1
|
Abstract
Vitamin B6 is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the Escherichia coli MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. E. coli and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in E. coli vitamin B6 metabolism. In E. coli, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B6 metabolism in E. coli, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.
Collapse
|
2
|
Evolutionary History of Eukaryotic α-Glucosidases from the α-Amylase Family. J Mol Evol 2013; 76:129-45. [DOI: 10.1007/s00239-013-9545-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/25/2013] [Indexed: 11/26/2022]
|
3
|
Gabriško M, Janeček Š. Characterization of Maltase Clusters in the Genus Drosophila. J Mol Evol 2010; 72:104-18. [DOI: 10.1007/s00239-010-9406-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
|
4
|
Abstract
A simple and general homology-based method for gene finding was applied to the 2.9-Mb Drosophila melanogaster Adh region, the target sequence of the Genome Annotation Assessment Project (GASP). Each strand of the entire sequence was used as query of the BLOCKS+ database of conserved regions of proteins. This led to functional assignments for more than one-third of the genes and two-thirds of the transposons. Considering the enormous size of the query, the fact that only two false-positive matches were reported emphasizes the high selectivity of protein family-based methods for gene finding. We used the search results to improve BLOCKS+ by identifying compositionally biased blocks. Our results confirm that protein family databases can be used effectively in automated sequence annotation efforts.
Collapse
Affiliation(s)
- J G Henikoff
- Howard Hughes Medical Institute, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
5
|
Baldauf SL. A Search for the Origins of Animals and Fungi: Comparing and Combining Molecular Data. Am Nat 1999; 154:S178-S188. [PMID: 10527926 DOI: 10.1086/303292] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Green plants, animals, and fungi have long held our interest as complex, largely multicellular eukaryotes of indeterminate origin. Considerable progress has now been made toward understanding the evolutionary relationships among these taxa as well as identifying their closest protistan relatives. An exclusive animal-fungal clade (the Opisthokonta) is now widely accepted based on an insertion in the protein synthesis elongation factor 1alpha (EF-1alpha) and molecular phylogenies of ribosomal RNAs and the conservative proteins actin, alpha-tubulin, beta-tubulin, and EF-1alpha. Protein data also suggest that the cellular (dictyostelid) and acellular (myxogastrid) slime molds are a close outgroup to the animal-fungal clade. Subsequent sequencing and phylogenetic analysis of EF-1alpha sequences very strongly support a monophyletic slime mold clade (the Mycetozoa or Eumycetozoa), which also includes the lesser-known protostelid slime molds. Monophyly of the opisthokont and mycetozoan clades, exclusive of green plants, is suggested by individual analyses of EF-1alpha and actin and given strong support by concatenated protein data. Neither the monophyly of the slime molds nor their close relationship to animals and fungi are consistently supported by ribosomal RNA data. Thus, it appears unlikely that any single molecule will accurately reconstruct all higher-order taxonomy.
Collapse
|
6
|
Argaet V, Wilson T, Davidson B. Purification of the Escherichia coli regulatory protein TyrR and analysis of its interactions with ATP, tyrosine, phenylalanine, and tryptophan. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37671-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Liebl W, Feil R, Gabelsberger J, Kellermann J, Schleifer KH. Purification and characterization of a novel thermostable 4-alpha-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:81-8. [PMID: 1628664 DOI: 10.1111/j.1432-1033.1992.tb17023.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Maltodextrin glycosyltransferase (4-alpha-glucanotransferase) of the extremely thermophilic ancestral bacterium Thermotoga maritima has been purified from an Escherichia coli clone expressing the corresponding T. maritima MSB8 chromosomal gene. T. maritima 4-alpha-glucanotransferase, an approximately 53-kDa monomeric enzyme, is the most thermophilic glycosyltransferase described to date. It retained more than 90% of its maximum activity at temperatures from 55 degrees C up to 80 degrees C. The proposed action modus is the transfer of 1,4-alpha-glucanosyl chains, thus resulting in the disproportionation of 1,4-alpha-glucans. It converted soluble starch, amylopectin, and amylose, thereby changing the iodine staining properties of these substrates. The addition of low-molecular-mass malto-oligosaccharides, which act as glucanosyl acceptor molecules, enhanced the reaction and resulted in the formation of a series of linear maltohomologues from two to more than nine glucose units in size. Use of either of the malto-oligosaccharides maltotetraose, maltopentaose, maltohexaose, or maltoheptaose as sole substrate also yielded linear maltohomologues. On the other hand, maltose and maltotriose were not disproportionated by 4-alpha-glucanotransferase, although both were good acceptors for glucanosyl transfer. Glucose did not function as an acceptor in transfer reactions. Glucose also never appeared as a reaction product. The chain length of glucanosyl segments transferred ranged from two to probably far more than six glucose residues. Comparison of the N-terminal amino acid sequence of 4-alpha-glucanotransferase with other published protein sequences revealed significant similarity to sequences near the N-termini of various eucaryotic maltases and bacterial cyclodextrin glycosyltransferases, suggesting its relatedness on the molecular level with other starch- and maltodextrin-converting enzymes.
