression. From these lines, 290 clones were recovered and injected into blastocysts to assay for reporter gene expression in 8.5-dpc chimeric mouse embryos. Of these, 279 clones provided a sufficient number of chimeric embryos for analysis. Thirty-six (13%) showed restricted patterns of reporter-gene expression, 88 (32%) showed widespread expression and 155 (55%) failed to show detectable levels of expression. Further analysis showed that approximately one-third of the clones that did not express detectable levels of the reporter gene at 8.5 dpc displayed reporter gene activity at 12.5 dpc. Thus, a large proportion of the genes that are expressed in ES cells are either temporally or spatially regulated during embryogenesis. These results indicate that gene-trap mutageneses in embryonic stem cells provide an effective approach for isolating mutations in a large number of developmentally regulated genes.
Collapse
Affiliation(s)
- W Wurst
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Vatteroni L, Piras A, Simi S, Mariani L, Moretti A, Citti L, Mariani T, Rainaldi G. Analysis of electroporation-induced genetic damages in V79/AP4 Chinese hamster cells. Mutat Res 1993; 291:163-9. [PMID: 7685057 DOI: 10.1016/0165-1161(93)90156-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electroporation is a recent technique used to introduce exogenous DNA into eukaryotic cells. It is important to establish that the gene of interest is transferred into a functional, non-mutated recipient cell. V79/AP4 Chinese hamster cells were exposed to high-voltage pulsed electric fields and some biological and genetic effects were measured. The results showed that cytotoxicity was related in a dose-dependent manner to the number of applied pulses. Thioguanine-resistant colony-forming cells as well as chromosomal aberrations were also induced whereas ouabain resistants and sister-chromatid exchanges were not or slightly induced. Spontaneous and electroporation-induced clones that were phenotypically TGR/HATS were used to investigate the hprt locus. Molecular screening of the locus showed that the number of deleted exons was significantly higher in induced than in spontaneous TG-resistant clones, suggesting that the genetic damages induced by electroporation concern the loss of regions well over the size of the hprt locus.
Collapse
Affiliation(s)
- L Vatteroni
- Istituto di Mutagenesi e Differenziamento, CNR, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Production of genetically modified cells expressing specific transgenes by retroviral vectors for gene therapy. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf01667370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Kumar S, Simons JP. The effects of terminal heterologies on gene targeting by insertion vectors in embryonic stem cells. Nucleic Acids Res 1993; 21:1541-8. [PMID: 8386835 PMCID: PMC309360 DOI: 10.1093/nar/21.7.1541] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have examined the effects of placing nonhomologous DNA on the ends of an insertion-type gene targeting vector. The presence of terminal heterologies was found to be compatible with insertion targeting, and the terminal heterologies were efficiently removed. Terminal heterologies reduced the frequency of gene targeting to variable extents. The degree of inhibition of targeting was dependent on the length and the position of the heterology: 2.1kb heterologous sequences were more inhibitory than shorter regions of heterology, and heterology placed on the end of the long (4.8kb) arm of homology was more inhibitory than heterology positioned on the end of the short (0.8kb) arm. When heterology was placed on both arms of the targeting vector the targeting efficiencies were similar to or higher than when heterology was present on the long arm only. These results suggest that terminal sequences are removed simultaneously from both ends of targeting vectors. The removal of terminal sequences probably occurs by exonucleolytic degradation of both strands at each end, and removal of at least one of the strands is intimately coupled with the process of homologous recombination. These findings have implications for the design of gene targeting vectors.
Collapse
Affiliation(s)
- S Kumar
- Department of Molecular Genetics, AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian, UK
| | | |
Collapse
|
25
|
Affiliation(s)
- G A Neil
- Department of Internal Medicine, University of Iowa, Iowa City 52242
| | | |
Collapse
|
26
|
Investigation of coelectroporation as a method for introducing small mutations into embryonic stem cells. Mol Cell Biol 1992. [PMID: 1588968 DOI: 10.1128/mcb.12.6.2769] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated coelectroporation as a method for introducing minor genetic changes into specific genes in embryonic stem cells. A selectable marker (neo) and a targeting replacement vector designed to insert a 4-bp insertion into exon 3 of the mouse hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene were coelectroporated into embryonic stem cells and selected in G418 and 6-thioguanine (6-TG). HPRT-negative clones were obtained at a frequency of approximately 1 per 520 G418r clones. Southern analysis and the polymerase chain reaction were used to demonstrate that 3 of 36 of the 6-TG-resistant clones had the desired 4-bp insertion without any other disruption of the HPRT locus. Initial studies indicated that the other 33 6-TG-resistant clones probably resulted from the targeted integration of a concatemer containing both the targeting construct and the selectable neo gene.