Collapse
Affiliation(s)
- W Liebl
- Institute for Microbiology, Technical University Munich, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
8
|
Hawley SA, Doane WW, Norman RA. Molecular analysis ofcis-regulatory sequences at the ?-amylase locus inDrosophila melanogaster. Biochem Genet 1992. [DOI: 10.1007/bf00553754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Hawley SA, Doane WW, Norman RA. Molecular analysis of cis-regulatory sequences at the alpha-amylase locus in Drosophila melanogaster. Biochem Genet 1992; 30:257-77. [PMID: 1616481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Amylase locus in Drosophila melanogaster contains duplicate, divergently transcribed structural genes for alpha-amylase, AmyA and AmyB. A sensitive and reliable transient expression assay was developed for testing amylase activities produced by exogenous Amy genes in somatically transformed larvae of an amylase-null strain of flies. Alleles tested, AmyA and AmyB, came from recombinant clone lambda Dm65, which contains genomic DNA from a Canton-S strain. The transient assay was used in a deletion analysis aimed at locating cis-regulatory sequences within the 5' region of AmyB. Results suggest that upstream regulatory sequences for correct spatial expression of AmyA and AmyB in third-instar larvae are located within 446 and 430 bp of their respective starts for transcription. A sequence required for high levels of AmyB expression was located within its 5' upstream region between the base pairs at -332 and -219. AmyA does not appear to have a comparable regulatory element in its 5'-flanking sequence. Barely detectable expression of AmyB was observed when it was flanked by only 92 bp of upstream sequence. A model is proposed for incomplete coordinate control of the duplicate Amy genes.
Collapse
Affiliation(s)
- S A Hawley
- Department of Zoology, Arizona State University, Tempe 85287-1501
| | | | | |
Collapse
|
10
|
Molecular analysis ofcis-regulatory sequences at the α-amylase locus inDrosophila melanogaster. Biochem Genet 1992. [DOI: 10.1007/pl00020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Molecular analysis ofcis-regulatory sequences at the α-amylase locus inDrosophila melanogaster. Biochem Genet 1992. [DOI: 10.1007/bf02396216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Abstract
An algorithm is described that can detect certain errors within coding regions of DNA sequences. The algorithm is based on the idea that an insertion or deletion error within a coding sequence would interrupt the reading frame and cause the correct translation of a DNA sequence to require one or more frameshifts. If the coding sequence shows similarity to a known protein sequence then such errors can be detected by comparing the conceptual translations of DNA sequences in all six reading frames with every sequence in a protein sequence data base. We have incorporated these ideas into a computer program, called DETECT, that can serve as an aid to the experimentalist who is determining new DNA sequences so that obvious errors may be located and corrected. The program has been tested using raw experimental data and against sequences from the European Molecular Biology Laboratory data base, annotated as containing frameshifts. We have also tested it using unidentified open reading frames that flank known, annotated genes in the GenBank data base. Many potential errors are apparent and in some cases functions can be suggested for the "corrected" versions of these reading frames leading to the identification of new genes. As more sequences are determined the power of this method will increase substantially.
Collapse
Affiliation(s)
- J Posfai
- Institute of Biophysics, Hungarian Academy of Science, Szeged
| | | |
Collapse
|
13
|
Kylsten P, Kimbrell DA, Daffre S, Samakovlis C, Hultmark D. The lysozyme locus in Drosophila melanogaster: different genes are expressed in midgut and salivary glands. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:335-43. [PMID: 1588905 DOI: 10.1007/bf00266235] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As part of a study of the genes involved in antibacterial defense in Drosophila melanogaster, we have isolated genomic clones harboring a family of chicken-type lysozyme genes, using a lepidopteran lysozyme cDNA as probe. The locus was mapped to the cytological location 61F1-4 on the third chromosome and two of the genes at this locus, LysD and LysP, were analyzed in detail. In contrast to the bacteria-induced lysozymes in the hemolymph of many insects, the transcription levels of both Drosophila genes decrease after bacterial injections into the hemocoel. Apparently, these gene products, like the specifically adapted lysozymes in mammalian foregut fermenters, have been recruited for the digestion of bacteria present in fermenting food. The LysD gene is expressed in an anterior section of the midgut during all feeding stages of development in both larvae and adults. The LysP gene is only active in the adult where it is expressed in the salivary glands. The transcription units for both genes are very compact and they lack introns. Lysozyme D is unusual in that it is predicted to have an acidic isoelectric point whereas lysozyme P appears to be a typical basic lysozyme.
Collapse
Affiliation(s)
- P Kylsten
- Department of Molecular Biology, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
14
|
Rat L, Veuille M, Lepesant JA. Drosophila fat body protein P6 and alcohol dehydrogenase are derived from a common ancestral protein. J Mol Evol 1991; 33:194-203. [PMID: 1920455 DOI: 10.1007/bf02193634] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drosophila melanogaster alcohol dehydrogenase is an example of convergent evolution: it is not related to the ADHs of other organisms, but to short-chain dehydrogenases, which until now have been found only in bacteria and in mammalian steroid hormone metabolism. We present evidence that the Drosophila ADH is phylogenetically more closely related to P6, another highly expressed protein from the fat body of Drosophila, than it is to the short-chain dehydrogenases. The polypeptide sequence of P6 was inferred from DNA sequence analysis. Both ADH and P6 polypeptides have retained a high structural similarity with respect to the Chou-Fasman prediction of secondary structure and hydropathy. P6 is also homologous to the 25-kd protein from the fat body of Sarcophaga peregrina, whose sequence we have reexamined. The evolution of the P6-ADH family of proteins is characterized by a dramatic increase in the methionine content of P6. Methionine accounts for 20% of P6 amino acids. This is in contrast with the absence of this amino acid in mature ADH. There is evidence that P6 and the 25-kd protein have undergone a parallel and independent enrichment in methionine. When corrected for this, the rate of amino acid replacement shows that the P6-25-kd lineage diverged from insect ADH shortly before the divergence of the ADH gene (Adh) from its 3'-duplication (Adh-dup).
Collapse
Affiliation(s)
- L Rat
- Institut Jacques Monod, CNRS, Paris, France
| | | | | |
Collapse
|
15
|
|
16
|
Morris ME, Jinks-Robertson S. Nucleotide sequence of the LYS2 gene of Saccharomyces cerevisiae: homology to Bacillus brevis tyrocidine synthetase 1. Gene 1991; 98:141-5. [PMID: 2013406 DOI: 10.1016/0378-1119(91)90117-t] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Saccharomyces cerevisiae LYS2 gene, which encodes alpha-aminoadipate reductase, an essential enzyme in the yeast lysine biosynthetic pathway, has been sequenced. A large open reading frame (ORF) has been identified which can specify a 1392-amino acid protein with a deduced Mr of 155,344. A DNA database search using the translated LYS2 ORF as a probe has revealed significant aa sequence homology to the Bacillus brevis enzyme tyrocidine synthetase 1.
Collapse
Affiliation(s)
- M E Morris
- Department of Biology, Emory University, Atlanta, GA 30322
| | | |
Collapse
|
17
|
Dorer DR, Christensen AC, Johnson DH. A novel RNA helicase gene tightly linked to the Triplo-lethal locus of Drosophila. Nucleic Acids Res 1990; 18:5489-94. [PMID: 2170937 PMCID: PMC332228 DOI: 10.1093/nar/18.18.5489] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Triplo-lethal (Tpl) locus of Drosophila is the only known locus which is lethal when present in three copies rather than the normal two. After recovering a hybrid-dysgenesis-induced mutation of Tpl we used a rapid combination of transposon tagging, chromosome microdissection and PCR to clone the P element that had transposed into the Tpl region. That P element is located within the gene for a new and unique member of the RNA helicase family. This new helicase differs from all others known by having glycine-rich repeats at both the amino and carboxyl termini. Curiously, genetic analysis shows that the P element inserted into this gene is not responsible for the Tpl mutant phenotype. We present possible explanations for these findings.
Collapse
Affiliation(s)
- D R Dorer
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | |
Collapse
|
18
|
Seely O, Feng DF, Smith DW, Sulzbach D, Doolittle RF. Construction of a facsimile data set for large genome sequence analysis. Genomics 1990; 8:71-82. [PMID: 2081603 DOI: 10.1016/0888-7543(90)90227-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A test was devised for exploring the question of whether it will be possible to identify genes in large-scale genome studies solely by sequence comparison with current sequence collections. To this end, a facsimile data set was constructed by dividing GenBank Release 56 randomly into two halves, one to serve as a reference set and the other intended to simulate raw data anticipated from large genome sequence projects. All supplementary information and identifying marks were removed from the test set after assignment of random identification numbers to each entry and their encryption. Because noncoding intervening sequences (introns) are underrepresented in GenBank, a program that introduced (simulated) introns into mRNA and prokaryotic sequences was devised. In a further attempt to make the problem of identification more realistic, random base substitutions and single-base deletions were also incorporated. The randomly ordered entries were concatenated, along with random intergenic flanking sequences, into a single long "chromosome" 33 Mb in length and then cut into "cosmids" 50-100 kb long. The chopping process was conducted in such a way that terminal overlaps would allow the order of the entries in the chromosome to be reconstituted. Finally, the sequences of a substantial fraction of the cosmids were converted to their complements. Preliminary searching of 10 test cosmids revealed that more than two-thirds of the entries in the test set should be readily identifiable by type of gene product solely on the basis of comparison with the reference set. These preliminary results suggest that existing computer regimens and sequence collections would be able to identify the majority of eukaryotic genes in any new raw data set, the existence of introns not withstanding. Moreover, the analysis can be conducted in pace with the data collection so that the search results and summary identifications will be instantly available to the research community at large.