Collapse
|
27
|
Davis AC, Wims M, Bradley A. Investigation of coelectroporation as a method for introducing small mutations into embryonic stem cells. Mol Cell Biol 1992; 12:2769-76. [PMID: 1588968 PMCID: PMC364471 DOI: 10.1128/mcb.12.6.2769-2776.1992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have investigated coelectroporation as a method for introducing minor genetic changes into specific genes in embryonic stem cells. A selectable marker (neo) and a targeting replacement vector designed to insert a 4-bp insertion into exon 3 of the mouse hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene were coelectroporated into embryonic stem cells and selected in G418 and 6-thioguanine (6-TG). HPRT-negative clones were obtained at a frequency of approximately 1 per 520 G418r clones. Southern analysis and the polymerase chain reaction were used to demonstrate that 3 of 36 of the 6-TG-resistant clones had the desired 4-bp insertion without any other disruption of the HPRT locus. Initial studies indicated that the other 33 6-TG-resistant clones probably resulted from the targeted integration of a concatemer containing both the targeting construct and the selectable neo gene.
Collapse
Affiliation(s)
- A C Davis
- Institute for Molecular Genetics, Baylor College of Medicine, Houston 77030
| | | | | |
Collapse
|
28
|
Abstract
We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations.
Collapse
|
29
|
Reid LH, Shesely EG, Kim HS, Smithies O. Cotransformation and gene targeting in mouse embryonic stem cells. Mol Cell Biol 1991; 11:2769-77. [PMID: 1850104 PMCID: PMC360052 DOI: 10.1128/mcb.11.5.2769-2777.1991] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations.
Collapse
Affiliation(s)
- L H Reid
- Department of Pathology, University of North Carolina, Chapel Hill 27599
| | | | | | | |
Collapse
|
30
|
Emilie D, Matthes M, Grégoire C, Letourneur F, Wegener AM, Nicolas JF, Malissen B. Fluorescence-based monitoring of interleukin-2 gene expression. Immunol Rev 1991; 119:95-103. [PMID: 1904398 DOI: 10.1111/j.1600-065x.1991.tb00579.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- D Emilie
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Takahashi M, Furukawa T, Saitoh H, Aoki A, Koike T, Moriyama Y, Shibata A. Gene transfer into human leukemia cell lines by electroporation: experience with exponentially decaying and square wave pulse. Leuk Res 1991; 15:507-13. [PMID: 1907340 DOI: 10.1016/0145-2126(91)90062-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The efficiency of gene transfer into human leukemia cell lines by electroporation was investigated. For both transient expression (beta-galactosidase gene) and stable transformation (neomycin resistance gene), the transfer efficiency into leukemia cell lines using a square wave pulse was superior to that using an exponentially decaying wave. The transfer rate of pMoZtk (containing beta-galactosidase gene) into K562 by electroporation using a square wave was approximately 5%, compared with 1% by an exponentially decaying pulse. Whereas the transfer rate of pMAM-neo into K562 by electroporation using an exponentially decaying pulse was less than 10(-5), a square wave generated much more efficient introduction rate of nearly 10(-3). In the other leukemia cell lines also, some square wave yields were better than exponential yields and all square wave yields were at least as good as the exponential yields.
Collapse
Affiliation(s)
- M Takahashi
- First Department of Internal Medicine, Niigata University, School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Mutant hybridoma-myeloma cell lines that are defective in immunoglobulin production are expected to be useful for defining the molecular requirements of immunoglobulin gene expression. The analysis of such mutants would be greatly facilitated if they could be mapped by marker rescue, i.e., by identifying the segments of wild-type DNA that can restore the normal phenotype by homologous recombination with the mutant chromosomal immunoglobulin gene. To assess the feasibility of this type of mapping, we have measured the efficiency with which fragments of wild-type DNA recombine with a mutant hybridoma immunoglobulin gene and restore normal immunoglobulin production. We found that most if not all recombinants were detectable 2 days after DNA transfer and that the frequency of gene restoration increased with increasing length of the transferred mu gene fragments, between 1.2 and 9.5 kilobases. These results indicate that the available technology should be adequate to map mutations in the mu gene to within approximately 1 kilobase.