Collapse
Affiliation(s)
- O Seely
- Center for Molecular Genetics, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
19
|
Abstract
The a mating-type region of Neurospora crassa controls several major events in both the sexual and asexual phases of the fungal life cycle. This 3235-base-pair DNA segment is not homologous to the comparable genetic region of the A mating type. The unique a and A regions are bordered by nearly identical DNA sequences. The a genetic region contains at least two functional segments. One segment encodes a perithecium maturation function that is dependent on the second segment for phenotypic expression. This second a segment encodes a spliced mRNA that specifies the mt a-1 polypeptide. This polypeptide appears to be responsible for vegetative incompatibility, mating identity, and perithecium induction. The a-1 transcript is produced vegetatively and under conditions that induce sexual differentiation. The amino-terminal half of the mt a-1 polypeptide is homologous to the shorter Schizosaccharomyces pombe mat-Mc polypeptide. This homology and the properties of mt a-1 mutants suggest that the a-1 polypeptide segment that is homologous to the mat-Mc polypeptide may be primarily responsible for mating functions, while the distal segment is required for vegetative incompatibility.
Collapse
Affiliation(s)
- C Staben
- Department of Biological Sciences, Stanford University, CA 94305-5020
| | | |
Collapse
|
20
|
Endow SA, Henikoff S, Soler-Niedziela L. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 1990; 345:81-3. [PMID: 1691829 DOI: 10.1038/345081a0] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Contrary to the traditional view that microtubules pull chromosomes polewards during the anaphase stage of meiotic and mitotic cell divisions, new evidence suggests that the chromosome movements are driven by a motor located at the kinetochore. The process of chromosome segregation involves proper arrangement of kinetochores for spindle attachment, followed by spindle attachment and chromosome movement. Mechanisms in Drosophila for chromosome segregation in meiosis differ in males and females, implying the action of different gene products in the two sexes. A product encoded at the claret locus in Drosophila is required for normal chromosome segregation in meiosis in females and in early mitotic divisions of the embryo. Here we show that the predicted amino-acid sequence of this product is related to the heavy chain of kinesin. The conserved region corresponds to the kinesin motor domain and includes the ATP-binding site and a region that can bind microtubules. A second region contains a leucine repeat motif which may mediate protein-subunit interactions necessary for attachment of chromosomes to the spindle. The mutant phenotype of chromosome nondisjunction and loss, and its similarity to the kinesin ATP-binding domain, suggest that the product encoded at claret not only stabilizes chromosome attachments to the spindle, but may also be a motor that drives chromosome segregation in female meiosis.
Collapse
Affiliation(s)
- S A Endow
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
21
|
Keller JW, Baurick KB, Rutt GC, O'Malley MV, Sonafrank NL, Reynolds RA, Ebbesson LO, Vajdos FF. Pseudomonas cepacia 2,2-dialkylglycine decarboxylase. Sequence and expression in Escherichia coli of structural and repressor genes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39393-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Abstract
The X-linked Stellate locus contains two major size classes of a tandemly repeated gene. An example of each class has been sequenced. The steady-state level of Stellate RNA is much higher in XO testis than in XY testis. Sequencing of six cDNA clones derived from XO testis RNA shows that there are two major introns in the Stellate genes. Primer extension and RNase protection analyses show that these introns are spliced much more efficiently in XO than in XY testis. These results also indicate the major transcriptional start site for Stellate RNA. P element transformation results with a marked Stellate gene demonstrate that at least one of the genes sequenced contains a functional promoter, which generates low levels of RNA in XY testis and high levels of RNA in XO testis. This promoter does not contain a TATA element in the -30 region relative to the transcriptional start. Previous results had implicated a specific region of the Y chromosome, designated here as the Su(Ste) locus, in the control of the Stellate genes on the X. Analysis using segmental Y deficiencies shows that the Su(Ste) region suppresses both the high levels and efficient splicing of Stellate RNA.
Collapse
Affiliation(s)
- K J Livak
- Central Research & Development Department, E. I. du Pont de Nemours & Co., Inc., Wilmington, Delaware 19880-0328
| |
Collapse
|
23
|
Henikoff S, Wallace JC, Brown JP. Finding protein similarities with nucleotide sequence databases. Methods Enzymol 1990; 183:111-32. [PMID: 2314271 DOI: 10.1016/0076-6879(90)83009-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this chapter we describe strategies for the searching of translated nucleotide sequence databases. By applying standard searching techniques developed for protein databases, we have found that previously unrecognized homologies can be detected. In addition, we have shown that extremely high sensitivity can be obtained using the scoring matrix strategy for short regions of similarity. The latter approach is particularly effective for detecting homologs found at the ends of sequences and within data of poor quality. These individual methods are demonstrated for the LysR family of bacterial activator proteins. Successive applications of these methods allow for sensitive detection of complex relationships, as demonstrated for the AraC family and for the complex LuxR-OmpR-NtrC families of bacterial activator proteins. Although our examples are drawn from bacterial sequences, these methods are likewise effective for higher eukaryotic genomic sequences, where protein-coding sequences are usually interrupted by introns. This should be particularly important in the future, since much of the expected increase in nucleotide sequence databases is likely to come from eukaryotic genomic sequencing projects.
Collapse
|
24
|
Merrick MJ, Coppard JR. Mutations in genes downstream of the rpoN gene (encoding sigma 54) of Klebsiella pneumoniae affect expression from sigma 54-dependent promoters. Mol Microbiol 1989; 3:1765-75. [PMID: 2695747 DOI: 10.1111/j.1365-2958.1989.tb00162.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two open reading frames (ORFs), designated ORF95 and ORF162, downstream of the Klebsiella pneumoniae sigma 54 structural gene (rpoN) have been sequenced and shown to encode polypeptides of 12 kD and 16 kD, respectively. ORFs homologous to ORF95 are present downstream of four out of five rpoN genes sequenced to date from a range of Gram-negative bacteria, and ORF162 is also conserved, at least in Pseudomonas putida. Chromosomal mutations have been created in each gene using a kan cassette and both have the same phenotype, i.e. they cause an increase in the level of expression from sigma 54-dependent promoters. We propose that the products of both genes function to modulate the activity of E sigma 54, although a physiological role for these proteins has not yet been identified.
Collapse
Affiliation(s)
- M J Merrick
- AFRC Institute of Plant Science Research, University of Sussex, Brighton, UK
| | | |
Collapse
|
25
|
Schoenlein PV, Roa BB, Winkler ME. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12. J Bacteriol 1989; 171:6084-92. [PMID: 2681152 PMCID: PMC210475 DOI: 10.1128/jb.171.11.6084-6092.1989] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report the DNA sequence and in vivo transcription start of pdxB, which encodes a protein required for de novo biosynthesis of pyridoxine (vitamin B6). The DNA sequence confirms results from previous minicell experiments showing that pdxB encodes a 41-kilodalton polypeptide. RNase T2 mapping of in vivo transcripts and corroborating experiments with promoter expression vector pKK232-8 demonstrated that the pdxB promoter shares its -10 region with an overlapping, divergent promoter. Thus, pdxB must be the first gene in the complex pdxB-hisT operon. The steady-state transcription level from these divergent promoters, which probably occlude each other, is approximately equal in bacteria growing in rich medium at 37 degrees C. The divergent transcript could encode a polypeptide whose amino-terminal domain is rich in proline and glutamine residues. Similarity searches of protein data bases revealed a significant number of amino acid matches between the pdxB gene product and D-3-phosphoglycerate dehydrogenase, which is encoded by serA and catalyzes the first step in the phosphorylated pathway of serine biosynthesis. FASTA and alignment score analyses indicated that PdxB and SerA are indeed homologs and share a common ancestor. The amino acid alignment between PdxB and SerA implies that PdxB is a 2-hydroxyacid dehydrogenase and suggests possible NAD+, substrate binding, and active sites of both enzymes. Furthermore, the fact that 4-hydroxythreonine, a probable intermediate in pyridoxine biosynthesis, is structurally related to serine strongly suggests that the pdxB gene product is erythronate-4-phosphate dehydrogenase. The homology between PdxB and SerA provides considerable support for Jensen's model of enzyme recruitment as the basis for the evolution of different biosynthetic pathways.