Collapse
|
33
|
Shulman MJ, Nissen L, Collins C. Homologous recombination in hybridoma cells: dependence on time and fragment length. Mol Cell Biol 1990; 10:4466-72. [PMID: 2117699 PMCID: PMC361032 DOI: 10.1128/mcb.10.9.4466-4472.1990] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutant hybridoma-myeloma cell lines that are defective in immunoglobulin production are expected to be useful for defining the molecular requirements of immunoglobulin gene expression. The analysis of such mutants would be greatly facilitated if they could be mapped by marker rescue, i.e., by identifying the segments of wild-type DNA that can restore the normal phenotype by homologous recombination with the mutant chromosomal immunoglobulin gene. To assess the feasibility of this type of mapping, we have measured the efficiency with which fragments of wild-type DNA recombine with a mutant hybridoma immunoglobulin gene and restore normal immunoglobulin production. We found that most if not all recombinants were detectable 2 days after DNA transfer and that the frequency of gene restoration increased with increasing length of the transferred mu gene fragments, between 1.2 and 9.5 kilobases. These results indicate that the available technology should be adequate to map mutations in the mu gene to within approximately 1 kilobase.
Collapse
Affiliation(s)
- M J Shulman
- Department of Immunology, University of Toronto, Canada
| | | | | |
Collapse
|
34
|
Giaccia AJ, MacLaren RA, Denko N, Nicolaou D, Stamato TD. Increased sensitivity to killing by restriction enzymes in the XR-1 DNA double-strand break repair-deficient mutant. Mutat Res 1990; 236:67-76. [PMID: 2164147 DOI: 10.1016/0921-8777(90)90034-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Repair or misrepair of DNA double-strand breaks (DSBs) is critical in determining cellular survival after gamma-irradiation. In this report, we focus on the cellular and biochemical consequences of restriction enzyme induced DSBs in wild-type Chinese hamster ovary (CHO) cells and the DNA DSB repair-defective mutant XR-1. We find that XR-1 possesses reduced cellular survival after the introduction of restriction enzymes that produce either cohesive or blunt ends. XR-1's sensitivity to killing by restriction enzymes strongly mimics its response to gamma-rays. Using pulsed field electrophoresis, we find that for each enzyme, similar numbers of DNA DSBs are being introduced in both cell lines. The simplest explanation for the increased sensitivity to restriction enzymes in the mutant is that the biochemical defect in XR-1 is not confined to the repair of ionizing radiation induced ends, but extends to DSBs that possess ligatable 3'-hydroxyl and 5'-phosphate ends as well.
Collapse
Affiliation(s)
- A J Giaccia
- Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104
| | | | | | | | | |
Collapse
|
35
|
Oellig C, Seliger B. Gene transfer into brain tumor cell lines: reporter gene expression using various cellular and viral promoters. J Neurosci Res 1990; 26:390-6. [PMID: 2398515 DOI: 10.1002/jnr.490260317] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study we determined the optimal conditions for transferring DNA into rat and human brain tumor cell lines of glial and neuronal origin using electroporation as the transfection method. Gene transfer efficiency was measured in terms of transient chloramphenicol acetyltransferase (CAT) activity and stable neomycin expression. Moreover, the activity of a variety of cellular and viral promoters in brain tumor cell lines of distinct origin was characterized. The results revealed various expression patterns, including glial as well as neuronal specific promoter activity.
Collapse
Affiliation(s)
- C Oellig
- Ludwig Institute for Cancer Research, Stockholm, Sweden
| | | |
Collapse
|
36
|
Hauer CA, Getty RR, Tykocinski ML. Epstein-Barr virus episome-based promoter function in human myeloid cells. Nucleic Acids Res 1989; 17:1989-2003. [PMID: 2538801 PMCID: PMC317538 DOI: 10.1093/nar/17.5.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epstein-Barr virus (EBV) episomal replicons offer an expeditious means for amplifying transfected genes in human cells. A panel of EBV episomes was constructed to assess the relative utility of five distinct eukaryotic promoter elements for high level and inducible gene expression in stably transfected human myeloid leukemia cells. The Rous sarcoma virus 3' long terminal repeat (LTR) was most highly suited for EBV episome-based gene expression, whereas the lymphopapilloma virus and the SV40 early regulatory elements exhibited substantially lower activities. Chemically responsive promoter elements, such as the SV40 early, human metallothionein IIA and rat GRP78 gene promoters, retained their inducibility when EBV episome-based. Differences in gene expression obtained with the episomes reflected differential promoter activity rather than significant variations in episome copy numbers per cell. These observations provide guidelines for the optimal design of EBV episomal expression vectors for human expression work.
Collapse
Affiliation(s)
- C A Hauer
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | | | | |
Collapse
|
37
|
Affiliation(s)
- H Potter
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|