Collapse
Affiliation(s)
- P V Schoenlein
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | |
Collapse
|
26
|
Dual bidirectional promoters at the mouse dhfr locus: cloning and characterization of two mRNA classes of the divergently transcribed Rep-1 gene. Mol Cell Biol 1989. [PMID: 2674679 DOI: 10.1128/mcb.9.7.3058] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse dihydrofolate reductase gene (dhfr) is a housekeeping gene expressed under the control of a promoter region embedded in a CpG island--a region rich in unmethylated CpG dinucleotides. A divergent transcription unit exists immediately upstream of the dhfr gene which is coamplified with dhfr in some but not all methotrexate-resistant cell lines. We show that the promoter region for this gene pair consists of two bidirectional promoters, a major and minor promoter, which are situated within a 660-base-pair region upstream of the dhfr ATG translation initiation codon. The major promoter controls over 90% of dhfr transcription, while the minor promoter directs the transcription of the remaining dhfr mRNAs. The major promoter functions bidirectionally, transcribing a divergent 4.0-kilobase poly(A) mRNA (class A) in the direction opposite that of dhfr transcription. The predicted protein product of this mRNA is 105 kilodaltons. The minor promoter also functions bidirectionally, directing the transcription of at least two divergent RNAs (class B). These RNAs, present in quantities approximately 1/10 to 1/50 that of the class A mRNAs, are 4.4- and 1.6-kilobase poly(A) mRNAs. cDNAs representing both class A and class B mRNAs have been cloned from a mouse fibroblast cell line which has amplified the dhfr locus (3T3R500). DNA sequence analysis of these cDNAs reveals that the class A and class B mRNAs share, for the most part, the same exons. On the basis of S1 nuclease protection analysis of RNA preparations from several mouse tissues, both dhfr and divergent genes showed similar levels of expression but did show some specificity in start site utilization. Computer homology searches have revealed sequence similarity of the divergent transcripts with bacterial genes involved in DNA mismatch repair, and we therefore have named the divergently transcribed gene Rep-1.
Collapse
|
27
|
Roa BB, Connolly DM, Winkler ME. Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12. J Bacteriol 1989; 171:4767-77. [PMID: 2670894 PMCID: PMC210278 DOI: 10.1128/jb.171.9.4767-4777.1989] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report that pdxA, which is required for de novo biosynthesis of pyridoxine (vitamin B6) and pyridoxal phosphate, belongs to an unusual, multifunctional operon. The pdxA gene was cloned in the same 3.5-kilobase BamHI-EcoRI restriction fragment that contains ksgA, which encodes the 16S rRNA modification enzyme m6(2)A methyltransferase, and apaH, which encodes diadenosine tetraphosphatase (ApppA hydrolase). Previously, Blanchin-Roland et al. showed that ksgA and apaH form a complex operon (Mol. Gen. Genet. 205:515-522, 1986). The pdxA gene was located on recombinant plasmids by subcloning, complementation, and insertion mutagenesis, and chromosomal insertions at five positions upstream from ksgA inactivated pdxA function. DNA sequence analysis and minicell translation experiments demonstrated that pdxA encoded a 35.1-kilodalton polypeptide and that the stop codon of pdxA overlapped the start codon of ksgA by 2 nucleotides. The translational start codon of pdxA was tentatively assigned based on polypeptide size and on the presence of a unique sequence that was also found near the translational start of PdxB. This conserved sequence may play a role in translational control of certain pyridoxine biosynthetic genes. RNase T2 mapping of chromosomal transcripts confirmed that pdxA and ksgA were members of the same complex operon, yet about half of ksgA transcripts arose in vivo under some culture conditions from an internal promoter mapped near the end of pdxA. Transcript analysis further suggested that pdxA is not the first gene in the operon. These structural features support the idea that pyridoxine-biosynthetic genes are members of complex operons, perhaps to interweave coenzyme biosynthesis genetically with other metabolic processes. The results are also considered in terms of ksgA expression.
Collapse
Affiliation(s)
- B B Roa
- Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | |
Collapse
|
28
|
Grimm C, Panopoulos NJ. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several procaryotic regulatory proteins. J Bacteriol 1989; 171:5031-8. [PMID: 2768197 PMCID: PMC210314 DOI: 10.1128/jb.171.9.5031-5038.1989] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A ca. 20-kilobase (kb) region (hrp) that controls the interaction of Pseudomonas syringae pv. phaseolicola with its host (pathogenicity) and nonhost plants (hypersensitive reaction) was previously cloned and partially characterized. In this study we defined the limits and determined the nucleotide sequence of a hrp locus (hrpS), located near the right end of the hrp cluster. The largest open reading frame (ORF302) in hrpS has a coding capacity for a 302-amino-acid polypeptide. The predicted amino acid sequence of the translation product of ORF302 (HrpS) shows significant similarity to several procaryotic regulatory proteins, including the NtrC, NifA, and DctD proteins of Rhizobium spp., the NtrC and NifA proteins of Klebsiella pneumoniae, and the TyrR protein of Escherichia coli. These proteins regulate diverse operons involved in nitrogen fixation, transport and metabolism of amino acids, and transport of C-4 dicarboxylic acids. The HrpS protein appears to be the shortest naturally occurring member of this family of proteins, corresponding for the most part to the highly conserved central domain of these proteins, which contains a putative ATP-binding site. A C-terminal segment analogous to the less-well-conserved domain, involved in DNA binding of NtrC and NifA, is also present in HrpS. These similarities suggest that HrpS is a regulatory protein. In line with this prediction is the finding that a functional hrpS gene is necessary for the activation of another hrp locus during the plant-bacterium interaction.
Collapse
Affiliation(s)
- C Grimm
- Institute of Molecular Biology and Biotechnology, Research Center of Crete, Heraklio, Greece
| | | |
Collapse
|
29
|
Linton JP, Yen JY, Selby E, Chen Z, Chinsky JM, Liu K, Kellems RE, Crouse GF. Dual bidirectional promoters at the mouse dhfr locus: cloning and characterization of two mRNA classes of the divergently transcribed Rep-1 gene. Mol Cell Biol 1989; 9:3058-72. [PMID: 2674679 PMCID: PMC362775 DOI: 10.1128/mcb.9.7.3058-3072.1989] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mouse dihydrofolate reductase gene (dhfr) is a housekeeping gene expressed under the control of a promoter region embedded in a CpG island--a region rich in unmethylated CpG dinucleotides. A divergent transcription unit exists immediately upstream of the dhfr gene which is coamplified with dhfr in some but not all methotrexate-resistant cell lines. We show that the promoter region for this gene pair consists of two bidirectional promoters, a major and minor promoter, which are situated within a 660-base-pair region upstream of the dhfr ATG translation initiation codon. The major promoter controls over 90% of dhfr transcription, while the minor promoter directs the transcription of the remaining dhfr mRNAs. The major promoter functions bidirectionally, transcribing a divergent 4.0-kilobase poly(A) mRNA (class A) in the direction opposite that of dhfr transcription. The predicted protein product of this mRNA is 105 kilodaltons. The minor promoter also functions bidirectionally, directing the transcription of at least two divergent RNAs (class B). These RNAs, present in quantities approximately 1/10 to 1/50 that of the class A mRNAs, are 4.4- and 1.6-kilobase poly(A) mRNAs. cDNAs representing both class A and class B mRNAs have been cloned from a mouse fibroblast cell line which has amplified the dhfr locus (3T3R500). DNA sequence analysis of these cDNAs reveals that the class A and class B mRNAs share, for the most part, the same exons. On the basis of S1 nuclease protection analysis of RNA preparations from several mouse tissues, both dhfr and divergent genes showed similar levels of expression but did show some specificity in start site utilization. Computer homology searches have revealed sequence similarity of the divergent transcripts with bacterial genes involved in DNA mismatch repair, and we therefore have named the divergently transcribed gene Rep-1.
Collapse
Affiliation(s)
- J P Linton
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | | | | | | | | | | | | | | |
Collapse
|
30
|
The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes. Mol Cell Biol 1989. [PMID: 3149712 DOI: 10.1128/mcb.8.12.5206] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The brown gene of Drosophila melanogaster is required for deposition of pteridine pigments in the compound eye and other tissues. We isolated a ca. 150-kilobase region including brown by microdissection and chromosome walking using cosmids. Among the cDNAs identified by hybridization to the cosmids, one class hybridized to a genomic region that is interrupted in two brown mutants, bw and In(2LR)CK, and to 2.8- and 3.0-kilobase poly(A)+ RNAs which are altered in the mutants. Nucleotide sequencing of these cDNAs revealed that the two transcripts differ as a consequence of alternative poly(A) addition and that both encode the same predicted protein of 675 amino acids. Searches of available databases for amino acid sequence similarities detected a striking overall similarity of this predicted protein to that of the D. melanogaster white gene. The N-terminal portion aligned with the HisP family of membrane-associated ATP-binding proteins, most of which are subunits of active transport complexes in bacteria, and to two regions of the multidrug resistance P-glycoprotein. The C-terminal portion showed a structural similarity to integral membrane components of the same complexes. Taken together with earlier biochemical evidence that brown and white gene products are necessary for uptake of a pteridine precursor and genetic evidence that brown and white proteins interact, our results are consistent with suggestions that these proteins are subunits of a pteridine precursor permease.
Collapse
|
31
|
James AA, Blackmer K, Racioppi JV. A salivary gland-specific, maltase-like gene of the vector mosquito, Aedes aegypti. Gene 1989; 75:73-83. [PMID: 2470653 DOI: 10.1016/0378-1119(89)90384-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genomic and cDNA clones of a gene expressed specifically in the salivary glands of adult Aedes aegypti have been isolated and sequenced. This gene encodes an abundant mRNA that is transcribed throughout the male salivary gland but only in the cells of the proximal lateral lobes of the female gland. The deduced protein has many basic amino acids, several possible sites for N-glycosylation, and displays striking similarities with the products of a yeast maltase gene and three previously unidentified genes from Drosophila melanogaster. We propose the name 'Maltase-like I' (MalI) to designate this gene. The presumed function of this gene product is to assist the mosquito in its sugar-feeding capabilities. The mosquito and fruitfly genes have similar structural features 5' to the protein coding regions, indicating that these genes may share common control mechanisms.
Collapse
Affiliation(s)
- A A James
- Department of Tropical Public Health, Harvard School of Public Health, Boston, MA 02115
| | | | | |
Collapse
|
32
|
Dreesen TD, Johnson DH, Henikoff S. The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes. Mol Cell Biol 1988; 8:5206-15. [PMID: 3149712 PMCID: PMC365623 DOI: 10.1128/mcb.8.12.5206-5215.1988] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The brown gene of Drosophila melanogaster is required for deposition of pteridine pigments in the compound eye and other tissues. We isolated a ca. 150-kilobase region including brown by microdissection and chromosome walking using cosmids. Among the cDNAs identified by hybridization to the cosmids, one class hybridized to a genomic region that is interrupted in two brown mutants, bw and In(2LR)CK, and to 2.8- and 3.0-kilobase poly(A)+ RNAs which are altered in the mutants. Nucleotide sequencing of these cDNAs revealed that the two transcripts differ as a consequence of alternative poly(A) addition and that both encode the same predicted protein of 675 amino acids. Searches of available databases for amino acid sequence similarities detected a striking overall similarity of this predicted protein to that of the D. melanogaster white gene. The N-terminal portion aligned with the HisP family of membrane-associated ATP-binding proteins, most of which are subunits of active transport complexes in bacteria, and to two regions of the multidrug resistance P-glycoprotein. The C-terminal portion showed a structural similarity to integral membrane components of the same complexes. Taken together with earlier biochemical evidence that brown and white gene products are necessary for uptake of a pteridine precursor and genetic evidence that brown and white proteins interact, our results are consistent with suggestions that these proteins are subunits of a pteridine precursor permease.
Collapse
Affiliation(s)
- T D Dreesen
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | |
Collapse
|
33
|
McCoubrey WK, Nordstrom KD, Meneely PM. Microinjected DNA from the X chromosome affects sex determination in Caenorhabditis elegans. Science 1988; 242:1146-51. [PMID: 2973125 DOI: 10.1126/science.2973125] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The signal for sex determination in the nematode Caenorhabditis elegans is the ratio of the number of X chromosomes to the number of sets of autosomes (X/A ratio). By previous genetic tests, elements that feminized chromosomal males appeared to be widespread on the X chromosome, but the nature of these elements was not determined. In experiments to define a feminizing element molecularly, cloned sequences were added to chromosomally male embryos by microinjection into the mother. Three different X-chromosome clones, including part of an actin gene, part of a myosin heavy chain gene, and all of two myosin light chain genes, feminize chromosomal males. Both somatic and germline aspects of sex determination are affected. In contrast, about 40 kilobases of nematode autosomal DNA, phage lambda DNA, and plasmid pBR322 DNA do not affect sex determination. A feminizing region was localized to a maximum of 131 base pairs within an intron of the X-linked actin gene; a part of the gene that does not have this region is not feminizing. The results suggest that short, discrete elements found associated with many X-linked genes may act as signals for sex determination in C. elegans.
Collapse
Affiliation(s)
- W K McCoubrey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | |
Collapse
|
34
|
Henikoff S, Haughn GW, Calvo JM, Wallace JC. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A 1988; 85:6602-6. [PMID: 3413113 PMCID: PMC282025 DOI: 10.1073/pnas.85.18.6602] [Citation(s) in RCA: 394] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
At least nine different bacterial proteins belong to the LysR family. The gene sequence for one of these proteins is presented here. Six others (Escherichia coli LysR, IlvY, CysB; Salmonella typhimurium MetR; Rhizobium NodD; and Enterobacter cloacae AmpR) are known to activate other genes. Based on sequence alignments, each member of this family is predicted to have a helix-turn-helix DNA binding motif near its amino terminus. The combined evidence indicates that all nine proteins are related by common ancestry, are similarly folded, and are not detectably related to other known bacterial regulatory proteins. The DNA database searching procedure and other methods used in this study should be useful in detecting other groups of related proteins.
Collapse
Affiliation(s)
- S Henikoff
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | | | |
Collapse
|